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ABSTRACT 

Shortest and/or longest path analysis is a major analytical component 

of quantitative models for improving flow management and control. The 

importance of shortest path analysis in all phases of these operations 

has given rise to intensive research and software development for solving 

shortest path problems. However, many of the significant real-world ap-

plications for shortest path analysis involve problems that are far larger 

than the current software can handle on existing computers. This results 

from the fact that shortest path methodology and computer implementation 

has focused on procedures that keep all problem data in central memory, 

without using external storage devices. Accordingly, the purpose of this 

project is to conduct research on effective mathematical methods and 

computer implementations for solving large-scale shortest path problems. 

Specifically, w e will explore the development of efficient solution pro-

cedures and computer programming software that exhibit both in-core and 

out-of-core storage and transfer capabilities. We expect our research to 

produce procedures capable of solving shortest path problems having millions 

of variables and several thousand equations on current computer hardware 

with reasonable solution times. Further, we anticipate these procedures 

can be used to greatly increase the solution capabilities of medium size 

computer systems which have a small amount of central computer memory. 



1.0 INTRODUCTION 

The primary purpose of this paper is to report the development and compu-

tational testing of in-core out-of-core shortest path algorithms and codes» 

This type of procedure is distinguished from previous codes in that not all of 

the data resides in central computer memory simultaneously; thus, they are re-

ferred to as in-core out-of-core procedures. The major advantages of such a 

code over in-core procedures are (1) they can solve problems which the latter 

cannot due to central memory limitations; (2) even for problems which the lat-

ter can solve the former requires less central memory which is often critical 

for fast job processing on multi-processing computer systems; and (3) codes 

developed for such procedures can also be used as an in-core code without sig-

nificant performance degradation. Given the importance of shortest path analy-

sis, it is surprising that the research and software development efforts have 

historically focused on solution procedures which keep all problem data in 

central computer memory [3, 4 , 5 , 6, 7, 9 , 10, 11, 15, 16, 17]. 

The design of such procedures presents numerous computational difficulties 

in selecting the kinds of information and data structures to use in order to 

minimize central processing time as well as peripheral processing time. One 

of the most difficult problems in such a design is overcoming or accommodating 

the fact that the most efficient [4, 7] shortest path algorithms require random 

access of original problem data. These difficulties with current in-core pro-

cedures and the potential benefits of overcoming them have led distinguished 

researchers to stress the need for a major research effort to determine the 

most efficient in-core out-of-core algorithms for shortest path problems. Our 

study extends the excellent computational studies by Dial et al [4] and Gilsinn 

and Witzgall [7] on in-core algorithms. 

This report specifically focuses on characterizing and comparing different 
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algorithms for calculating the shortest paths from one node to all other 

nodes in a directed network. The study discloses that alternative list 

structures and labeling methods exert a remarkably powerful influence on 

solution efficiency and solution capabilities. 

In general, our conclusion is that the performance of in-core out-of-

core shortest path algorithms is dominated by the amount of data transfer that 

must be performed. Consequently, if there is a sufficient amount of central 

memory available the best type of algorithm for in-core out-of-core processing 

is the label setting algorithm. Specifically, the Dijkstra address calculation 

sort algorithm (Dial [3], ACM Algorithm 360) suitably modified for in-core out-

of-core processing, is the most efficient for city transit problems and the 

Dantzig address calculation sort algorithm is best for random networks. The 

identity of the best of these methods also depends upon the computer, its I/O 

subsystem and its billing routine. For example, an elementary label-correct-

ing algorithm, which is one of the slowest algorithms in an in-core m o d e , ap-

pears to be the most efficient for city transit problems on the CDC 6600 at 

The University of Texas, but not on the DEC System 10. The study additionally 

shows that the performance of in-core out-of-core algorithms is not very sen-

sitive to the range of the arc length coefficients and grid rectangularities. 

Finally, this study demonstrates the feasibility of solving shortest path prob-

lems with millions of variables or more modest size problems on medium-size 

computer systems which have a small amount of central computer memory. 

Shortest and/or longest path analysis is a major analytical component 

of numerous quantitative transportation and communication models [2, 3, 6, 

7, 9 , 10, 11, 16, 17]. These mathematical models seek to improve effi-

ciency and service by increasing capacity, reducing travel time, minimizing 

congestion, reducing the cost of transportation service s improving vehicle 
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routing, or reducing energy utilization. Such models usually utilize a 

network to represent the transportation system (which may consist of 

road segments, railroad tracks, and other common carrier transportation 

routes) where one desires to find a numerical value of the minimum time, 

cost, distance, energy usage, etc., or maximum capacity between several 

pairs of points in the network. The former problems are often called 

shortest path problems while the latter are called longest path problems. 

Finding these values in many applications often requires finding the 

shortest or longest path from one point (called a root node) to all other 

points (nodes) in the network, where nodes can be road intersections, rail-

road junction points, airplane terminals, and so forth. Further, such in-

formation is often successively required for several different root nodes 

and for a large number of different criterion functions (time, distance, 

cost, etc.). Additionally, applications often involve iterative determina-

tion of the shortest or longest paths for several different values of each 

criterion function's coefficients during sensitivity analysis. For many 

applications the networks are very large, containing several thousand nodes 

and arcs (segments or links). 

The longest path problem is often applied to schedule major projects 

such as: phased network capacity improvement programs; maintenance, over-

haul, and leasing of large-scale transportation equipment; resource level-

ing; research and development programs; and the market introduction of a new 

production service. The longest path problem is the central component of 

critical path scheduling, often designated by a variety of acronyms such 

as CPS, CPM, and PERT. Regardless of the name used, it is very important 
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to realize that the longest path problem is a special case of shortest path 

problem, namely, an acyclic problem. Thus, the algorithms in this paper 

apply to such problems and henceforth we will use the term shortest path 

problem to refer to both problems. 

Due to the demonstrated value of shortest path analysis in diverse 

practical applications and the increased reliance on this type of analysis 

in recent years, the number and complexity of shortest path models has 

been steadily growing. This is true not only for problems that can be 

directly handled within a shortest (longest) path framework, but also for 

many problems with key components that can be treated within such a frame-

w o r k . As greater realism and more interacting considerations are included 

in the models for these problems, the size of these models also in-

evitably grows. Consequently, one is faced with a need to solve large 

scale problems that promises to increase as these models continue to become 

more realistic (and more useful). 

2.0 NETWORK TERMINOLOGY AND STORAGE 

This section contains formal definitions of the terms used to describe 

shortest path problems and algorithms. In order to unify the literature in 

shortest path methods and their implementation, we will largely use the 

terminology of the Gilsinn and Witzgall study [7] and the Dial et al [4] 

study, departing only to make distinctions and refinements not anticipated 

in the previous works. 

A directed network or simply a network G(N,A) consists of a finite set 

N of nodes and a finite set A of arcs, where each arc a £ A may be denoted 

as an ordered pair (u,v), referring to the fact that the arc is conceived 

as beginning at a node u e N and terminating at a different node v e N. 
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A directed path or path is a finite sequence of arcs P = {a,, a , ...a } 
1 2 n 

such that for each i = 2,...n, arc a^ begins at the end of arc a^ P is 

called a path from node u to node v if a n starts at node u and arc a ter-
1 n 

minates at node v . If a network contains a path from node u to node v , 

then v is called accessible from u. A path P from u to v is called a circuit 

if u - v . A path for which a^ £ a for i ^ j is called arc-simple. 

Let ¿(a) or &(u,v) denote a nonnegative length associated with arc 

a = (u,v) of a network. Then we define the length of path P to be d(P) = 

n 

Z ( • Path P from one particular node to another node is called a 

shortest path if d(P) is the minimum length of any path between these nodes. 

A network may be represented in a computer in several ways [4, 7, 10], 

and the manner in which it is represented directly affects the performance 

of algorithms applied to the network. 

The fastest in-core algorithms [4, 7, 16] store a network with |N| 

nodes and |A| arcs using a linked list structure. In this method, all of 

the arcs that begin at the same node are stored together and each is re-

presented by recording only its ending node and length. A pointer is then 

kept for each node (heading) which indicates the block of computer memory 

locations for the arcs beginning at this node. The set of arcs emanating 

from node u is called the forward star of node u and denoted by FS(u); 

i.e., FS(u) = {(u,j) e A}. If the nodes are numbered sequentially from 1 

to |N| and the arcs are stored consecutively in memory such that the arcs 

in the forward star of node i appear immediately after the arcs in the 

forward star of node i - 1, then this method, called the forward star form, 

requires only |N| + 2 [A| units of memory. 



6 

Throughout this paper we will assume that the network is represented 

in forward star form. In some cases we will further assume that the arcs 

of the forward star of each node are ordered by ascending length; this 

will be called a sorted forward star form. Figure 1 illustrates the storage 

of a network in a sorted forward star form. The number in the square at-

tached to an arc of the network diagram is the arc length. 

The forward star forms are commonly used with special algorithms 

called labeling methods for implementing shortest path and network flow 

solution procedures. In general, labeling methods are the most widely 

used methods for industrial and governmental applications, and constitute 

the primary focus of this paper because such methods are especially effec-

tive in application to large sparse networks. Next we define some terms 

commonly used in describing labeling algorithms. 

3.0 TREE TERMINOLOGY AND LABELING TECHNIQUES 

In the context of directed networks, a rooted tree, or simply a tree, 

is a network T i N ^ A ^ ) together with a node r (called the root node), such 

that each node of N , except r, is accessible from r by a unique arc-

simple path in T . 

A rooted tree T is called a minimum tree or shortest path tree of a 

larger network G(N,A) if T contains all nodes of G accessible from r , and 

if for each node v in N ^ , the unique path P from r to v is a shortest path 

from r to v in the network G. 

Labeling algorithms typically start with a tree, T , consisting only of 

the root node r and seek to enlarge and modify T until it becomes a shortest 

path tree of a larger network G. Thus, an important computer implementation 
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component of such algorithms involves properly handling T and storing G. 

A common way of representing a tree in a computer is to think of the 

root node as the highest node in the tree and all the other nodes hanging 

below the root. The tree is then represented by keeping a pointer list 

which contains for each node w f r in the tree, the starting node v of the 

single arc in the tree terminating at w . This upward pointer is called 

the predecessor of node w and will be denoted by p(w). Further, node w 

is called an immediate successor of node v . For convenience, we will as-

sume that the predecessor of the root, p(r), is zero. Figure 2 illustrates 

Figure 1 - Sorted Forward Star Form 

NODE POINTER 
ENDING 
NODE 1 

1 

2 
3 

4 

8 
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a tree rooted at node 1, the predecessors of the nodes, and other functions 

to be described subsequently. The predecessor of a node is identified in 

the p array. For example, the predecessor of node 16 is node 5. 

Most labeling algorithms keep another list indexed by the node numbers 

and associated with the tree T. This list contains for each node v a label 

d(v), whose value is the length of the unique path from r to v in T. (In 

some implementations, d(v) is not always the correct length but an over-

estimate that gradually converges to the correct length.) Henceforth d(v) 

will be called the node potential of node v . Nodes not in T may or may 

not be labeled with a node potential value; usually they are given the 

label indicating that they are not yet reached by the tree. The root 

r has a node potential of zero. 

In Figure 2 the number in the square on each arc indicates the length 

of the arc. The entries in the d array identify the length of the unique 

path from the root to each node. The other functions illustrated in Figure 2 

will now be described. 

The first of these functions, the thread function [1, 8], is denoted 

by t(x). This function is a downward pointer through the tree. As illus-

trated in Figure 2 by the dotted line, function t may be thought of as a 

connecting link (thread) which passes through each node exactly once in a 

top to bottom, left to right sequence, starting from the root node. For 

example, in Figure 2 , t(l) = 2 , t(2) = 4 , t(4) = 5 , t(5) = 16, t(16) - 8, 

etc. 

Letting n denote the number of nodes in T ( N
T >

A
T ) >

 t i i e function t 

satisfies the following inductive characteristics: 



9 

Figure 2 - Tree Labeling Techniques 
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2 n 1 
a) The set {r, t(r), t (r), ..., t (r)} is precisely the set of 

2 3 
nodes of the rooted tree, where by convention t (r) = t(t(r)), t 

2 k-1 
t(t (r)), etc. The nodes r , t(r), t (r) will be called the ante-

k 

cedents of node t (r). 

b) For each node i other than node t° ~*~(r), t(i) is one of the nodes 

such that p(t(i)) = i, if such nodes exist. Otherwise, let x denote the 

first node in the predecessor path of i to the root which has an immediate 

successor y and y is not an antecedent of node i. In this case, t(i) = y . 

c) t n ( r ) = r; that is, the "last node 1 1 of the tree threads back to 

the root node. 

The reverse thread function, rt(x), is simply a pointer which points 

in the reverse order of the thread. That is, if t(x) = y , then rt(y) = x. 

Figure 2 also lists the reverse thread function values. 

The depth function, dh(x), indicates the number of nodes in the pre-

decessor path of node x to the root, not counting the root node itself. 

If one conceives of the nodes in the tree as arranged in levels where the 

root is at level zero and all nodes "one node away from 1 1 the root are at 

level o n e , etc., then the depth function simply indicates the level of a 

node in the tree. (See Figure 2.) 

Note that both the domain and the range of each of the above discrete 

functions are nodes and thus are independent of the number of arcs. Since 

|N| is the maximum number of nodes that could be in T , a one dimensional 

array of size |N[, called a node length array, is allocated to each func-

tion during computer implementation. 
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4.0 SHORTEST PATH PROBLEM AND LABELING METHODS 

By means of the foregoing terminology, the problem of finding the 

shortest paths from a given node r to all other nodes in network G(N,A) 

may be stated as that of finding a minimum tree T(N^,A^) of G rooted at 

node r. 

Labeling methods for computing such a minimum tree have been divided 

into two general classes, label-setting and label-correcting methods [4, 

7]. Both methods typically start with a tree such that N^ = {r} 

and A ^ = 0. A label-setting method then augments N ^ and A^ respectively, 

by one node v £ N and one arc (u,v) e A at each iteration in such a manner 

that u e N , v £ N.J,, and the unique path from r to v in T is a shortest 

path. A label-setting method terminates when all arcs in A which have 

their starting endpoints in N ^ also have their ending endpoints in N . 

A label-correcting method, on the other hand, always exchanges, aug-

ments, or updates arcs in A ^ in a manner that replaces or shortens the 

unique path from r to v in T , but does not guarantee that the new path is 

a shortest path (until termination occurs). Using the notation defined in 

the previous section, we now give a precise description of each of these 

general methods. 

General Label-Setting Method 

1. Initialize a tree T i N ^ A ^ ) such that N^ = {r} and A = 0. Further, 

set p(t): = 0 , t e N; d(t) : = t c N - {r}; and d(r): = 0. 

(The notation a: = b sets a equal to b.) 

2. Let S = {(u,v): u e N T ; v e N - N , (u,v) e A}. If S = 0, go to 

Step 4. Otherwise proceed. 



12 

3. Let d(u) + £(u,v) = minimum (d(p) + &(p,q)). Redefine 

(p,q)eS 

N t : = N t U { v } 

A t : = A x U { ( u , v ) } 

p(v) : = u 

d(v) : = d(u) + l(u,v) 

and repeat Step 2. 

4. Stop. a m ^ n ^ m u m t r e e a n (l each node v 8 N , d(v) 

is the length of a shortest path from r to v f r. 

It is worth noting that a label-setting method only works for non-

negative arc lengths. A label-correcting method, however, works for 

negative arc lengths as long as there are no circuits of negative length 

in the network G(N,A). 

General Label-Correcting Method 

1. Initialize a tree T(N^,A^) such that N^ = {r} and A ^ = 0. Further, 

set p(t): = 0 , t e N; d(r): = 0; and d(t): = t e N - {r}. 

2. Go to step 4 if there does not exist an arc (u,v) e A such that 

d(u) + £(u,v) < d(v). Otherwise, for such an arc, redefine 

N t : - N t U { v } 

A T : = A T " { ( s > v ) £ A x } U { ( u , v ) } 

p(v): = u 

d(v) : = d(u) + <Uu,v) 

3. Repeat Step 2. 

4. Stop. T(N ,A ) is a minimum tree and for each node v e N, d(v) is 

the length of a shortest path from r to v i r. Further, if a 
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shortest path from r to v exists (i.e., if p(v) ^ 0), then it 

may be constructed by successively examining the predecessors 

of v until the root node r is encountered. 

5.0 EXPERIMENTAL DESIGN 

Alternative implementation methods are evaluated in this study by 

solving a diverse set of randomly generated shortest path problems using 

the same computers (a CDC 6600 and DEC System 10 (KI10)), the same FORTRAN 

compilers (MNF and FORTRAN-IO) and all the codes were executed during time 

periods when the demand for computer use was comparable. Further, all of 

the codes were implemented by the same systems analysts and no attempt 

was made to exploit any of the unique hardware characteristics of the 

CDC 6600 or DEC 10. 

Even with these safeguards, minor differences between the solution 

times of any two codes for a single test run of each must be regarded 

as being of questionable significance. For this reason, each test problem 

was solved three times (i.e., for three different roots) and the average 

solut ion time reported. Each code makes use of a real—time clock routine 

supplied by the computer vendors. Such routines can be employed using a 

FORTRAN subroutine call and is generally accurate to two decimal places. 

The reported times include only the elapsed time after input of the short-

est path problem and prior to output of its solution. This includes the 

time required to initialize the function arrays. 

5.1 Test Problems 

The problem set consists of shortest path problems from two distinct 
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topological groups. One set consists of city transit networks. A city 

transit network consists of a rectangular grid network which has been 

augmented by non-grid arcs and a set of terminal nodes with terminal 

arcs. This class of problems was examined because they are one of the 

primary types of large scale shortest path problems. These problems were 

generated using a random problem generator. (See Table I for problem 

specifications.) The problem generator creates problems as follows: 

(1) First, a p x q rectangular grid network is generated. A p x q 

grid problem may be envisioned as having its nodes arranged in p 

parallel rows each containing q nodes. Each node connects by arcs 

only to the four nodes (if present) to its right and left and above 

and below. Thus a p x q grid network has pq nodes (henceforth 

called grid nodes) and 4pq - 2p - 2q grid arcs. The grid arc lengths 

are generated by using a uniform probability distribution (u.p.d.) and 

the user specified maximum grid arc length. 

(2) Additional nodes are, then, randomly added to the network. These 

nodes, called terminal nodes, are distinct nodes, but their locations 

are considered to correspond to one of the grid nodes. Arcs are 

randomly generated out of terminal nodes to grid nodes using a u.p.d. 

The number of arcs for each terminal node is determined by using a 

u.p.d. and a user specified average number of arcs out of a terminal 

n o d e . (See Table I.) The arc length on terminal arcs is randomly 

generated using a u.p.d., a user specified maximum city block length, 

and the rectangular distance (L norm or city block norm) between two 

nodes. Note, however, that no arc length is allowed to exceed a user 
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specified maximum arc length. Thus, any arc length which exceeds this 

number is eliminated. 

(3) Finally, the grid network is augmented by additional arcs, called 

express arcs. These arcs are randomly generated using a u.p.d. so 

that the grid nodes would have on the average a user specified average 

number of total arcs directed out of each node. (See Table I.) The 

express arc lengths are generated in the same fashion as terminal arc 

lengths. 

Table II contains the CDC 6600 solution statistics and Table III con-

tains the DEC 10 solution statistics on the city transit problems specified 

in Table I for the alternative implementations to be discussed. The statis-

tics in these tables will be explained subsequently. 

The second topologically distinct set of problems consists of random 

networks. A random network is one in which two nodes are selected randomly 

to form a new arc to add to the network. The nodes are selected using a 

uniform probability distribution, subject to the restrictions that the two 

nodes are not the same and arcs are not allowed to be duplicated. The 

random network test problems all have 1000 nodes and contain either 

20,000, 40,000, 60,000, 80,000, or 100,000 arcs. For each of these prob-

lem sizes, two problems were generated, one with arc lengths between 1 

and 200 and the other with arc lengths between 1 and 10,000. Again the 

arc lengths were randomly selected using a uniform probability distribution. 

Table IV contains the computational statistics on the random network prob-

lems. Because of computer budget limits, the random problems were not 

solved on the DEC 10. 
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TABLE III 

SYSTEM BILLING TIME ON THE 

DEC 10 FOR CITY TRANSIT PROBLEMS 

Problem N o . 5 6 

Code ^ ^ " ^ - ^ T i m e s TM TM 

C2V10 204. ,1 316. .9 

C5V3 328. .3 331. ,4 

C5V7 104. .3 201. . 7 

S1V2 85. .8 153. .6 

S2V4 177. .4 211. » 
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5.2 Measurements and Evaluation of Code Efficiency 

Charges for a computer job are in some manner based on a weighted 

aggregate of the central processing (CP) time, the amount of time (I/O) 

spent on transferring data to and from peripheral storage (often called 

I/O time), and the amount of central memory used (CR) multiplied by the 

time of central memory occupancy (CT). That is, a cost function of the 

form a^(CP) 4- a^(I/0) + a^(CR)(CT) is used, where a^ , a^, and a^ are con-

stant unit charges. In our testing the total amount of central memory 

(CR) utilized by all codes was kept the same. On the CDC 6600 and DEC 10 

this was 70,000 words (except for two codes which will be discussed subse-

quently) . 

Most billing systems utilize a function to compute 1/0 time which in-

volves the number of peripheral accesses, the volume of data transferred DT, 

CT and CR. The 1/0 function is very important and plays a crucial role in 

the evaluation of in-core out-of-core shortest path algorithms. For our 

purposes, the most important aspect is the way in which DT is measured. 

Specifically, the user is billed for the amount of data that the operating 

system buffers into central memory which is not necessarily equal to the 

amount of data requested. In particular, on the CDC 6600 at the University 

of Texas the user is billed for Max {512 words, AR} per access, where AR is 

the amount of data requested. Thus, if the user requests 128 words per 

access, the system bills for 512 words per access. The most efficient 

algorithms in the shortest path literature require randomly accessing for-

ward star data. Consequently when these algorithms are coded for in~core 

out-of-core processing, their 1/0 accesses are to obtain all arc data for 
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the forward star of node u (FS(u)). In city transit problems, most FS(u) 

consist of less than 40 words of data; thus, such algorithms incur large 

DT values because of the billing system. 

The billing system on the DEC 10 is similar to that on the CDC 6600 

except that the user is billed for the Max (128 words, AR}. Due to the 

peculiarity of billing systems, we computed a number of statistics for 

each code which we initially planned to report in order to provide the 

reader with a list of statistics which could be used to calculate the best 

algorithm to use for a given billing system. After talking to several 

commercial time sharing service and university computation centers we 

abandoned this approach. The primary reasons are (1) data on billing systems 

are not available for public release and (2) as with most multi-criteria 

problems the presentation of so many statistics becomes extremely difficult 

for a reader to assimilate without extensive explanation and analysis. 

In Tables II, III, and IV, w e report for the CDC 6600, CP time and 

TM time. TM time is the value computed by the billing system on the CDC 

6600. The computer job statistics reported on the DEC 10 is simply TM time. 

For in-core codes CP time is a reasonable statistic to use for evalua-

tion purposes as long as the central memory requirements of the codes are 

clearly stated. In this case the amount of data transfer DT can be assumed 

to be equal for all in-core codes. The data in Tables II, III, and IV 

clearly demonstrate that CP time does not accurately measure the performance 

of an in-core out-of-core code because DT can vary substantially with 

changes in procedural rules without notably altering CP time. 
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The above discussion indicates that it is, indeed, a difficult task to 

determine the Mbest f f in-core out-of-core algorithm; in fact, it may be im-

possible to conclude that a particular algorithm is best across different 

billing systems. Thus studies of this type run the risk of obtaining 

statistics which do not allow any discrimination to be drawn between algo-

rithms. Fortunately, as will be seen subsequently, our test results on 

two very different computers and operating systems do provide some useful 

insights and conclusions. Nevertheless, it is important to recognize that 

our conclusions and findings could be substantially different for some 

computers and billing systems. 

6.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL-CORRECTING METHOD 

In this section we discuss a sequence of implementations of the 

general label-correcting algorithm which successively utilize more and more 

information (as embodied in the node functions) to determine the effect of 

this information on the efficiency of the algorithm. The merits of these 

alternative implementations are then evaluated by solving the test prob-

lems . 

6.1 Implementations Using Only p and d Functions 

Step 2 of the general label-correcting method involves finding any 

arc a which can be added to (or updated in) the tree with a resultant de-

crease in the node potential of its ending node. One of the fundamental 

subalgorithms of this general method involves searching for such an arc in 

an intelligent manner. Several observations have been made in the litera-
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ture regarding this search. The most rudimentary observation is that if 

the arcs are sequentially examined, it is not necessary to examine any arc 

(u,v) e A whose beginning node has an infinite node potential since d(u) + 

&(u,v) < d(v) will never be satisfied for nonnegative arc lengths. 

This observation extends quite naturally as follows. If each arc 

(u,v) £ FS(u) has been examined and found to satisfy the condition d(u) + 

&(u,v) ^ d(v), then it is unnecessary to re-examine these arcs until the 

node potential of u decreases. This observation is one of the primary 

motivating factors for storing the network in a forward star form; however, 

to utilize this observation requires randomly accessing forward star data. 

As will be seen, the order in which forward stars of nodes are examined 

plays a major role in the efficiency of the algorithm because of the way 

billing systems calculate DT. 

Based on the preceding observation, it is convenient to keep a sequence 

list of nodes whose node potentials have decreased since their forward stars 

were last examined. That is, nodes are added to the sequence list whenever 

their node potentials are decreased and deleted from the list upon examin-

ing their forward stars. By not allowing a node to appear more than once 

on this list, it is possible to restrict the size of this list to a node 

length array. 

The sequence list can be managed in a variety of ways. In particular, 

if the forward stars are examined in the order in which their identifying 

nodes are -placed on the sequence list, the list is said to be managed in a 

FIFO (First-In, First-Out) manner; if the forward star of the latest node 

added to the list is examined before that of a node placed on the list pre-
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viously, it is said to be managed in a LIFO (Last-In, First-Out) manner. 

Yet another way to manage the sequence list is to pick the node at the front 

of the list to examine next as in the FIFO procedure, but to add nodes at 

either the front or the back of the list; that is, to handle the sequence 

list as a two-way sequence list adding to either end but always deleting from 

the front. It has been shown [4, 7, 16] that the way in which the sequence 

list is managed has major ramifications for the efficiency of in-core algo-

rithms. We now describe in detail the codes whose solution statistics are 

indicated for city transit and random networks in Tables II, III, and IV. 

The study [4] showed that the best in-core label-correcting algorithm 

uses a two way sequence list. The resulting code was called C2. Below, 

we describe how this algorithm and code are modified to operate as an in-

core out-of-core procedure. In total, thirteen versions of this general 

algorithm were investigated. For brevity, only two versions are described. 

Code C2V10 utilizes the predecessor and node potential functions and 

a two-way sequence list. The two-way sequence list is implemented as 

suggested by Pape [16]. That is, the sequence list is a node length array, 

called CL, indexed by node numbers, such that 

-1 if node x was previously on the 

list but is no longer on the list 

0 if node x has never been on 

the list 

CL (x) 
+ y if node x is on the list and y 

is the next node on the list 

+ if node x is on the list and x 

is the last node on the list 
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Code C2V10, as will be true of some of the other codes to be dis-

cussed, keeps the original network stored in forward star form on a ran-

dom access disk file as follows. All of the arcs in each forward star 

(i.e., their ending node and arc length) are recorded on sectors (physi-

cal record unit or block) of the disk file. The storage of arc data 

for each forward star is stored sequentially; however, the first arc in 

each forward star begins on a new sector. This allows the code to keep 

in central computer memory a node length pointer array, called SECTOR, 

which points to the sector where the forward star for node i begins. 

SECTOR is essentially equivalent to the NODE POINTER array in Figure L. 

The arc data are brought (paged) into central computer memory, a forward 

star at a time, in accordance with the management of the two way sequence 

list and stored in a buffer B . The size of this buffer is specified by the 

user, but must be as large as the largest forward star. Normally the buffer 

is large enough to hold several forward stars. Thus another node length 

pointer array, called the core pointer array CPP, is kept in central memory. 

This array is used to indicate if the forward star of a node is currently 

in-core (i.e., residence in B^) and if it is, where its forward star begins 

in B . Another node length array is kept in central computer memory to in-

dicate the number of arcs in each forward star, called NUMOUT. This infor-

mation is used to determine if there is space in B to fit the next de-
A 

sired forward star and also to locate the arcs in a forward star once they 

are resident.in B^. In addition, the p and f functions and sequence list 

are kept in central computer memory. Code C2V10 then examines forward 
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stars in accordance with the management of the sequence list. It first 

checks to see if the forward star of the node to be examined is in-core; 

if not, its forward star is paged into central memory. Thus, the size of 

Ba directly affects solution time. In our testing the size of B is deter-
A A 

mined by the total amount of central memory (70K) to be used less the amount 

of central memory used by the node length arrays and the program itself. 

Thus the size of B differs by problem and code. Table V contains the 
A 

buffer sizes used. The reason for this variation is that we adopted the 

philosophy that all codes should have the same amount of total central 

computer memory in order to eliminate this term from the billing function 

discussed in Section 5.2. Thus, as other implementations require more 

node length arrays to remain resident in central memory, the size of their 

B, is reduced. 
A 

Code C2V13 is identical in structure to code C2V10 except that the 

management of the two way sequence list is different. In particular, the 

two way sequence list is partitioned into two node sets. One set consists 

of nodes on the sequence list whose forward stars are in B^ and the other 

set consists of the other nodes on the sequence list. These two sets are 

managed as before, i.e., nodes are added to both the front and back of each 

set and only deleted from the front. However, nodes are only removed from 
the set of nodes whose forward stars are not in B when the other set is 

A 

empty. 

The solution times in Table II indicate that the efficiency of these 

codes is essentially the same on transit problems. This result indicates 
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that B seldom contains information for nodes on the sequence list. Further 
/V 

observe that the TM time of these codes is extremely large. This is parti-

cularly interesting in view of the fact that C2 was found to be the best 

in-core code. 

Problems 1 and 3 of Table II were run in-core on these codes (i.e., 

all problem data fit in the buffer * The comparison of their solution 

times (Table II) to the original in-core version of this code, C2, shox^s 

that CP time increases by approximately 50 percent. This is due to the 

fact that C2V10 and C2V13 have to perform a number of node data transfers 

into B in order to get all problem data into central memory. 

The solution times on random networks in Table IV indicate that C2V13 

performs better than C2V10; thus, for the random problems it is useful to 

partition the sequence list. This is because the random problems have 

fewer nodes and the size of B is larger. These two factors substantially 
A 

increase the likelihood that B, contains data for nodes on the sequence 
A 

list. 

In [4] a code C5 was implemented using p , d , t, rt, and dh functions 

initialized such that p(v) = 0, v e N; t(r) = rt(r) = r; t(v) = rt(v) = 0, 

v e N - {r}; d(r) - 0; d(v) - v c N - {r}; dh(v) = 0, v e N. Addition-

ally, code C5 uses a FIFO sequence list to locate an arc (u,v) £ A such 

that 5 = ~d(u) + d(v) - £(u,v) > 0, whereupon all nodes in the subtree of 

node v are decremented by 5 and "added to" the sequence list. Simulta-

neously, the depth of each node in this subtree is incremented by llJ = 

dh(u) - dh(v) + 1. The algorithm terminates when the sequence list is 

empty. We developed seven in-core out-of-core versions of this algorithm. 
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Three of these versions will be discussed. The first version, called 

C5V3, simply modifies C5 to keep the original network data on a disk 

file. It uses the same disk file problem structure as C2V10, keeping the 

same arrays CPP, NUMOUT, and SECTOR in central memory. 

Code C5V6 differs from C5V3 in that it partitions the FIFO sequence 

list into two sets of nodes. Like C3V13, one set contains all nodes on the 

sequence list whose forward stars are in B^. Each set is, then, maintained 

in FIFO fashion and nodes are always removed from the set of nodes in B^ 

first. The results in Table II indicate that the performance of these 

codes is very similar and further, that these codes cannot be used to solve 

problems which have a large number of nodes. This is a result of the fact 

that they utilize several node length arrays. The results in Table IV 

further show that C5V6 is better than C5V3 in terms of TM time, but not 

CP time, on random problems. Further investigation shows that partitioning 

the sequence list and using this to make maximum use of the data in B re-
A 

duces DT. Additionally the results in Table IV indicate that as the number 

of arcs increases, the best algorithm in terms of TM time shifts from 

C2V13 to C5V6. Thus, when the number of arcs gets sufficiently large, it 

becomes worthwhile to keep correct node potentials. 

Due to the large TM times of the previous label-correcting codes (which 

is primarily due to the fact that they are transferring small amounts of 

data per disk access but being billed for larger amounts), we implemented a 

less sophisticated label-correcting code C5V7. Like C5V3 and C5V6, it-

uses the functions p , d , t, rt, and dh; b u t , it does not use a sequence list 

and the arrays NUMOUT and CPP. Further, it uses a different; disk file 
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problem structure. In particular, C5V7 reads several forward stars (called a 

page) into B at once. The size of a page is equal to the size of B . The A A 

original problem data is then stored on the disk file in pages. Given the 

page size, the code places in the first page complete forward stars start-

ing at node 1 for as many consecutive nodes as will fit in the page. If 

the first page contains forward stars for nodes 1 to n , then the second page 

contains complete forward stars for consecutive nodes n^ + 1 to n + n . 

The next page contains complete forward stars for nodes n^ -f n -f- 1 to 

n l + n 2 + n 3 > e t c # array PP is kept in central memory which indicates 

which position of B (a page) contains the first arc out of each node. 

This array is also used to flag the nodes that need to be scanned. C5V7 

sets the pointer in PP negative when a node's potential is changed and 

positive when this node's forward star is scanned. C5V7 sequentially ex-

amines pointers in PP until it finds a negative pointer. At this point, 

it brings this page into B and examines all forward stars in this page 
A 

until PP contains no negative pointers for this page. Next the code con-

tinues to scan pointers in PP starting at the pointers for the page follow-

ing the one just examined. 

The primary advantages of this implementation are that it always per-

forms large data transfers if the page size is large, and the central memory 

requirement on this code is smallest of all codes tested. In testing this 

code 70,000 words of central memory were not used. The size of B^ in our 

testing (see.Table V) was large enough to overcome the billing system 
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TABLE V 

SIZE OF BUFFER B A IN WORDS ON CDC 6600 and DEC 10 

Code 
Transit 

with 

2510 

Nodes 

Transit 

with 

5020 

Nodes 

Transit 

with 

7530 

Nodes 

Random 

with 

1000 

Nodes 

C2V10 48,000 33,000 18,000 57,000 

C2V13 48,000 33,000 13,000 57,000 

C5V3 38,000 13,000 CNR 

(-12,000) 

53,000 

C5V6 34,000 7,000 CNR 

(-20,000) 
51,000 

C5V7 2,000 2,000 2,000 2,000 

CNR - could not run 
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peculiarities but small enough in order to keep the number of forward 

stars on a page reasonably small. The disadvantage of this code is 

that it cannot make effective use of a sequence list. 

Testing of analogous in-core codes show that this type of processing 

is substantially inferior to the in-core label-correcting codes C2 and C5. 

The results in Tables II and III show that this is not completely true 

for in-core out-of-core codes. These results indicate that the CP time 

of C5V7 is always inferior to the other label-correcting codes; but its 

TM time is substantially (in some cases 10 times) better than the other 

label-correcting codes. Note that this is only true for city transit 

problems. This follows from the fact that most of the nodes in these 

problems have very few arcs in their forward stars and thus the codes 

C2V10, C2V13, C5V3 and C5V6 are being billed heavily for data transfers. 

Note that the times on the DEC 10 are closer because its billing system 

penalizes small data transfers less heavily. Analysis of billing results 

showed that the label-correcting codes which used a sequence list were 

billed for as much as four times more DT then C5V7 on the city transit 

problems. 

Basically, it appears that the best in-core out-of-core label-correct-

ing code for city transit problems, grid problems, and any other network 

problems which have very few arcs in their forward stars is C5V7. The best 

in-core out-of-core label-correcting code for random network problems 

which have "many 1 1 arcs in their forward stars changes from C2V13 to C5V6 

as the size of the forward stars increases. (See Table III.) 
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The city transit problems allow the reader to obtain some insight 

into the questions (1) how sensitive are solution times to the number of 

arcs since consecutive pairs of problems primarily differ only in their 

number of arcs, and (2) how sensitive are solution times to the rectangu-

larity of the underlying grid problem since the pairs of every other prob-

lems (i.e., problems 1 and 3, 2 and 4 , etc.) primarily differ only in 

their grid rectangularity. The solution statistics in Table II indicate 

that the algorithms are not sensitive to grid rectangularity but are af-

fected by the number of arcs. In particular, it is interesting to observe 

that CP on C5V7 usually decreases as the number of arcs increase for a 

given rectangularity while TM strictly increases as the number of arcs in-

creases. For the other label-correcting codes on both computers, both CP 

and TM tend to increase as the number of arcs increases. The statistics 

on the random problems in Table IV also show that CP and TM tends to in-

crease as the number of arcs increases; b u t , it is noteworthy to observe 

the non-monotonic character of this relationship. (The random networks with 

an arc length range of 1-10000 were not solved by the label-correcting codes 

because preliminary testing, as well as previous in-core code testing, 

showed that the solution times of such codes are not sensitive to arc 

length ranges.) 

7.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL-SETTING METHOD 

In this section several implementations of the general label-setting 

method are'discussed. From an algorithmic viewpoint, the primary differ-

ences between these implementations are the way in which the minimum in 

Step 3 of the algorithm description is found and the handling of original 
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problem data. These implementations are evaluated by solving the same test 

problems using the same computers and compilers. 

A naive implementation of the general label-setting method would be to 

find the set S of Step 2 by examining all arcs in A and then calculating 

and discarding node potentials to find the minimum of Step 3. This involves 

examining all arcs during every execution of Step 2, as well as performing 

many unnecessary node potential calculations in Step 3. The implementations 

described in this section make use of temporarily retained node potentials 

in such a way that each arc in A is examined at most once, thereby avoiding 

extensive recalculation. 

As a basis for understanding these implementations, it is useful to 

observe that Steps 2 and 3 of the label-setting method simply find an arc 

from a tree node to a non-tree node which yields the minimum distance ex-

tension. Figure 3 illustrates one way of viewing these steps at some 

iteration where the tree T C N ^ A ^ ) consists of the solid line arcs and their 

associated nodes. The dashed line arcs and their ending nodes N indicate 

possible tree extensions. (Note that N - N^ may not be equal to N r . ) 

By reference to this diagram, it may be seen that Steps 2 and 3 can be 

performed by keeping a temporary node potential and predecessor for each 

node v in N such that d(v) = minimum (d(u) -f £(u,v)) and the predecessor 
E urNx 

of v is set to a node u which yields the minimum node potential for v. 

Thus, if p(v) = u then -d(u) + d(v) = £(u,v). Step 3 then adds a node v 

in N with the smallest temporary node potential to N and correspondingly 
1 

adds its arc (p(v),v) to A,^. After performing this step, node v's potential 

will never change (i.e., it is assigned a permanent node potential at this 

time) and arc (p(v),v) is permanently assigned to the tree. The name label-
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Figure 3 - Label-Setting Iteration 

setting stems from this property of the algorithm. 

In the following subsections we discuss alternative implementations 

for carrying out Steps 2 and 3 in this manner. These implementations differ 

in the way they handle the follox^ing fundamental operations: (1) the compu-

tation and updating of temporary node potentials, (2) the assignment ol~ one 

or more temporary node potentials to a node in N , (3) the representation 
E 

of the original network on the external file, and (4) the buffering of arc 

data into central memory. 

7.1 Dijkstra Address Calculation Sort 

The first implementation to be discussed is the one originally developed 

by Dial [31.' In [4] the in-core code developed for this algorithm is called 

code SI. Several studies [9, 23] of shortest path algorithms have concluded 

that code SI is the fastest in-core code, superior to all other label-set-

ting and label-correcting implementations. However, the study [4] showed 
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that code SI is dominated on grid networks by the in-core label-correcting 

code C2 and on random networks by an in-core label-setting code S2 which 

is based on an algorithm proposed by Dantzig [2]. 

The Dial code operates in accordance with the previous observations 

by keeping a unique temporary node potential and predecessor for each node 

v in N such that d(v) = minimum (d(u) + ¿(u,v)) and maintaining p(v) = u 

for a node u satisfying d(v) = d(u) -f £(u,v). Likewise, at each iteration, 

a node v in N with the minimum temporary node potential is added to N and 
E T 

its arc (p(v),v) is added to A . 

The chief feature of code SI is the manner in which temporary node 

potentials are updated and their minimum is identified. In particular, 

after adding node v to N ^ , the updating is accomplished simply by scanning 

the forward star of node v . The new candidate values for node potentials 

imputed by these arcs are then calculated and compared with their current 

temporary node potentials, retaining the smaller one with its corresponding 

predecessor. 

The Dial implementation then identifies the minimum temporary node 

potential using the following observation. Each temporary node potential 

equals a permanent node potential plus the length of some arc. Consequently, 

temporary node potential values may be uniquely represented modulo (£ 4- 1) 
max 

where I = maximum £(a) . That is, if d(p) £ d(q), where d(p) and d(q) are 
max aeA 

temporary node potentials, then d(p) modulo (SL + 1) ^ d(q) modulo (I + 1). 
max max 

To see this, suppose that node v has the minimum temporary node potential 

at the current iteration. Then d(u) f d(v) for u e N_ and thus for t e N 
T E 

d(v) i d(t) f d(v) + I . I n other words, at each iteration all temporary m ^ v 1 J 
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node potentials are bracketed on the lower side by d(v) and on the upper 

side by d(v) -f £ . Thus it is possible from one iteration to the next max 

to uniquely represent all temporary node potentials modulo (^max + 1)• 

To find the minimum by this procedure, it is convenient to use a compu-

ter array k of size £ + 1 where max 

0 if i ^ d(v) modulo (£ + 1 ) , for any v e N 
max E 

k(i) = 
!

U ir i 7 

P. if i p. if i = d(q) modulo (I + 1 ) , for some q £ N , 
i v max ' H E 

where is a pointer which points to all nodes in N^ that have a modulo 

temporary node potential value of i. The nodes in N that have the same 
E 

modulo temporary node potential value (and thus, on any given iteration, 

the same temporary node potential value) are identified by chaining the 

nodes by a two-way linked list. Thus, every node with the same temporary 

potential value is linked to an antecedent and a successor node (which may 

be dummies at the "ends" of the list). When a node's temporary potential 

changes, the node is disconnected from the chain simply by re-linking its 

antecedent and successor to each other. This array achieves an "automatic 

sort" of the nodes in N relative to their temporary node potentials. E 
Figure 4 illustrates the sort structure induced by the k array and the two-

way linked lists, representing node names by the symbol n.. 

The current minimum temporary node potential is found by sequentially 

examining the elements of k in a wrap around fashion. Each time a nonzero 

element of k is encountered, the current minimum node potential is that of 

the nodes associated with this element, and examination of k resumes at the 

next nonzero element of k on the next iteration. 
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Figure 4 - Address Calculation Sort 
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To describe the implementation of this algorithm, it is convenient to 

define the following terms: 

1. The imputed node potential value of node q, relative to the forward 

star of v , denoted by d^(q), is d(v) + £(v,q). 

2. An improving imputed node potential tl^(q) is one such that 

d^(q) < d(q); i.e., is smaller than the current minimum 

temporary node potential of node q. 

3. Node q is an improving node relative to FS(v) if it. has an im-

proving imputed node potential. 

4. A node v is scanned by examining FS(v) and updating d(q) and p(q) 

for each improving node q £ FS(v); i.e., d(q): = d (q) and p(q) = v. 
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To implement this approach, the algorithm initializes p(v) = 0, v £ N; 

d(r) = 0 and d(v) = v e N - {r}; and k(i) = 0, 0 < i < £ . The root 
max 

node r is then scanned and the improving nodes of FS(r) are "added to" the 

appropriate elements of k. The first pass of the k list starts at k(0), 

examining the elements of k in sequence until the first nonzero element is 

encountered. Each node v associated with this nonzero element is then re-

moved from the two-way chained list and sequentially scanned. Any improv-

ing node q located during the scan of v is removed from "its current posi-

tion" in k and moved to its new position d (q) modulo (Z -f L). (If 
v max 

d(q) = co then node v has never been added to k and thus no steps are required 

to remove it.) 

At each subsequent iteration, the examination of array k resumes where 

it left off (and wraps around if necessary) to find the first nonzero 

entry. This entry identifies a node with the new minimum temporary node 

potential. All chained nodes with this temporary node potential are then 

removed from k and scanned in the manner previously indicated. The algo-

rithm stops when a complete pass of k is made without finding a nonzero 

entry. 

This approach is called an address calculation sort because the in-

sertion and deletion of an item from the list simply involves calculating 

an address in a convenient and straight forward manner. Its application 

to shortest path implementations, as proposed and coded by Dial, is known 

in the literature as CACM Algorithm 360 (see [3]). This algorithm, as 

noted earlier, was found by authors of several studies, to be the most 

efficient shortest path method for problems with nonnegative arc lengths. 
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Two attractive features of this algorithm, in addition to its effi-

ciency for an in-core out-of-core implementation, are its simplicity and 

the structuring which assures that each arc is examined at most once. 

This latter feature, which is independent of the use of the address cal-

culation sort, follows from the fact that an arc is scanned in a given 

iteration if and only if its starting node has a minimum node potential at 

that iteration. Every node accessible from the root must have a minimum 

potential at some step, but never more than once, thus only the arcs 

starting at accessible nodes are examined at all. The major disadvantages 

of this algorithm are the computer memory required to store k and the ran-

dom access required of arc data. Different ways of coping with these 

limitations are discussed subsequently. 

Code SI was converted to an in-core out-of-core code called code S1V1 

by simply representing the original network data in a packed forward star 

format on an external disk file. In this format the elements of the ending 

node and i arrays of Figure 1 are written pairwise on the disk file and 

storage of each forward star starts where the preceding one stops (i.e., for-

ward stars do not necessarily begin on a new disk sector). An array, called 

IFSP, equivalent to the NODE POINTER array of Figure 1, is kept in central mem-

ory. An in-core buffer LTEMP, whose size is equal to the space required to 

store the largest forward star, is kept in central memory. As the algorithm 

picks a node whose forward star is to be scanned, code S1V1 pages its forward 

star into LTEMP and then scans it. As would be expected, the solution times of 

this code (shown in Table II) are heavily dependent on the number of nodes 

in the network. That is, this code requires one access of the problem file for 
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each node accessible from the root. 

To reduce the number of accesses two other versions of SI, S1V2 and 

S1V3, were developed for city transit problems. These codes initially 

load B ^ with the forward stars of the first M grid nodes. Since a forward 

star of a grid node has only a few arcs, B ^ will often contain a large 

portion of the arc data for all grid nodes. When forward star data are 

required for a node not in B ^ , its data are paged into LTEMP. 

S1V2 and S1V3 differ only in their management of LTEMP. S1V2 simply 

manages LTEMP in a manner analogous to the way in which S1V1 manages it. 

S1V3, on the other hand, utilizes LTEMP as an auxiliary B array, i.e., 

whenever the forward star of a node not in B is required, then the code 

checks if its forward star is currently residing in LTEMP. If it is not, then 

its forward 

star is paged into LTEMP, replacing the previous contents of 

LTEMP. 

This approach was designed to exploit the topology of transit networks. 

More precisely, the shortest arcs out of each grid node are generally con-

nected to its grid node neighbors. Thus it is quite likely that one of its 

neighbors will be the next node whose forward star is to be scanned. Since 

LTEMP is filled with arc data on the disk file which is consecutive to the 

required data, it will normally contain arc data on the grid nodes pre-

ceding and following the grid node whose forward star is being scanned due 

to the way in which grid nodes are numbered. The likelihood is further in-

creased by the fact that forward stars of grid nodes contain very few arcs; 

thus, LTEMP may contain the forward stars of several grid nodes. The ad-

vantage of this approach is that it should, on the average, require fewer 



41 

paging requests; i.e., S1V2 requires one paging request for each node not 

in B ^ which is accessible from the root while S1V3 may require fewer re-

quests. The statistics in Tables II and IV indicate that the performance 

of S1V2 and S1V3 are. essentially the same in terms of TM time; thus the 

special handling of LTEMP does not appear to be worthwhile and the fact 

that S1V3 has larger CP times indicates that it is actually a disadvantage 

to handle LTEMP in this fashion. 

In general the data in Table II indicates that it is extremely ad-

vantageous to place forward star data in Further, the TM times in-

dicate that as the size of B ^ is reduced the performance deteriorates to 

that of S1V1. (See Table VI for the buffer size on each problem.) The sta-

tistics in Table II. also provide evidence that S1V2 and S1V3 are not sensi-

tive to the rectangularity of the grid, but are sensitive to the number of 

arcs. The times further indicate that the solution times of these codes, 

like the label-correcting codes, are quite dependent on the number of nodes 

in the problem. 

The solution times in Table IV indicate the surprising result that 

S1V2 and S1V3 are not sensitive to arc length ranges. The solution times 

in [4] show that the performance of the in-core code SI is highly dependent 

on the maximum arc length. 

7.2 Dantzig Address Calculation Sort 

The study of [4] shows that a major time consuming task of the SI type 

implementation involves inserting and deleting nodes in the two-way linked 

array when their node potentials are reduced. One way to reduce the effort 

of inserting and removing nodes on the two-way linked list of the address 
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TABLE VI 

NUMBER OF FORWARD STARS INITIALLY IN B 

FOR S I CODES 

x 
PROBLEM 

1 
2 
3 
4 
5 
6 
7 8 
9 

10 
11 
12 

'A 

CITY TRANSIT PROBLEMS 

S 1 V 1 S1V2 AND S1V3 

2500 
2438 
2500 
2436 
3 2 2 1 
1709 
3224 
1719 
1926 
1009 
1919 
1016 

RANDOM PROBLEMS 

PROBLEM 

1 
2 
3 

4 
5 

1 - 2 0 0 ARC LENGTH 
RANGE 

S1V2 

1000 
777 

496 

338 

302 

PROBLEM 

1 
2 

4 

5 

1 - 1 0 0 0 0 ARC LENGTH 
RANGE 

S1V2 

1000 
653 

419 

323 

253 
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calculation sort is to postpone adding nodes to the list. This can be 

done by observing that it is unnecessary to scan the entire forward star 

of the node v when it is assigned a permanent node potential. In parti-

cular, only the endpoint of a minimum length arc in such a forward star 

needs to be considered for addition to k. This follows from the fact 

that all temporary node potentials determined from node v will be greater 

than or equal to the node potential determined for the endpoint of a 

minimum length arc of FS(v). We now describe an approach designed to ex-

ploit this observation. 

In order to limit the nodes considered for addition to k by select-

ing a minimum length arc from FS(v), it is convenient to store the net-

work G(N,A) in a sorted forward star form. Dantzig [2] was the first to 

suggest this type of scheme, and thus we refer to it as the Dantzig 

address calculation sort. 

At first glance, the Dantzig address calculation sort appears to in-

cur substantial pre-processing work. Indeed, for a "one-shot" solution 

of the shortest path problem, the effort devoted to organizing the data 

in a sorted forward star form may outweigh the advantages to be gained. 

However, it is important to recognize that the construction of a large 

transportation network, as must commonly be done for a large city, may 

cost thousands of dollars. Further, once this data base is constructed, 

it is used again and again to find shortest path trees for alternative 

root nodes. These repeated applications can all be based on a single 

pre-processing effort. 

Additionally, changes to the data base of such large transportation 
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networks generally involve only a small portion of the overall configuration 

(adding or deleting certain arcs, or changing the lengths of others). Thus, 

minimal additional work is required to amend the sorted forward star form 

to accommodate the effect of such changes. 

It is possible to take advantage of a network in sorted forward star 

form by modifying the code SI in the following principal way. The improv-

ing nodes of the forward star of each node in N ^ are sequentially added to 

the two-way linked list (the two-way linked list is actually replaced by a 

one-way linked list in this implementation) as the previous node of is 

removed. Thus, the one-way linked list contains at most as many nodes as 

nodes in N . 
T 

Additionally, each time a node n^ is added to the one-way linked list, 

the predecessor of n , at the time it is added (i.e., the forward star node 

which put node n . on the list) is paired with n. and added to the list. 
1 i 

That is, each item on the one-way linked list is a pair which consists of 

a node and its predecessor. This has several advantages. First, it allows 

a node to appear more than once on the one-way linked list and thus elim-

inates the need to move nodes when their temporary node potentials are de-

creased. This, in turn, postpones the removal of a duplicate node from the 

one-way linked list until the temporary node potential imputed to this 

node by its paired predecessor is a minimum. This correspondingly post-

pones the scan of this predecessor as long as possible. 

The steps of the algorithm basically operate in the manner previously 

described for SI except that: (A) The two-way linked list is replaced by a 

one-way linked list. (B) The forward star of each node u in is scanned 

until an improving node v is found, whereupon v is placed on the linked 
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list with its predecessor u , and p(v) is set to u and d(v) is set to 

d(p(v)) + &(p(v),v). (Node p(v) is not scanned again until the ordered 

pair (p(v),v) is removed from the linked list.) In some of the in-core 

out-of-core implementations to be discussed subsequently, this procedure 

is modified so that the forward star is not scanned until an Improving 

node is found. Instead, the end node of the next arc in the forward star 

is added to the linked list whether it is improving or not. The list k is 

sequentially searched for the next minimum as before. 

It should be noted in this implementation, however, that the next 

nonzero element of k may not point to the next minimum, as was the case 

for SI. Thus when a node v is removed from the linked list, it is dis-

carded if its paired predecessor differs from its current, predecessor in 

array p , since this implies that v has already been assigned a permanent 

node potential. In any event, the predecessor paired with v is scanned 

for its next improving node. If an improving node is found, It is added 

to the linked list in the manner already described. 

In the case that v ! s paired predecessor is equal to its current pre-

decessor p(v), then v T s temporary node potential is a minimum and v is 

assigned a permanent potential and added to N . Further, node v is scanned 

as described in Step B. Code S2 of [4] embodies this implementation. 

The advantages of this implementation are: (1) the algorithm can be 

terminated when all nodes are permanently labeled; (2) a node is never 

moved on the linked list when its node potential is improved; and (3) the 

postponement of adding temporary node potentials to k keeps less informa-

tion on k and potentially avoids adding dominated values to k. 
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Because of (1) it is riot necessary for k to be empty; consequently, 

when all nodes are accessible from the root, it may not be necessary to 

examine each arc once. The strategy of (2) could have been applied in 

the Dial implementation, but is not, because in the Dial implementation 

if a node is duplicated on the linked list, the number of nodes on the 

linked list could be as large as the number of arcs. This is normally 

prohibitive because of computer memory space. However, in the S2 imple-

mentation, the number of nodes on the. linked list will never exceed the 

number of nodes in the problem since there is at most one node on the 

linked list for each node in N ^ . 

Eight in-core out-of-core versions of S2 were implemented. Four of 

these versions were designed for city transit networks and the others for 

random networks. 

The simpler versions of the city transit network codes represent the 

original network data in packed sorted forward star form on a disk file 

and use the IFSP array of code S1V1. These codes, S2V1 and S2V2, utilize 

two in-core arc buffer arrays, LTEMP and B^. These codes initially place 

in Ba the first KSIZE arcs in each forward star of terminal nodes and the 
A 

first ISIZE arcs in each forward star of grid nodes. When all of the 

arcs in B A associated with some node u have been examined and the algorithm 
A ° 

requires that additional arcs for node u be examined, new arcs for node u 

are added to B^ in the following manner. Using the IFSP array whose 

pointer is updated to indicate implicitly the disk sector containing the 

next arc of node u to be examined, the information in this disk sector 

and the immediately following disk sector are paged into LTEMP. (Thus the 



size of LTEMP is equal to two disk sectors.) These arcs are then scanned 

in LTEMP until an improving arc is found for node u. The improving arc 

is then added to the linked list in the manner described earlier and the 

next ISIZE (KSIZE) arcs for node u are moved from LTEMP to B if node u 

is a grid (terminal) node. 

The difference between S2V1 and S2V2 is the way in which arcs are ex-

amined in B ^ when a node u (arc (p(u),u)) is removed from the linked list. 

S2V1, like S2, examines arcs in B until improving nodes (arcs) are found A 
for node p(u) and node u. (See Step B of the algorithm description.) S2V2, 

on the other h a n d , simply places the ending node of the next arc for each 

node p(u) and u on the linked list in the manner described before. 

In an .in-core code it is better to continue examining arcs until an 

improving one is found because this avoids adding and removing items from 

the linked list and avoids the manipulation of the forward star pointer to 

find the next arc to examine. To demonstrate this fact we modified the 

in-core S2 to perform in both fasions. S2 in Table II continues examining 

arcs until an improving arc is found and S2A does not. The times show S2 

is faster. (See Table VII for parameter values.) 

In an in-core out-of-core code, however, we felt that it might be 

better to postpone the examination of arcs as long as possible because, as 

noted earlier, this algorithm may stop before examining all arcs and the 

examination of arcs until an improving arc is found, can require substantial 

computer time due to the fact that arcs may have to be paged in central 

memory. The statistics in Table II indicate that S2V2 is superior to S2V1 

for exactly this reason, i.e., the statistics show that S2V2 performs 

fewer data transfers into central memory and fewer arcs are examined. 
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TABLE VII 

VALUES OF USER S P E C I F I E D PARAMETERS USED 

FOR S2 CODES 

TRANSIT PROBLEMS 

PROBLEM 1 

S 2 V 1 
S2V2 
S2V3 
S2V4 

PROBLEM 2 

S2V1 

S2V2 

S2V3 

S2V4 

PROBLEM 5 

S2V2 
S2V4 

PROBLEM 6 

S2V4 

PROBLEM 1 1 

S2V4 

I S I Z E 

10 
10 
10 
10 

10 
10 
10 
10 

3 
3 

JSIZE 

6 
6 

6 
6 

3 

6 

K S I Z E 

70 
70 
45 
45 

70 

70 

45 
45 

90 
70 

70 

8 

LTEMP SIZE 

128 
128 
512 
512 

128 

128 

512 

512 

128 
512 

512 

512 

ALL FOUR CODES SOLVED THE PROBLEM USING THE ARCS INITIALLY 
I N B A ; NO PAGING REQUESTS WERE REQUIRED, 

RANDOM PROBLEMS 

ON ALL 1 - 2 0 0 ARC LENGTH RANGE 
PROBLEMS 

CODES: S 2 V 6 AND S 2 V 8 
ISIZE: 3 1 

J S I Z E " 9 

LTEMP'SIZE: 128 (S2V2) 

512 (S2V4) 

P R O B L E M S " 1 0 0 0 0 A R C L E N G T H R A N G E 

CODES: S 2 V 6 AND S2V8 
ISIZE: 26 

J SIZE' 9 

LTEMP'SIZE: 128 (S2V2) 

512 (S2V4) 
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The other city transit versions of code S2, S2V3 and S2V4, utilize a 

different representation of the original network data and modify the 

utilizat ion of LTEMP• The codes represent the original problem in two 

disk files. Disk file 1 contains the entire network represented in a 

packed sorted forward star form at like codes S2V1 and S2V2. Disk file 

2 contains only a portion of the original network. Specifically this file 

contains the arcs numbered from KSIZE + 1 to KSIZE + JSIZE in each forward 

star of terminal nodes and from ISIZE + 1 to ISIZE + JSIZE in each forward 

star of grid nodes. These codes, like S2V1 and S2V2, place the first 

KSIZE and ISIZE arcs of each forward star in B for terminal and grid nodes, 

respectively. S2V3 examines arcs in B. like S2V1; i.e., it looks for an 
A 

improving one. S2V4 examines arcs in B like S2V2. 

S2V3 and S2V4, however, replenish arcs in B ^ differently from S2V1 

and S2V2. The size of the LTEMP array is a user specified parameter. This 

buffer is completely refilled with arc data each time arc data is paged 

into central memory. If data for node u must be paged into LTEMP, arc 

data is obtained from disk file 2 if it contains arcs for node u which have 

not been examined; otherwise, disk file 1 is used. In either case, the 

disk sector of the appropriate file containing the next arcs to be examined 

for node u is paged into LTEMP and, at the same time, as many of the im-

mediately following disk sectors as will fit in LTEMP are paged into central 

memory. Arcs for node u are then examined and moved into B as in S2V1 and 
A 

S2V2. Note that LTEMP should contain arc data for several different nodes, 

since the size of LTEMP is hopefully large and the amount of data for each 

node on disk file 2 is "small" (only JSIZE arcs per node). Because of this, 

any arc data in LTEMP which can be legitimately moved to B is moved. This 
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processing of LTEMP is the reason for creating the two disk files; i.e., 

disk file 2 allows LTEMP to contain data for more nodes. 

The statistics in Table II demonstrate that S2V4 is superior to 

S2V3, thus showing that it is better not to search for an improving arc. 

Further, this data indicates that S2V4 is the best label-setting for solv-

ing small and medium size city transit problems (problems 1-8) on the 

CDC 6600. The performance of S2V4 deteriorates on the large problems (prob-

lems 9-12) due to the fact that all codes were not allowed to use more than 

70,000 words of central memory. This forced us to set ISIZE equal to one 

on the large problems. However, on the smaller problems, when ISIZE was at 

least three, S2V4 performed better than all other in-core out-of-core codes. 

On the large city transit problems C5V7 performed best on the CDC 6600. 

(The results in Table III indicate that the above conclusions may not be 

valid on the DEC System 10 since it can be seen that S1V2 dominates S2V4 

and C5V7 on the medium size problems. These apparent inconsistencies are 

discussed in the next section.) Again, the time in Table II indicates that 

the S2 codes are not affected by grid rectangularity but are affected by 

the number of arcs and nodes. The statistics, however, indicate that S2V2 

and S2V4 are not affected as much as other codes by the number of arcs. 

This is primarily because the S2 type codes do not have to examine all of 

the arcs to terminate. 

Four in-core out-of-core versions of S2 were developed for random 

problems—S2V5, S2V6, S2V7, and S2V8. On a conceptual level, codes S2V5, 

S2V6, S2V7, and S2V8 are equivalent to codes S2V1, S2V2, S2V3, and S2V4, 

respectively except that KSIZE = ISIZE; i.e., the same amount of informa-

tion is kept in B for each node. On a coding level, however, these codes 
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are somewhat different. 

Solution times are only reported for S2V6 and S2V8 because preliminary 

testing showed S2V5 and S2V7 to be substantially inferior; i.e., in an 

in-core out-of-core m o d e , it simply is not worthwhile to scan for improving 

arcs if it requires paging data into central memory. The statistics in 

Table IV show that S2V6 and S2V8 completely dominate all other codes and 

furthermore, large arc length ranges do not harm solution times. If any-

thing, large arc ranges improved times. This was not true for the in-core 

code S2; b u t , it should be noted that S2 looks for improving arcs and this 

may not be advisable for large arc length ranges. Our statistics indicate 

that on the large arc length ranges S2V6 and S2V8 examined fewer arcs be-

fore terminating on many of these problems. More precisely, on the problems 

with a 1-200 arc length range, S2V4 examined 7639, 9316, 7863, 8018, and 

7931 arcs for the problems with 20,000, 40,000, 60,000, 80,000, and 100,000 

arcs, respectively. On the problem with a 1-10,000 arc length range, S2V4 

examined 7549, 9809, 7929, 7218, and 7722 arcs for the problems with 20,000, 

40,000, 60,000, 80,000, and 100,000 arcs, respectively. The most surpris-

ing part of these statistics is the fact that S2V8 examined so few arcs be-

fore terminating. In general, it appears that S2V8 is the best in-core out-

of-core code for random networks; however, this may not be true for problems 

with a large number of nodes because in this case ISIZE will have to be small 

due to central memory limitations. 

8.0 EVALUATION SUMMARY 

8.1 Solution Statistics 

The study demonstrates that conclusions based on the study of in-core 
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algorithms [4, 7] do not directly extend to in-core out-of-core algorithms. 

For example, the fastest in-core code for grid networks (city transit-

problems) is the label-correcting algorithm C2; however, in an in-core 

out-of-core m o d e , this algorithm 1s performance is dominated both by a 

simpler label-correcting algorithm C5V7 and by the label-setting algorithms 

S1V2 and S2V4. 

In distinction to their in-core counterparts, the label-correcting 

and label-setting algorithms in an in-core out-of-core mode exhibit little 

dependence on grid rectangularity and arc length ranges. However, the 

study confirms that these algorithms are also sensitive to network topology. 

The results in Table II indicate that code S2V4 is better than the 

other codes for solving small and medium size city transit problems. The 

code C5V7 is better on large city transit problems for the CDC 6600. The 

results in Table III lead us to believe that code S1V2 is better on large 

city transit problems on the DEC 10. These results can be explained by 

examining the billing systems and I/O subsystems of the two computers. 

For example, the CDC 6600 is capable of performing a minimum data transfer 

of 64 words but the billing system charges for a minimum of 512 words for 

each data transfer initiated. The DEC System 10, on the other hand, trans-

fers a minimum of 128 words, but charges only for the amount transferred. 

Looking at the results in Table II, the TM times reported for S1V2 

include an inflated charge for data transfer (by a factor of approximately 

four) since this algorithm transferred the minimum amount of data required 

to capture one complete forward star, requiring in most cases only 128 words. 

If the TM times in Table II for S1V2 were adjusted to eliminate the "over 

charging" of the CDC 6600 billing system, the adjusted S1V2 times would ex-
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hibit the same relationship to the times for the other algorithms as on the 

DEC System 10 (Table III). Consequently, it is our conclusion that the 

S1V2 algorithm is, in general, the best algorithm to use for city transit 

problems. Further, these results indicate that the user of in-core out-of-

core algorithms must be aware of the I/O and billing system characteristics 

of the computer being used. 

In general, it appears that the Dantzig address calculation sort algo-

rithm, S2V8, is the best in-core out-of-core algorithm for random netxvTorks. 

However, a major limitation of the Dantzig algorithm in an in-core out-of-

core mode is its reliance on sufficient computer memory to store a few 

(ISIZE > 6) arcs per node in central memory. For this reason, it is con-

jectured that it is not a good algorithm for mini-computers because this 

would severely limit the size of problems which could be solved even in 

an in-core out-of-core mode. In this case, the algorithms S1V2 (which be-

comes S1V1 when B^ = 0) or C5V7 would be preferable. Another limitation 

of the S2V4 and S2V8 algorithms is their reliance on a more complex data 

structure (two problem files) for storing the problem data. 

8.2 Memory Requirements 

Table VIII contains the computer array requirements of each code. 

It is interesting to note that the most efficient label-correcting algorithm 

in terms of TM time is also the most efficient in terms of computer memory 

utilization. The most efficient label-setting code in terms of computer 

memory is S1V1 and is only marginally worse than C5V7 if i is not large. 
max 
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TABLE VIII 

STORAGE REQUIREMENTS 

NODE LENGTH B U F F E R S 
CODE ARRAYS SMALL LARGE OTHER 

C2V10 6 B A * 

C2V13 6 B A * 

C5V3 10 - B A * 

C5V6 11 - B A * 

C5V7 6 B A * * 

S1V1 6 LTEMP** - ( I ? M A X + 1 ) 

SIVIL
 6 L T E M P

* *
 B

A * MAX
 + 1 } 

S2V1I 7 LTEMP** 2N(ISIZE)* (F M F L V + 1) 
S2V2( W MAX 

S ml 7 L T E M P * * * 2 n ( I S I Z E ) # MAX + 1 } 

WHERE N IS EQUAL TO THE NUMBER OF NODES, 

* THE SIZE OF THIS BUFFER MUST BE LARGE ENOUGH TO STORE THE 

LARGEST FORWARD STAR BUT SHOULD BE MADE AS LARGE AS POSSIBLE 

TO IMPROVE EFFICIENCY, 

** THE SIZE OF THIS BUFFER MUST BE LARGE ENOUGH TO STORE THE 

LARGEST FORWARD STAR, BUT NEED NOT BE MADE LARGE, 

*** THE SIZE OF THIS BUFFER MUST BE LARGE ENOUGH TO STORE THE 

LARGEST FORWARD STAR BUT SHOULD BE MADE "SOMEWHAT" LARGER, 
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8.3 Limitations 

Some apparent limitations of this study in the selection of test 

problems and the extent of testing performed should be clarified. Due to 

a lack of available alternatives only randomly generated problems were 

examined. In addition, no pure grid networks were tested because of com-

puter budget limitations and it appeared that they would not exhibit any 

significant differences from the city transit networks. Budget restric-

tions also limited our testing on the DEC System 10 and on random networks 
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