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Abstract 
This paper discusses recent work in developing scalar measures of inefficiency which (a) comprehend all inefficiencies, 

including non-zero slacks, and (b) are readily interpretable and easily used in a wide variety of contexts. The opening section 
of the paper discusses some of the varied contexts in which uses of DEA are now being reported. This provides background 
for some of these measures. The closing section turns to simulation studies of DEA-regression combinations and possible 
inefficiency measures. Serious problems of bias in SF (Stochastic Frontier) regression approaches are identified. Extensions 
and modifications are suggested which can make a development of other inefficiency measures worthwhile for SF extensions 
to input-specific and multiple output evaluations. © 1997 Elsevier Science B.V. 
Keywords: Data envelopment analysis; Regression analysis; Measures of inefficiency 

1. Introduction 
DEA can best be described as 'data-oriented' in that it effects its evaluations and inferences directly from 

observed data. A flood of reports on uses and extensions of DEA is now available, and increasing at an 
increasing rate. For instance, the bibliography published by Seiford [43] contains some 500 references to 
published articles, and many more have appeared since. Many (but not all) of these references use DEA to 
evaluate the performances of not-for-profit and governmental entities which are involved in activities that have 
proved resistant to other methods of inference and evaluation. The entities evaluated are referred to as DMUs 
(Decision Making Units) which are engaged in activities that use multiple inputs to produce multiple outputs 
with no easily identified 'bottom line'. Examples include schools and universities, military services, hospitals, 
court systems, prisons [23,31], and, more recently, whole economic and social systems [33,39]. 

Developments in DEA involve OR tools, such as mathematical programming, as well as economic and 
managerial concepts of efficiency and effectiveness. Concepts had to be modified, however, and tools had to be 
reoriented so that they could be used to effect inferences from already generated data (ex post) for purposes of 

Corresponding author. 

0 3 7 7 - 2 2 1 7 / 9 7 / $ 17.00 © 1997 Elsevier Science B.V. All rights reserved. 
PU S 0 3 7 7 - 2 2 1 7 ( 9 6 ) 0 0 3 8 4 - 0 



I 

T 



W.W. Cooper, K. Tone / European Journal of Operational Research 99 (1997) 72-88 73 

evaluation and control - e.g., as distinguished from their more traditional ex ante planning uses in OR and 
economics. This is accomplished in the following manner: Application is by means of a series of mathematical 
programming optimizations to observed data generated from past behavior in order to effect inferences and 
evaluate the performances of each DMU. 

This method of effecting inferences from observed data can be regarded as replacing or supplementing 
customary approaches in statistics. The two approaches may be contrasted as follows: In typical uses of statistics 
the inferences are obtained from optimizations over all observations. In DEA, the inferences are obtained from 
solutions which are optimal for each observation. Opportunities are thus opened for complementing as well as 
for competing uses of DEA and statistical methods. This includes uses such as 'cross-checking' by comparing 
results from statistical inferences with results from DEA (and vice versa). See Mendoza [41] or Ferrier and 
Lovell [30], It also includes joint uses of DEA and statistical approaches that promise to complement, extend 
and sharpen the capabilities of both in addressing problems in ways that would otherwise not be available (see 
Bardhan [11]; see also Arnold et al. [7]). 

Common to all uses of DEA are the choices of (a) the inputs and outputs from which evaluations are to be 
effected, and (b) the choices of DMUs as the entities to be evaluated. Different choices of DMUs can lead to 
different results (and yield different insights) and the same is true of the input and output choices. These choices 
also offer possibilities that can be exploited in ways that include expanding or contracting the number of inputs 
and outputs or the number of DMUs. This provides additional routes for conducting sensitivity analyses (see 
Thompson et al. [44] and Banker et al. [8]). 

Weights can be used, of course, or suitable aggregates can be assembled from initially designated inputs, 
outputs and DMUs. A priori choices of weights, however, are not required by DEA and, as emphasized in Cook 
and Kress [24], the developments in DEA have opened new ways of approaching preference structures and 
rankings (see also Green et al. [36] as well as Golany [32]). Finally, a use of exact weights may be replaced 
with upper or lower bounds while allowing DEA to determine a best set of values directly from records of past 
performance as in, for instance, the 'assurance region' approaches of Thompson et al. [44] (see also Cooper et 
al. [27] for an alternate approach called 'cone-ratio envelopments'). 

It is not possible to cover all of these topics here, so we proceed selectively as follows. The next three 
sections deal with some of the new approaches to inefficiency measurement and their uses in DEA. For 
instance, the Section 2 discusses the TDT measure which provides fundamental insights into the nature of DEA 
evaluations and measurements. Section 3 introduces measures referred to as MEP and MIP which comprehend 
non-zero slacks as well as the customarily used radial (weak efficiency) measures with values that are invariant 
to the units in which different inputs and outputs might be measured. Section 4 introduces another measure 
called RAM which extends this invariance to a choice of origins so that negative as well as positive inputs may 
also be treated without losing contact with the body of DEA theory. Attention is then turned to recent research 
dealing with ways to combine DEA and statistical methods for efficiency evaluation, where (a) deficiencies in 
the usual stochastic frontier ( = econometric) approaches are identified, and (b) extensions to ordinary least 
squares are found to provide very satisfactory results. Suggestions for uses and additional problems for research 
are introduced at various points. 

2. Measures of efficiency 
The materials in this section are adapted from Banker and Cooper [10] (see also Cooper et al. [26]). Our 

discussions start with a measure of efficiency that has recently been introduced into the literature of DEA by 
Thompson et al. [44], viz., 
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where, for any choice of (u9v), 
£ r - l U r y r k I ^ S r = ^ r y r j — = max { — 
z?-Mxik \ e r = i v i x i j 

We refer to this as the TDT measure of relative efficiency. Here (u,u) are vectors, with components ur,vi > 0, 
determined from the observed values of the i = 1, . . . ,ra inputs used and r = 1, . . . outputs produced for each 
of j=l,...9n DMUs. DMU 0, as represented in the numerator for the objective in (1), is the DMU to be 
evaluated by choosing (u,v) to maximize its value relative to the highest score that this same (u,v) choice 
accords to the similarly formed ratios for the entire collection of DMU ;, j = 1 , . . . w i t h DMU 0 included in 
this collection. Hence the objective is to choose a best set of relative weights, with these weights changing in 
value as different DMUs are designated as DMUW. 

We can formally represent the 'ratio of ratios' in the objective of (1) by 
o ^ / ^ l , (2) 

* o \ Xk 

where y0, yk represent 'virtual outputs' and xo9 xk represent 'virtual inputs'. With the data all non-negative, 
this ratio has a lower bound of zero because only non-negative values are admitted for the ur and ur Because 
yk/xk is maximal over the set k= which includes k = o, we have y0/x0 <yk/xk. The above ratios 
therefore have a maximum value of unity - which is achievable if and only if DMU 0 's performance is not 
bettered by some other DMU using the weights which give DMU„ the highest relative score. 

This TDT measure may be interpreted in various ways. It might be regarded as an extreme value statistic, for 
example, and treated by suitably extended versions of the statistical theory of extreme values. The formulation 
in (1) may also be approached deterministically as a mathematical programming problem to be modeled and 
solved in ways suited to choosing the u and v vectors, and this is the way in which we now proceed. 

The following DEA model, known as the CCR ratio model, as given Charnes et al. [20] - see also Rhodes 
[42] - will help to clarify what is involved, 

max 
u,v 

s.t.: 
£711», i Xio 

£ 5 r = 1 w r yr j 

Er.i», X i j 
ur 

£7-1»/ Xio ' 
v i 

Er-i",*/. 

< 1 ; / = 1 , . . . , « , (3) 
> s\ r = 1 , . . . , 5 , 

> s ; /=!,... ,/n. 

Here the only new element is s , a positive non-Archimedean infinitesimal. We elaborate on its mathematical 
properties later after noting that its use ensures that all inputs and outputs are accorded 'some' positive value in 
these ur and vi choices. These s values need not be specified explicitly but can be dealt with by computational 
processes like the ones described in [6]. 

A restriction to positive values for all variables is not present in (l). Hence, one referee remarked that setting 
v = 0 produces an infinite solution so that any DMU 0 will thereby be characterized as efficient. We pursue this 
remark because it allows us to use TDT to frame what is involved in (1) by noting that the same v = 0 applies to 
the numerator ratio as well as the denominator ratio. Hence the choice suggested by the referee will result in an 
answer of 0 /0 , which is not admissible because it is not a well-defined mathematical expression. The same 
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result occurs for a choice of u = 0 which results in the numerator of each ratio being zero. Restricting (1) to 
well-defined mathematical expressions is therefore found to be equivalent to the treatment in Charnes et al. [22] 
(also intended to be fundamental), where it is required that at least one term in each of the numerators and in 
each of these denominators must be non-zero in (1). (This is a weaker condition than the requirement that all ur, 
vi must be positive as specified in the last s -1- m constraints in (3).) 

The solution set for (1) is also unbounded from above. A question therefore arises with respect to 
possibilities in which some ur ^ in (1). The following two cases can then occur. 

Case 1. When y0(u)/x0(u) becomes and remains as large or larger than the largest of the other ratio values 
over the set k = 1 , . . . ,n as these c then 

Case 2. When yk(u)/xk(u) for some k¥= o becomes and remains as large or larger than the largest of the ratio 
values which exceed y0(u)/x0(u) as these ur then 

Hence, the previously noted bounds continue to apply for (1) even in these extreme cases. 

To interpret these two cases we note that the numerator and denominator fractions in (2) are both stated in 
terms of rates - viz., virtual output per unit virtual input. Hence, the rate of increase in the denominator ratio for 
Case 2, above, is such that even a small increase in input will produce a vastly greater ( = infinite) relative 
increase in virtual output for DMUA than for DMU0. Case 1 is interpreted along similar lines by comparing 
DMU 0 with any DMU* which does not reach the limit at a rate exceeding the rate obtainable by DMU 0 for the 
outputs associated with these wr -> ° 

The formulation in (3) is less general than (1), but it provides a route for implementation and further 
interpretation. It, too, is also very general for, as shown in [20], the formulation in (3), greatly generalizes the 
usual single-output-to-single-input ratio definitions of efficiency that are used in engineering and science. We 
can also relate these engineering-science definitions and usages to definitions in economics - e.g., the 
Pareto-Koopmans-Farrell definition of efficiency given in Charnes et al. [19] - which can be accorded 
operationally implementable form as follows: 

Efficiency: The performance of DMU^ is to be considered fully (100%) DEA efficient if and only if the 
performance of other DMUs does not provide evidence that some of its inputs or outputs could be improved 
without worsening some of its other inputs or outputs. 

We will shortly provide a transformation of (3) that makes it possible to identify the sources and estimate the 
relative amounts of inefficiency in each input and output for every DMU from evidence supplied by the data. 
Here we note that a relation to (1) is established by observing that a necessary condition for optimality in (3) is 
that at least one of the j = 1 , . . . ,n output-to-input ratios in the constraints must be at its upper bound of unity. 
The denominator in (1) then has a value of unity and the efficiency evaluation for DMU0 reduces to whether the 
numerator in (1) is unity or less. 

3. Linear programming equivalents 
Reference to (3) shows that it is a non-linear, non-convex programming problem, and hence is best used for 

conceptual clarification. To give these concepts computationally implementable form, we introduce new 
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variables defined as follows, 
¡JLr = t u r , t — 1,... J , 
vt == toj, i = \ 9... ,m, 

m 
1 = E /= i 

(4) 

These are the so-called 'Charnes-Cooper transformations' from Charnes and Cooper [18] which initiated the 
field of 'fractional programming'. Here we use them to transform the problem in (3) to the problem on the right 
in the following dual pair of linear programming problems with assurance (from fractional programming) that 
their optimal values will also be optimal for (3). 

s 

min + m a x 

\ /=l r=\ I r s.t.: s.t.: 

j= i 
- E v \ x i j E i-1 r-1 (5) 

y r o = L >vA ~ sr ' i - i 

0 < A. , j r , j r + 

As before, i = 1,. . . ,m indexes the inputs, r = 1, . . . ,5 indexes the outputs, and j = 1 , . . . i n d e x e s the DMUs. 
Also, j = o is used to identify the DMU to be evaluated by (a) placing it in the objective while also (b) leaving 
it in the constraints. Leaving the data for DMU^ in the constraints guarantees that solutions exist for both 
problems in (5) and, by the dual theorem of linear programming, it follows that they will have finite and equal 
optimal values. 

We now assume that the xij9 yrJ are all positive. (This condition can be relaxed; see Charnes et al. [22].) This 
means that we can move back and forth between (5) and (3) since the constraint , VjXio = 1, vi > 0, for all /, 
means that we have t > 0 in (5) and hence in (4). We then have the full power of available linear programming 
algorithms and computer codes to solve (5) or (3), as we wish. We also have its interpretative power available 
(after suitable adaptations) for use in DEA efficiency analyses and inferences. 

Using * to denote an optimal value, the condition for full (100%) DEA efficiency, as defined above, 
becomes 

t ^ y r o = i ( 6 ) r= 1 
for the problem on the right in (5) which is referred to as being in 'multiplier form'. Interest usually attaches to 
identifying sources and amounts of inefficiency in each input and output. This is most easily done from the 
problem on the left in (5) - which is referred to as the 'envelopment form'. For this problem the conditions for 
efficiency become; 

0 ) < r = i . ( 7 ) 

(ii) All optimum slack values are zero. 
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It is to be noted that the presence of non-zero slacks means that the measure of inefficiency resulting from (7) 
involves a two-component number of the form 0* — k*e< 1, where k * = sum of slacks. Both 6 * and k * are 
real numbers and hence are Archimedean, whereas s is a non-Archimedean infinitesimal so that 0 * -k*e is 
not a real number unless k* = 0. From the duality theorem of linear programming it follows that Eq. (6) must 
also involve such non-Archimedean elements in its expression at an optimum for such cases. (For detailed 
discussions, including the new linear programming theorems this usage leads to, see Arnold et al. [6].) 

Use of the envelopment model makes it possible to distinguish between 'mix' and 'technical' inefficiencies 
in the inputs. This is accomplished by noting that 'mix' refers to the proportions in which inputs are used. 
Minimizing 0 preemptively, as is implied in the objective for the envelopment model of (5), provides a measure 
of inefficiencies in the proportion (1 - 6 *). This reduction applies to all inputs and hence does not alter their 
mix proportions. We refer to this proportionate reduction in all inputs as a measure of 'pure technical 
inefficiency' with value 0 < (1 - 9 *) < 1. Proceeding to maximization of the slacks - as is done in a 2d stage 
without altering the value of 0 * - may produce non-zero slacks. Consistent with our definition of efficiency, as 
formalized mathematically in (7), we are then bound to recognize all such non-zero slacks as evidence of 
inefficiency obtained from the data. However, eliminating such non-zero slack will alter the observed input 
proportions and hence change the mix. We therefore refer to non-zero slacks as 'mix inefficiencies'. These mix 
inefficiencies can then be combined with pure technical inefficiencies to obtain xio - (0 * xio -str*) as the 
amounts needed to eliminate both types of inefficiencies in each of DMU 0 's i = 1, . T. ,m inputs. 

4. MIP and MEP measures of inefficiency and efficiency proportions 

We might note here that both problems in (5) provide scalar measures of efficiency when (6) is fulfilled. As 
has just been noted, however, a presence of non-zero slacks in a solution for the envelopment model in (5) 
implies that L'r==, fi* yro < 1 with non-Archimedean elements possibly involved in some of these /jl* values. A 
single real-number measure of inefficiency is then not available. 

If desired, an alternative real-number measure may be developed as follows from the MID and MED 
measures developed by Bardhan et al. [12] for measuring 'efficiency dominance'. First, we observe that the 
non-Archimedean element e>0is not present in the constraints for the envelopment problem on the left in (5). 
Hence, the values in the constraints involve only real numbers. Thus, when an optimal solution is available we have, 

n 

j= i 
where xio, i = 1 , . . . ,m, represents the thus adjusted 'efficiency' value of the ith input for DMU . We therefore have ° 

or < 1, (8) 
for each of the i = 1, . . . ,m inputs. Similarly, we can write 

, + * * yro yro yro + = y™ or ; < 1 , ( 9 ) 
yro 

since v/„, the efficient value, satisfies yr'0 > yrii for each of the r = 1 , . . . ,m outputs of DMU„. 
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We now note that the numerators and denominators in (8) and (9) are expressed in the same units and hence 
are 'dimensionless' - i.e., multiplying numerator and denominator elements by any positive constant to change 
the unit of measure of the corresponding input or output will not change the value of any of these measures. We 
also note that the expressions in (8) and (9) are all non-negative. Hence we can use them to derive the following 
measure of inefficiency, 

where 5 is the number of outputs and m is the number of inputs. As can be seen, this is a real number between 
zero and one with a value that represents an average of the inefficiency proportions due to (i) excessive inputs in 
the first term, and (ii) output shortfalls in the second term. To convert this to a measure of efficiency we replace 
the above with 

Referring to the measure in (10) as MIP (Measure of Inefficiency Proportions) and the measure in (11) as MEP 
(Measure of Efficiency Proportions) we see that full efficiency is attained only with MEP = 1 or MIP = O. 

This provides a way of reducing the conditions represented in (7) to a single real number without losing the 
ability to identify the inefficiencies that may be present in inputs, in outputs, or in subsets thereof. Extensions to 
weighted measures and the treatment of zeros which may appear to be sources of trouble in some of the 
denominators are discussed in Bardhan et al. [12]. This treatment requires only very natural extensions of the 
MID and MED measures discussed in Bardhan et al. [12] as well as in Banker and Cooper [10] so we do not 
cover them here. We do need to note, however, that these measures lend themselves to rankings of DMU 
performances whereas this is not the case for the 6 * values obtained from (5) because (a) the latter measure is 
incomplete, and (b) these 9 * values will generally be determined from different facets - which means that 
these values are being derived from comparisons involving performances of different sets of DMUs. 

5. RAM - A range adjusted measure of inefficiency 

The just described MIP and MEP measures were developed on the assumption that all of the observed xiJ 

and yrJ are positive. On this assumption these measures are always well-defined and have the desirable property 
that their values do not depend on the units in which any input or output is measured. Undesirable properties 
include the appearance of y*0 in the denominator for the output terms (10). This causes no trouble if (9) or (10) 
is used as a measure after the model results have been obtained (see the discussion in Bardhan et al. [12]). It 
can, however, cause trouble when it is desired to use (10) as an objective for the envelopment problem in (5). 
This is due to the non-linearities associated with such an objective. Another trouble can be encountered in 
relaxing the requirement that all data must be positive. This relaxation may be important in dealing with certain 
outputs or inputs which are 'unwanted' or 'undesirable' - e.g., 'net losses' as contrasted with 'positive profits' 
as outputs, or degree days below zero when weather is used as an input, etc. 

(10) 

(11) 

T 



W. W. Cooper, K. Tone / European Journal of Operational Research 99 (1997) 72-88 79 

Recent work by Cooper and Pastor [25] deals with both of these problems through the following class of 
'additive models', 

m s 
max £ s7 + E 5 r + 

/ = 1 r— 1 
s.t.: 

n 
*io= E x ^ . X j - s ' , z= l , . . . , m y-i 

A (12) 
i 

1 = E A, 
y- i 

0 < A ; , j r , , y = 1 , . . . , « . 

No non-Archimedean elements are involved in this class of models so the following single condition replaces 
the two conditions in (7), 

Definition. DMU 0, the DMU- being evaluated in (12), will be fully DEA efficient if and only if all slacks are 
zero at an optimum. 

We next note that the convexity condition E" = , Aj= 1 may be adjoined to (5). This will convert (5) from its 
present form, called the 'CCR model' (as first given in Charnes et al. [20]) into what is called the 'BCC model' 
(as first given in Banker et al. [9]). We can use the following theorem and remark to relate this BCC version of 
(5) to (12). 

Theorem. (Ahn et al. [1]) A DMU0 is efficient when the BCC version of (5) is employed if and only if it is 
efficient when the additive model represented in (12) is used. 

Remark. When a DMU 0 is inefficient, its sources and inefficiency amounts may differ because of differences in 
metrics employed for (12) and the BCC version of (5). 

(See also Yu et al. [46] for a single model which can be used to represent these, and other, DEA models by 
varying one parameter.) 

We amplify by noting that (12) uses a simple linear function represented in the objective of (12). This is 
expressed in the so-called f { metric. (See discussion in Appendix A of Charnes and Cooper [17].) When full 
efficiency is achieved this sum is independent of the units of measure used, but not when any inefficiency is 
present. Indeed the solution choices may then depend on the units of measure used and the resulting sum may 
exceed unity. 

These shortcomings may all be eliminated by replacing the objective in (12) by the following measure, called 
RAM (Range Adjusted Measure), as given in Cooper and Pastor [25]: 
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where RJ and Rf are the Ranges defined by 
R~ = xi — x., i = 1,... ,m, 
Rr r = 1 ' ' ' ' 

with xi9 Xj and )>r representing maximal and minimal observed values taken over the j = 1 , . . . yn DMUs for 
each of the inputs and outputs in question. 

Because the numerators and denominators in (13.1) are expressed in the same units, it follows that changes in 
the units of measure will not affect the value of any of these terms. Thus, as was true for MIP and MEP, the 
ratio in each of the terms in (13.1) is 'dimensionless'. Moreover, the numerator and denominator have the 
property that additions of an arbitrary constant to any input of output will not alter the value of (13.1) or the 
choice of A. values in the constraints. This is true because 

(*/ + d i ) ~ ( i - + d i ) = ~ i = R 7 
and 

Cyr + c r ) - ( y r + cr) = yr-yr = Rr+, 
for each i= 1 or r = 1 , . . . ,s as just defined. Similarly, as first shown in Ali and Seiford [4], 

n n 
(*io + d i ) ~ L ( x i j + d d = xio - E x ^ j = s; 

j= 1 1 

and 
n n 

£ ( yrJ + cr) A; - ( + Cr) = £ yrjkj - yro = 5 r + 

1 j= 1 
because L" = {Aj = 1, It follows that the choice of an origin is arbitrary. Hence, no problem need be encountered 
in dealing with negative inputs or outputs because these may be eliminated by adding positive constants which 
are large enough to make all of the thus adjusted data positive without changing the optimal solution sets or the 
value of the objective. Indeed, this property carries over into the outputs, but not the inputs, of (5) when it is 
accorded the BCC form. Hence, as suggested by one referee, we can use this property as a guide in choosing 
between these different models. For instance, if negative terms are to be dealt with in both inputs and outputs, 
then the choice should be in favor of (12) even though this involves extra labor to distinguish between the 
purely technical and mix inefficiencies that (5) automatically provides. 

The expression (13.1) is non-negative, of course, but it need not be bounded by unity, as in (5), (3) and (1). 
However, this 'unity condition' can be satisfied, if desired, by dividing by the number of inputs plus outputs to 
obtain 

0 < / ( m + s ) < 1. ( 1 4 ) 

The result is evidently a measure of the average of both the input and output inefficiencies. 
This RAM formulation has other desirable properties besides those we have just noted. For instance, it 

exhibited 'scaling' properties that made it possible to deal with large disparities in the inputs and outputs 
associated with the entities providing water services to different population centers in Japan (see Aida et al. [2]). 
Moreover, subdivisions of (13.1) may be used so that, say, input and output inefficiencies may be separately 
measured, if desired. Some of these properties may be carried over to (5) by dividing each slack variable by its 
possible range of values in the objective of the-envelopment model in (5), and this renders the expression 

T 
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dimensionless because 0 * is also dimensionless. A further modification which converts (5) into BCC form also 
makes it possible to deal with negative outputs (but not inputs) in a convenient manner. 

There are possible problems and further developments with respect to such measures which we do not deal 
with here. Instead we refer to Thrall [45] where these topics are treated in general and in detail to provide 
methods for dealing with the slack components in any DEA model. With this reference available, we therefore 
simply close our discussion of RAM by noting that each ( s ~ / R ~ ) and /R + ) in (14) measures the amount of 
inefficiency (in the numerator) relative to the range of possible inefficiencies (in the denominator) for each input 
and output. That is, R~ and R+ represent the maximum possible inefficiency over j= 1, . . . for each i and 
r. Hence, (14) represents an average of the maximum possible inefficiency proportions exhibited by DMU„ in 
each input and output. The result will be unity if and only if equality is attained for every term in (14). The 
result will be zero, and hence full efficiency will be achieved, if and only if all slacks are zero - in accordance 
with the definition given immediately after (12), above. 

We can also orient our measure toward efficiency, rather than inefficiency, by replacing (14) with the 
following expression, 

Hence, we have bounded our measure of efficiency to lie between zero and one with assurance that the resulting 
real-valued scalar comprehends all of both the purely technical and mix inefficiencies identified in the solutions 
for any DMU„. 

Classical literatures dealing with measures of inefficiency have devoted little, if any, attention to the dual 
( = multiplier) problem in (5). Indeed, the FDH (Free Disposal Hall) approach described in de Borger and 
Kerstens [28] corresponds to an integer programming problem which has no dual. See Bardhan et al. [12]. 
Confinement to the envelopment form in (5) has resulted in troubles for attempts to comprehend both of the 
conditions in (7) in a real-valued scalar measure of inefficiency. These problems along with attempts to resolve 
them are described in de Borger and Kerstens [28] and hence need not be discussed here. The MIP and RAM 
measure described above constitute new approaches and, of course, other approaches are also now being 
essayed by exploiting new models (like the additive model) which were not available in the classical literature 
(see, Fare et al. [29] for these classical approaches and Lovell and Pastor [40] for new modeling alternatives). 

6. Stochastic frontiers and DEA-regression combinations 
Green [37] provides a relatively up-to-date survey of statistical regression approaches to efficiency evalua-

tions which he separates into (i) regressions which are deterministic, as in the formulations by Aigner and Chu 
[3], and (ii) regressions which involve statistical errors. The latter are referred to as 'stochastic' and further 
subdivided into (1) OLS (Ordinary Least Squares), and (2) SF (Stochastic Frontier models), with the former 
being directed to 'central tendency' and the latter being directed to 'frontier' estimates for effecting evaluations 
of observed performances. 

The studies we now turn to represent yet another approach in which deterministic DEA approaches are 
combined with stochastic regressions to open additional avenues for development. Such combinations can be 
effected in a variety of ways, but the studies we examine here involve a two-stage approach which proceeds as 
follows: In stage one, DEA is applied to the data in order to distinguish which observations are associated with 
efficiently and which are associated with inefficiently performing DMUs. In stage two, the results of stage one 
are incorporated as 'dummy variables' in the regressions to be estimated. These may take the form of either 
OLS or SF regressions. 

The research we now describe had its origins in empirical work directed to developing improved methods for 
evaluating the performances of public schools in Texas. This was followed by a simulation study which utilized 

(15) 
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statistically controlled experimental design approaches to better understand the results from this in-the-field 
study and it is the latter, as reported in Bardhan et al. [13], that we turn to in our discussion. 

The following very simple Cobb-Douglas production function was used in one part of this simulation study 
y = a x ^ x ^ t e . ( 1 6 - 0 

This function was chosen because it represented a simplification of the Cobb-Douglas forms used in the field 
study and so its use could facilitate the task of understanding what might have happened in both the 
unsuccessful and successful uses of these functional forms in the previous field applications (see Bardhan [11]). 

In classical economics a 'production function' maximizes the value of the single output, y, for any of the 
inputs that might be used in the amounts JC, and JC2. Such a function therefore defines the technologically 
(absolutely) efficient frontier to which the observations must conform. We need to allow for statistical errors, 
however, so the frontier will be known only stochastically when the parameters a, a , , and a2 are estimated 
from observational data. These statistical errors are represented by e in Eq. (16.1). 

For the simulations reported in Bardhan et al. [11], the following parameters were used: 
a = 0.75, a , = 0.65, a 2 = 0.55. (16.2) 

One thousand JC, and JC2 values were then determined by random draws from uniform probability distributions 
and substituted in Eq. (16.1) to obtain the corresponding 1,000 values of y. Statistical error terms were then 
added to each of these y values by sampling from normal distributions N(0,ae2). 

After this was done the 'efficient' JC, and x 2 input values were replaced with new inputs 
jc, = jc,eTl and x2 = Jc 2e T 2, with t , , t 2 > 0. ( 1 7 ) 

The literatures dealing with SF regressions commonly assume that inefficiencies conform to either the 
exponential or half-normal distributions. Hence these distributions were used to replace Eq. (16.1) with 

y = 0 j c f ' j c 2 ^ e * , ( 1 8 ) 
where xx> x2 and x2> x2 simulated the actually observed inputs. Then, for estimating purposes, Eq. (18) was 
transformed into the following log-linear form 

l n y = 0 o + 0i In JC, + 0 2 l n * 2 + £, ( 1 9 ) 
where the 0 ' s serve as estimators for the true (production function) parameters in Eq. (16.2). 

The expression in Eq. (19) is the OLS form, which we want to compare with 
ln>; = 0 O +jSj In Jc, + 0 2 In jc2 + 5D + Din + 82D \nx2s, (20) 

where 
/ 1 if a DMU is 100% DEA efficient, (21) 
\ 0 if a DMU is not 100% DEA efficient. 

Thus, (20) reflects our two-stage process in which DEA is first used to determine whether an observation 
reflects the performance of an efficient or inefficient DMU. (This condition was relaxed to allow values of 
0 * > 0.98 to serve in place of only 6 * = 1 in (7) but, as noted in Bardhan et al. [13], no appreciable difference 
in results occurred.) 

As emphasized in (1) ff., DEA deals only with relative efficiency. Here, however, we want to gauge our 
results against the known levels of absolute efficiency associated with Eq. (16.1) and Eq. (16.2). The study 
reported in Bardhan et al. [13] therefore arranged to have some of the r values set equal to zero in proportions 
ranging from 0.10 to 0.25 which were assigned randomly to the different observations so it was possible to be 
sure the resulting parameter estimates could be meaningfully compared with the true values for absolutely 
efficient performance as given in Eq. (16.2). 

T 
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Table 1 
OLS regression estimates without dummy variables - Case 1: Exponential distribution of input inefficiencies 
Parameter estimates a Case A Case B Case C Case D 

cr2 = 0.04 a2 = 0.0225 a2 = 0.01 cr 2 = 0.005 
(1) (2) (3) (4) 

ßo 1.30 * 1.58 * 1.40 * 1.43 * 
(0.19) (0.15) (0.13) (0.10) 

ß, 0.46 * 0.43 * 0.45 * 0.46 * 
(0.024) (0.02) (0.016) (0.013) 

ßl 0.48 * 0.47 * 0.47 * 0.46 * 
(0.02) (0.013) (0.01) (0.01) 

The asterisk 4 * ' denotes statistical significance at the 0.05 significance level or better. 
a The values for a 2 shown in the top row of the table represent the true variances for the statistical error distributions. Standard errors are 
shown in parentheses. 

Results from these simulation experiments, using an exponential distribution for selecting the r , and r2 

values, are reproduced in Tables 1 and 2 for the 4 levels of normally distributed statistical errors associated with 
N(0,o-e2) that are recorded at the top of each column. As is clear from Table 1, which reports results for Eq. 
(19), the estimates differ significantly from the true parameter values in every case. The converse situation 
occurs for Eq. (20) since, as shown at the bottom of Table 2, the t values are all so low that it is not possible to 
reject H 0 without experiencing unacceptably high risks of rejecting the true parameter values - viz., a^ = 0.65 
and a 2 = 0.55 as specified in Eq. (16.2). 

The same results occurred when half-normal rather than exponentially distributed values of r were used. 
That is, H0 could not be rejected in any of the two-stage dummy variable regressions represented by Eq. (20) 

Table 2 
OLS regression estimates with dummy variables on DEA-efficient DMUs - Case 1: Exponential distribution of input inefficiencies 
Parameter estimates a Case A Case B Case C Case D a 2 = 0.04 cTf2 = 0.0225 cr 2 = 0.01 v 2 = 0.005 (1) (2) (3) (4) 
ßo 1.07 * 1.47 * 1.28 * 1.34 * 
ßi 

(0.21) (0.17) (0.14) (0.11) ßi 0.49 * 0.43 * 0.46 * 0.47 * (0.03) (0.02) (0.02) (0.01) 
ßl 0.48 * 0.48 * 0.48 * 0.46 * (0.02) (0.015) (0.01) (0.01) 8 - 1 . 5 7 * - 2 . 3 0 * - 1.50 * - 1 . 5 0 * (0.64) (0.43) (0.35) (0.21) 5, 0.155 0.26 * 0.16 * 0.16 * (0.075) (0.05) (0.04) (0.03) S 2 0.12 * 0.12 * 0.10 * 0.09 * (0.05) (0.04) (0.03) (0.02) 
Combining parameters with dummy variables 
H 0 . /3, + 5, = 0.65 tx = 0.07 tl = 0.87 r, = - 0 . 7 2 tx = 0.82 Ha: + 0.65 tx = 0.82 
H0: ß2 + 82 = 0.55 t2 = 1.09 t2 = 1.76 t 2 = 1.02 t2 = 0 Ha: ß2 + 82 * 0.55 

The asterisk ' *' denotes statistical significance at the 0.05 significance level or better. Standard errors are shown in parentheses 
The values for cr̂  shown in the top row of the table represent the true variances for the statistical error distributions. Standard 

shown in parentheses. 
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but H 0 was always rejected when the one-stage approach represented in Eq. (19) was used. These same results 
were also secured in other parts of this simulation experiment where a CES (Constant Elasticity of Substitution) 
production function was used in place of Eq. (16.1) as well as in sensitivity analyses undertaken with (a) 
different a e 2 values, and (b) different proportions assigned to the r = 0 values. 

There seems to be little point in pursuing these OLS studies in more detail here. We therefore turn to results 
from the SF (Stochastic Frontier) regressions that were also covered in these studies. For this purpose, we 
replace Eq. (19) with 

\ny = po + p{ In xx + /3 2 In x 2 + v-r. (22.1) 
This is the 4 composed-error' version of a SF regression function in which v and r are both statistically 
determined, with r > 0 representing inefficiencies and v, which is unconstrained, representing statistical noise -
generally assumed to be normally distributed N(09av2). We can gain some insight into the way this SF 
regression deals with input inefficiencies by rewriting Eq. (22.1) in the following form 

In y + r = j30 + ¿3, In xl + J82 In x 2 4- v. (22.2) 
As this representation makes clear, the output in this SF regression is to be augmented by r > 0 to reflect the 
extra input amounts in xx and x2. In the terminology of Gong and Sickles, [34,35], these T> 0 values are 
referred to as 'foregone outputs' and interpreted to mean that this extra output amount is estimated to be 
attainable in place of the actually observed y values in response to the inputs xx >xx and x2>x2. Here, 
however, we emphasize that this approach does not try to adjust the input inefficiencies in an 4input-specific' 
manner. 

Simulation studies have to date reported fairly good behavior for these composed error models. Gong and 
Sickles [34], for instance, report that this model performs better than DEA when the simulations are based on 
sufficiently complex production functions. However such studies have all used procedures to generate 
inefficiencies in conformance with Eq. (22.1) or Eq. (22.2). No attempt was made to assign inefficiencies to 
inputs in the manner we used to generate xx and x2. When this is done, however, the results are far from 
satisfactory. In fact, as Table 3 shows, every one of the estimated parameter values differs significantly from 
their true values. In short, this composed error model give erroneous results in every one of these simulated 
experiments. 

Table 3 
Stochastic frontier regression estimates without dummy variables - Case 1: Exponential distribution of input inefficiencies 
Parameter estimates a 

P o 

Pi 

Case A Case B CaseC CaseD 
a 2 = 0.04 o- f 2 = 0.0225 a 2 = 0.01 a 2 = 0.005 
(1) (2) (3) (4) 

1.42 * 1.62 * 1.25 * 1.28 
(0.19) (0.14) (0.14) (0.11) 
0.46 * 0.43 * 0.48 * 0.46 * 

(0.024) (0.02) (0.017) (0.01) 
0.48 * 0.47 * 0.48 * 0.47 * 

(0.017) (0.013) (0.01) (0.01) 
0.15 * 0.11 * 0.15 * 0.15 * 

(0.035) (0.01) (0.01) (0.01) 
0.15 * 0.13 * 0.08 * 0.04 

(0.01) (0.02) (0.01) (0.025) 

The asterisk ' *' denotes statistical significance at the 0.05 significance level or better. 
a The values for < j 2 shown in the top row of the table represent the true variances for the statistical error distributions. Standard errors are 
shown in parentheses. 

T 
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We can get some insight into these failures by returning to Eq. (22.1). Then because our T,, T2 > 0 values 
were generated from the same distribution we have ET, = E r 2 = Er so, utilizing E^= 0, we can write 

E(\ny\ xxx2) = p0 + Pi Inx, + P2 l n *2 + ( Pi + Pi ~ 0E'r> ( 2 3 ) 
where EV=(1 — y)Er and (1 — y) reflects the probability mixtures used to generate r = 0 and r > 0 , 
respectively. We evidently have ET > 0 when either exponential or half-normal distributions are used to 
generate the inefficiencies associated with T, and T2 in (17). Hence to have relatively unbiased estimates when 
Jcj = xx and x2 = x2 we must have /3j + /32 ~ 1, at least approximately, if we are to obtain the correct frontier, 
or anything even close to it. However, this approximation will produce a downward bias in the parameter 
estimates since ax + a2 = 1.20. Thus the bias has its source in the orientation toward correct estimates of y on 
the frontier at the expense of correct estimates of the parameters associated with each of the inputs. Moreover, 
this bias is further accentuated from the observations associated with inefficient DMUs which, except for 
statistical errors, must always lie below the efficient frontier defined by Eq. (16.1) and Eq. (16.2). 

Maximum likelihood methods are used to obtain the values in Table 3 and hence these estimates may be 
expected to have some bias in exchange for improved efficiency. The small variances for the statistical error 
terms recorded at the top of Table 3 make it clear, however, that the error terms (and their associated variances) 
will be close to parameter values which are not correct. Hence the efficiency properties of these maximum 
likelihood estimates do not compensate for this bias in a satisfactory manner. Finally, with samples of size 
n = 1,000, properties of statistical consistency - or the other desirable properties of such maximum likelihood 
estimates - also cannot be relied upon. 

The serious nature of these underestimates from an economics standpoint is made clear from the fact that 
Table 4 
Stochastic frontier regression estimates with dummy variables on DEA-efficient DMUs - Case 1: Exponential distribution of input 
inefficiencies 
Parameter estimates a Case A Case B Case C Case D 

(jg = 0.04 o>2 = 0.0225 <v = 0.01 o>2 = 0.005 
(1) (2) (3) (4) 

Po 1.18 * 1.50 * 0.80 * 1.40 * 
(0.23) (0.16) (0.16) (0.13) 

Pi 0.50 * 0.44 * 0.53 * 0.49 * 
(0.03) (0.02) (0.02) (0.01) 
0.48 * 0.49 * 0.50 * 0.47 * 

(0.02) (0.02) (0.01) (0.02) 
8 - 1 . 6 0 * - 2 . 4 * - 1 . 2 5 * - 1.55 * 

(0.57) (0.56) (0.38) (0.23) 
0.16 * 0.26 * 0.13 * 0.15 * 

(0.07) (0.06) (0.04) (0.03) 
0.11 * 0.13 * 0.086 0.09 * 

(0.05) (0.04) (0.04) (0.03) 
0.23 (0.03) * 0.16(0.01) * 0.17(0.007) * 0.11 (0.04) * 

cr 2 0.15(0.02) * 0.10(0.02) * 0.08 (0.02) * 0.05 (0.03) 
0.13(0.01) * 0.09(0.01) * 0.05 (0.01) * 0.04 (0.01) 

= 0.93 t, = 0.28 t x — — 0.4 
Combining parameters with dummy variable 
H , . . . 

/3, + 5 , ^ 0 . 6 5 
P2 + 82 = 0.55 f 2 = 1.03 t2 = 1.90 r 2 = 1.16 t7 = 0.45 

+ 82 * 0.55 
The asterisk ' * ' denotes statistical significance at the 0.05 significance level or better. 
a The values for a F 2 shown in the top row of the table represent the true variances for the statistical error distributions. Standard errors are 
shown in parentheses. 
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/3j + /32 < 1 in every case whereas ax + a2 = 1.2. Hence the returns-to-scale properties of Eq. (16.1) and Eq. 
(16.2) are reversed by these estimates. Increasing returns are replaced with decreasing returns to scale in every 
case. 

The same situation holds for important statistical properties. For instance, as shown in Charnes et al. [21], the 
/30 terms may be adapted so they can be used as MDI (Minimum Discrimination Information) statistics - which 
have the unusual property that the best alternative hypothesis is automatically supplied when H 0 is rejected. 
(See Brockett et al. [14] for details and interpretations.) In the present case, however, log a < 1 whereas 
/30 = In /3 > 1, so rejection of K0 points in the wrong direction. 

The column headings in Tables 1 -4 show that the statistical error terms were generated from distributions 
which tend to be leptokurtic and hence tend to have relatively small error values. The objective of the study was 
to focus on the behavior of the inefficiency components which were therefore allowed much wider ranges of 
variation. It was believed that this would make it easier to identify inefficiencies with their input sources as a 
guide to further research which we comment on as follows: A lot has been invested in these composed error 
approaches, so we are not suggesting that they be abandoned. We believe rather that what has already been done 
can be built upon by moving further toward developing input-specific formulations and methods of estimation 
like those given in Kumbhakar [38] and Chaffai [16]. It would be even better if this could be extended to 
formulations that could handle multiple-output as well as multiple-input specific inefficiencies. Recourse to 
more complex procedures will undoubtedly be required to accomplish this and some time will be needed for 
their development. 

A use of our two-stage procedure for the composed error model represented in Eq. (22.1) and Eq. (22.2) also 
produces a modification of these SF approaches which yield the very satisfactory results shown in Table 4. 
However, these estimates, as obtained from these two-stage uses of SF regressions are no better (or worse) than 
those obtained from our two-stage procedure with OLS as reported in Table 2. Thus, the extra effort in securing 
these SF estimates may not be worthwhile unless special interest attaches to the behavior of crv and the other 
standard deviation values shown near the bottom of Table 4. 

We do not discuss the latter topics here. Instead we simply refer to the discussions in Bardhan et al. [13]. We 
can then close our present paper by returning to issues related to choices of measure like those we discussed for 
DEA. To obtain a measure of the indicated kind, we can return to Eq. (20) and utilize Es = 0 to obtain 

E(\ny\D=\) - E ( l n y | D = l ) 
= p 0 + p x In Jc, + f32 In Jt2 + 8 + 8, In i , + 82 In x 2 - ft, + j8, In + In x 2 

= 8 + 8 l \ n x l + 8 2 X 2 . ( 2 4 ) 
Bardhan et al. [13] suggest using the last of these expressions as a measure of the inefficiency associated with 
the 5 j, x2 choices for each DMU. Indeed, if the data satisfy 

8, In 5, + S 2 In Jc 2> - 5 , ( 2 5 ) 
we can then use these expressions to develop a measure analogous to the one we considered for DEA in the 
following form: 

0 01 1 
1 2 <1 . (26) 0 < 

This is a measure of output inefficiency. Input inefficiency measures are readily available from the first-stage 
use of DEA which can be aggregated, if desired, in the form of the MIP, MEP and RAM measures discussed 
earlier in this paper. 

In keeping with other parts of this paper we now close by noting another problem for further research as 
follows. It is possible that Eq. (25) may hold for some choices of * 2 and fail for other choices. This means 
that the functional forms connected with E(ln y\D= 1) and E(ln y\D = 0) have crossed over. (See Bardhan et 

r 
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al. [13] for a discussion of Eq. (20) as two separate equations.) This can result from statistical error. It can also 
occur because DEA misclassified some of the DMUs in stage 1. Development of statistical tests to discriminate 
between these two possibilities is therefore a subject which can be added to our topics for further research and 
use. See Brockett and Golany for a discussion of non-parametric ( = distribution-free) statistical approaches. 
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