
\\\

The Role of Language in CognitionvA Computational Inquiry
Jill Fain Lehman, Alien Newell, Thad Polk, and Richard Lewis

Carnegie Mellon University ^^*~ **S±u-f&&

preparing thfs manuscript, as in preparing the talk on which it is basefr. we were asked to tell
George, from our particular standpoint, "how the mind works." We^have clearly taken some,
license in recasting his question as "What is the role of language in cognition?" Still, the
relationship between language and cognition has been a central concern for George throughout
his career. Indeed, an answer to the question is central to any theory of mind.~z*

Our standpoint is computational. As a result, our methodology in contemplating the issues is,
first, to reason from the architecture, and second, to examine existing systems. Nevertheless, we
take seriously George's injunction to "stand back a little from your most recent work," and so
are willing to speculate and extrapolate on his behalf. We begin our discussion of the role of
language in cognition by examining the prevailing point of view.

1. Language as Transducer
A basic tenet of cognitive science is the problem space view which states that thinking occurs

in internal, task-oriented problem spaces that use internal, task-oriented operators on internal
representations of the situation. This characterization of cognition is one of the field's important
contributions, in part, because it allowed computation to be brought to the enterprise of
understanding the nature of mind.

When applied to our question, the problem space view yields the paradigm of language as
transducer the process of comprehension transforms utterances from the external world into the
internal representation that task-oriented operators require. The complementary process of
generation tranforms the result of those task operations back into external linguistic forms:

comprehend- think generate

Essentially all systems that contain both natural language and problem solving components have
taken this view (for example, UNDERSTAND (Hayes & Simon, 1975)). The transducer
paradigm is epitomized by the natural language front-end.

What does the transducer paradigm say about the role of language in cognition? It provides a
simple and direct answer: language and cognition share a structure, which we call the situation
model. By delivering a representation of the situation to the task, language has its effect on
cognition through the encoding of their shared model and through any subsequent structures
added to long-term memory based on that encoding. In essence, the transducer paradigm is
equivalent to a weak form of the Whorfian Hypothesis (Whorf, 1956): language influences
cognition, but does not determine it. 1

lln a recent attempt to quantify this influence, (Hunt & Agnoli, 1991) appeal to current practice in psychology
and enumerate, as significant, effects at the 50 msec level.

Given this longstanding view, is any other answer possible? We go to the architecture and ask!

2. The Architecture Replies
The Soar architecture has been described fully in (Newell, 1990). Figure 2-1 allows us to

summarize briefly. Following the numbers in parentheses, we can characterize the architecture
by a long-term memory composed of patterns that deliver their associations to working memory,
thereby defining the current problem-solving context (1). Problem solving occurs in problem
spaces (2) by a process of state-to-state transition from an initial state to a desired state.
Transitions occur via the application of operators, one transition per decision cycle (3). In the
elaboration phase of a decision cycle, knowledge flows into working memory in the form of
preferences for new problem spaces, operators, or states. Once all patterns have delivered their
associations, a fixed decision procedure is invoked. If there is an unequivocal next step, it is
taken (4). Otherwise the architecture impasses (5) and a new goal is established to attain the
knowledge to resolve the impasse. The new goal gives rise to a new problem space (6), and
problem solving continues. Once the impasse is resolved by reaching a desired state in the
subspace(7), Soar's learning mechanism captures the conditions that lead to the impasse and the
results of problem solving in a new association which is added to long-term memory (8).

IMMEDIATELY AVAILABLE KNOWLEDGE
(Long-term Recognition Memory)

(1) Chunking
(8)

BEHAVIOR IN PROBLEM SPACES
(Context held in working memory)

(4)

(2)
. (5) impasse

quiescence/ ^ impasse
(3) Decision Cycle

Figure 2-1: The Soar architecture

To understand the architecture's reply, let us first separate cognition from language by reifmg
the former in a Task problem space defined by non-linguistic task operators, and the latter in a
Language problem space defined by comprehension and generation operators. We can then
imagine the sort of typical, hierarchical goal stack that arises in Soar as a result of impasses. As
shown in Figure 2-2, within the goal stack we may find either or both of the two possible
relationships between language and thought: a Task space may impasse into a Language space
(A) or a Language space may impasse into a Task space (B). Although this is simply a structural
reply, it is not without functional consequences.

Task space
non-linguistic task operators

-(AT

Language space
comprehension and generation operators

Language space
comprehension and generation operators

Task space
non-linguistic task operators

Figure 2-2: Possible relationships between language and cognition.

An examination of the impasse from Task to Language (Figure 2-2, (A)) reveals the realization
of the transducer paradigm in Soar. The general dynamic is straightforward; we trace it out
simultaneously in Figures 2-2 and 2-3. The Task space, in this case the Blocks-world space,
contains task operators which perform task-related transformations on the state. For example,
t-opl alters the state by producing the situation model in the top-right portion of Figure 2-3.
Some of these task operators may be transduction operators that are proposed when linguistic

input appears on the state (for example, t-op2). The transduction is implemented in the Language
space by operators that transform linguistic input from the external world to a non-linguistic
form (the middle situation model of Figure 2-3). Once the content of the utterances has been
captured, operators in the task space continue to apply to this non-linguistic representation (for
example, t-op3 and the bottom situation model in Figure 2-3). A similar process occurs when
transduction is required for generation.

Blocks-world
space

State

'Put the red block on the green block."

isa block
color red

isa block
color green

location-on"
isa table

location-on

Blocks-world
space

Language
space

isa put-act
actor Bws

location-on

isa block
color red

isa block
color green

location-on^
isa table

location-on

Blocks-world
space

isa block
color red

location-on

location-on

isa table

isa block
color green

Figure 2-3: Language transduction in the blocks v/orld.

Note that the role of language in this case is essentially ancillary. Granted, a weak Whorfian
view is supported by the architecture because task operations proceed based on the model
delivered by Language. Still, if there were some other method for generating the relevant piece
of situation model (such as remembering it), then no impasse would arise and task operations
alone would be adequate to reach a desired state. The Whorfian Hypothesis is weakened further
by the observation that whatever Language operations are used, they may occur in the context of,
and be influenced by, a pre-existing situation model that has resulted solely from task operations.

That the transducer paradigm can be found among the potential behaviors of the Soar
architecture should not be surprising; Soar clearly takes the problem space view, and it is from

this view that the transducer paradigm naturally evolves. What may be surprising, however, is
that the structural reply in Figure 2-2 hastwo other^ery different, functional consequences, as
well.

3. The impasse from Task to Language: Linguistic Task Operators (LTOs)
In the example above, and in the transducer paradigm in general, there are two types of

operations: task operations and transduction operations. The former are carried out by task
operators in the Task space using task knowledge to take a non-linguistic portion of the state into
a new non-linguistic portion of the state. The latter are carried out by linguistic operators in the
Language space using linguistic knowledge to take a linguistic input from the external
environment into a non-linguistic portion of the state. That task operators are non-linguistic is an
assumption of the paradigm, not the Soar architecture. Indeed, as shown in Figure 3-1, the
architecture admits the possibility of a linguistic task operator (LTO) that uses knowledge about
language to take a non-linguistic state into a non-linguistic state.

Task
space

Language
space

State

Figure 3-1: Linguistic task operators.

The process begins as it did in Figure 2-3 with the top situation model produced by the non-
linguistic task operator t-opl. The bottom model is then produced by an LTO, a task operator
implemented in the Language space. This t-op2 is different from the t-op2 in Figure 2-3 because
it does not require the existence of an utterance from the external environment in order to
produce a change to the situation model. The disorganization of operators in the Language space
in Figure 3-1 points to another difference between the t-op2's. In the blocks world case, we
know what linguistic knowledge is needed to implement the transduction. At this point in the
discussion, it is unclear what linguistic knowledge implements an LTO.

Observing that the architecture admits the possibility of LTO's is a far cry from either
demonstrating that LTO's exist or explaining what LTO's mean. To do so, we must look beyond
the architecture's reply and employ our second methodological tool. Thus, we turn to VR-Soar, a
system that solves syllogisms, to find the answers.

3.1. A fe&ef digression: VR-Soar and the categorical syllogism task
The syllogism task is probably familiar: given two premises, we must state a conclusion that

both links the end terms and necessarily follows from the premises. Two specific syllogisms and
their general forms are shown below:

Premise 1: All artists are barbers All A are B
Premise 2: All barbers are chefs All B are C
Response: All artists are chefs All A are C

Premise 1: All artists are barbers
Premise 2: Some barbers are chefs
Response: ?

All A are B
Some B are C

VR-Soar is a computational theory of human syllogistic reasoning that seeks to explain
individual differences in this task by predicting individuals' behavior on all sixty-four types of
syllogisms (Polk & Newell, 1988). As is evident from the examples, some syllogisms are easy
and some are not, the latter providing evidence that solving syllogisms is a genuine reasoning
task in which we expect to find task operators as well as language operators. Nevertheless,
systems capable of performing the task tend to fit the transducer paradigm (for example,

^resolution theorgrn provers and model-based systems such as (ref Johnson-Laird's new book ?).

The general organization of VR-Soar is shown in Figure 3-2. The Task space has one task
operator, negate-conclusion, and three transduction operators that are implemented in the
Language spaces (read-input, generate-conclusion, and respond). The static impasse structure in
the figure makes it clear that there are ample opportunities for Task to Language impasses during
actual problem solving.

o>

a

Syllogism space
read-input
generate-conclusion
negate-conclusion
respond

Read space ./ Generate space

Figure 3-2: VR-Soar, a system for solving syllogisms.

VR-Soar uses two methods for solving syllogisms: the basic method and the falsification
method. In the basic method, the system simply generates a conclusion from the single,
cumulative situation model created by reading the premises. Consider the first example we saw
above and the situation model produced after each premise:

Read: All artists are barbers. (A B)
Read: All barbers are chefs. (A B C)
Generate: All artists are chefs.
Respond: All artists are chefs.

Reading the first premise produces a model with a single element that has both the property of
being an artist and of being a barber. The lack of explicit quantification in the model is a key
piece of VR-Soar's theory. Reading the second premise in the context of the existing model
augments the single element with the property of being a chef (that is, comprehension of the
premise results in every barber already in the model being made a chef). From this cumulative
model it is straightforward to generate the conclusion All artists are chefs and respond
accordingly.

The basic method is not guaranteed to generate conclusions that necessarily follow from the
premises. The falsification method, through the use of the negated-conclusion operator, is. If a
negated conclusion leads to a contradiction then the original conclusion must necessarily follow
from the premises. Similarly, if the negated conclusion does not lead to a contradiction, the
original conclusion was not valid. Consider how this method is used in our second example:

Read: All artists are barbers. (A B)
Read: Some barbers are chefs. (A B C) (B C) (B)
Generate: Some artists are chefs.
Negate: No artists are chefs.
Comprehend: No artists are chefs. (A B -C) (B C) (B)
Re-read: All artists are barbers. no change
Re-read: Some barbers are chefs. no change
Respond: No valid conclusion.

As in the previous example, reading the first premise creates the model (A B) which is then
augmented by reading the second premise. How a person interprets the word some is considered
a source of individual differences. In the interpretation shown here, some means there is at least
one that is not. Thus, comprehension has three effects on the situation model: it makes the
existing artist-barber a chef, it creates a barber who is a chef but not an artist, and it creates a
barber who is neither a chef nor an artist. From this cumulative model a conclusion linking the
end terms can be generated: Some artists are chefs. At this point in the basic method VR-Soar
would respond with the generated, albeit incorrect, conclusion. Using falsification, however, the
next step is to negate the conclusion. Comprehending the negated conclusion then augments the
model further the artist is no longer a chef. Finally, the system re-reads the two premises.
Since no inconsistency arises with respect to the situation model during re-reading, the system
correctly responds, No valid conclusion.

Several interesting things occurred in these two examples. The first syllogism, solved by the
basic method, did not require any task operations to build up the situation model and read off the
conclusion. To make the point in a slightly different way, treating the language processes as
transducers was sufficient for the task. In the second syllogism, however, falsification required
two task operations: negating the conclusion and testing the situation model. Nevertheless, these

task operations were accomplished via language processes. But that is exactly what LTO's are all
about.

3.2. LTO's: Reprise
Before our digression, we had established two features of LTO's. First, we defined an LTO to

be a task operator implemented in the Language space. Second, we noted that an LTO is distinct
from a transduction operator because it does not require input from the external environment in
order to produce a change to the state. Yet, at that point in the discussion, it remained unclear

* how LTO's could be implemented in the Language space, whether they really exist, and, most
importantly, what they mean.

Given our analysis of VR-Soar the answers to these questions have become clear. An LTO is a
task operation that is implemented as an act of generation followed by an act of comprehension.
The generation process produces an utterance which comprehension uses to test and/or change
the situation model. In the falsification example we saw two uses of LTO's. The first occurred in
the implementation of the negate-conclusion task operator: the generation of the negated
conclusion was followed by its comprehension, thereby performing the task operation of
changing the situation model through linguistic means but without the existence of an utterance
from the external environment. The second use of LTO's came in the act of re-generating the
premises in order to perform the task operation of testing the situation model by
comprehension.2.

What, then, do LTO's mean? By virtue of performing task operations that are not mere
transductions, using LTO 's/is truly thinking in language^ Do LTO's therefore vindicate the
strong Whorfian Hypothesis that language determines thought? If LTOs were the only kind of
task operator available, the answer would be yes. But there are many other non-linguistic spaces
for tasks (for example, visual spaces, mathematical spaces), filled with non-linguistic task
operators. Thus, while LTO's may take their rightful place in the cognitive repertoire, we must
acknowledge that they are but one of the techniques available.

< "sc^te^^^^ '
4. The impasse from Language to Task: Taskification

In looking at the blocks world example and VR-Soar, we found two functional implications of
the structural configuration produced by an impasse from Task to Language: language can
influence the task situation model (weak Whorfian hypothesis) or language can peform the task
(LTO- Whorfian hypothesis). The impasse from Task to Language being only half the story, we
now turn our attention to the other half of the architecture's reply.

Consider the configuration shown in Figure 2-2(B). Here an operator in the Language space (in

2Since the re-generation of the premises happened via reading, isn't this a case of using utterances from the
external environment, and, therefore, not an occurrence of an LTO? Functionally, we consider the re-reading to be
an internal activity that the premises are read was necessary the first time (the transduction), but that they are read
is incidental the second time (they could, for example, have simply been remembered). To make the point a bit
differently, suppose we had heard the premises initially and written them down. The act of writing them down is
functionally equivalent to memorizing them. Thus, if recovering them in the latter case is an internal operation, then
it is functionally internal in the former case as well

8

this case a comprehension operator) gives rise to an impasse that can only be resolved through
task knowledge. To understand how such a configuration can occur, and what taskification
means, we must digress once again, this time to understand how language comprehension occurs
in Soar.

4.1. A -beef digression: NL-Soar and the task of language comprehension
NL-Soar is the current realization of Soar's Language space. It is the set of problem spaces

and operators that provide Soar with a comprehension capability that responds to the real-time
constraint of 200 to 300 msec per word (Lehman, Lewis, & Newell, 199 la, Lehman, Lewis, &
Newell, 1991b). In the mapping of Soar onto human cognition (Newell, 1990), the real-time
constraint corresponds to a processing constraint of two to three operators per word. Meeting
this processing constraint requires recognitional comprehension via total integration of the
relevant knowledge sources. We achieve total integration through comprehension operators that
are learned automatically through chunking.

A graphical ctrae^ of the operation of NL-Soar is shown in Figure 4-1. Comprehension is
recognitional whenever a comprehension operator is available in the Comprehend space for a
word in a given context. Under those circumstances all knowledge is brought to bear in a single
operator application and NL-Soar 's utterance and situation models are incrementally augmented
(the utterance model captures the structure of the utterance, the situation model captures the
meaning). However, when no comprehension operator is available for the current context, an
impasse arises and the remaining problem spaces in NL-Soar implement the comprehension
operator through deliberate problem solving. The problem spaces accessible via that impasse
bring syntactic, semantic, and pragmatic knowledge to bear by the sequential application of
relevant operators. When the impasse is resolved, chunks are built that avoid the impasse in
similar, future contexts. These chunks become part of the comprehension operator, integrating in
a single operation all the knowledge that was applied sequentially in order to resolve the
impasse.

Suppose NL-Soar is given the sentence, The artist is a barber and assume there is no
comprehension operator available for barber. Following the numbers in parentheses in Figure
4-1, let us look at the processing done by the system for that word when it is encountered in
context. Extrapolating from the examples in Section 3.1, we know that at the point that barber is
processed, the situation model contains only a single element with the property of being an artist.
The lack of comprehension operator for barber creates an impasse in the Comprehension space
(1). As a result, a link operator is proposed in the Construct space to tie barber into the utterance
model as a predicate nominative (2). Before the link can be established, it must meet certain
syntactic, semantic, and pragmatic conditions. Thus, another impasse arises leading to further
processing in the Constraints space (3). In Constraints, NL-Soar performs a number of syntactic
checks, for example, to make sure there is number agreement between the subject and the
predicate nominative. Then the system must make certain that the link makes sense, that is, that
artists are, in fact, the sorts of things that can be barbers (4).

The knowledge that satisfies the semantic constraint is unavailable in the Constraints space. So
an impasse arises (5), operators in the Semantics space are brought to bear, and, as a result of
chunking, knowledge from Semantics becomes immediately available in Constraints in future,

Comprehension

Recognitional
Deliberate

Constraints

Semantics

Figure 4-1: NL-Soar, a system for language comprehension.

similar contexts (6).3 When all of the constraints have been passed, the impasse from Construct
to Constraints is resolved, and chunking moves syntactic, semantic, and pragmatic knowledge
into the higher space (7). Once the situation model has been augmented by the refer operator in
Construct, the impasse from Comprehension to Construct is resolved, and chunking creates a
piece of the comprehension operator for barber (8). The association that is learned during this
last impasse resolution tests for all the conditions that determined the word's meaning in the
general context (including the semantic condition that justified making the artist a barber). When
those conditions are present in the future, the comprehension operator chunk will produce its
changes to the utterance and situation models directly (including the change that adds the
property of being a barber). In other words, chunking has moved knowledge from the lower
spaces up into recognitional comprehension. But that is exactly what the impasse from
Language to Task is all about.

3Although it is not obvious from the discussion, pragmatic knowledge is brought to bear in Semantics as well.

10

4.2. Taskification: Reprise
Before our second digression, we had raised two questions regarding the impasse from

Language to Task: how could it arise? and what would it mean? What the NL-Soar example
showed is the process by which independent knowledge sources become part of the conditions of
a comprehension operator, and, thus, part of the relevant context for assigning a particular
meaning. Because this process is essentially invariate over knowledge sources, we are now in a
position to answer our questions: a Language to Task impasse arises whenever the task
constrains the meaning of a word. The result of such an event is the incorporation of task specific
knowledge into the comprehension operator, a process we call taskification.

To make the idea of taskification concrete, let us reconsider the second syllogism example and
the second premise Some artists are chefs. It is certainly possible to assume, as we did implicitly
in Section 3.1, that the interpretation a person gives to some in this task is just whatever the
meaning of some would normally be for that person. It is also possible, however, to instruct
someone to use a particular meaning of some, as in by "some" we mean only that there is at
least one. How could these instructions be used by someone who did not, naturally, interpret
some in this way? Figure 4-2 demonstrates.

Comprehension /'

Figure 4-2: The taskification of language.

11

The reading of this premise occurs as a regular transduction in the context of the syllogism
task (1). If the comprehension operator is already sensitive to this context, comprehension
proceeds recognitonally, otherwise an impasse occurs (2). When constraint checking is
performed during normal deliberate processing, a task constraint causes an impasse just as the
semantics constraint did, above (3). Since the Language space does not have the knowledge to
resolve the impasse, but the Task space does, the impasse is from Language to Task. Once the
Task space has done whatever is needed to satisfy the task constraint (for example, by using an
LTO to change the situation model according to the directions (4)), the Language-to-Task
impasse is resolved, and the goal stack itself begins to unwind. As we follow chunking back up
the problem space hierarchy (5, 6, and 7), the relevant features of the task will be included in the
new piece of the comprehension operator for some. J^ t />Y**>K I*ML&-& is*

Abstracting away from this example, we can make a more general statement about what
taskification means. As more task contexts arise, more and more of the task will move up into
the Language space. Over the long term, the comprehension operator will contain more and more
task-specific knowledge for the vocabulary of the task. Thus, as the taskification of the person's
language proceeds, the apparent modularity between Task and Language disappears.

5. Beyond Whorf: Predictions from the architecture
We began our exploration of the role of language in cognition by observing that current

practice is to view language as merely a transducer, distinct from cognition and with limited
potential for influencing cognition's path. We then countered this weak Whorfian view by
appealing to the architecture. What we found there LTO's and taskification predicts a
decidedly more active role for language than common practice allows.

In essence, LTO's show us that thinking in language is possible. Although this would seem to
lead to a dominating role for language in cognition the strong Whorfian Hypothesis that
language determines thought that simple conclusion is unwarranted. Since LTO's are not
required for thought, they are only one possible method for performing a task operation. To the
extent that non-linguistic means are used during problem solving, language will have no
influence. Thus, the existence of LTO's creates the potential for a determining role for language:
the LTO-Whorf Hypothesis, stronger than the weak Whorfian view but weaker than the strong.

How much stronger? How much weaker? In part, taskification decides. If we assume that an
LTO is used only when it can do the job, then the more taskified the language is, the more often
LTO's are applicable and the stronger is language's influence on cognition. At the same time,
taskification means that the language through which the LTO's are implemented is, itself, partly
task dependent, once again weakening language's role.

What the Soar architecture tells us, then, is two-fold: language can, in fact, determine thought,
but its power to do scjahdependent of the task itself varies over time and context. It is not clear
that such conclusions would follow from other architectures. Strong modularity, for example,
precludes the possibility of taskification and is essentially antithetical to the idea that Task and
Language slowly blend into one. Thus, the architecture yields two novel predictions, which are
our present to George on the occasion of his retirement.

*

12

References

Hayes, J. R., and Simon, H. A. (1975). Understanding written problem instructions. In Gregg,
L. W. (Ed.), Knowledge and Cognition. Potomac, MD: Erlbaum.

Hunt, E., and Agnoli, F. (1991). The Whorfian hypothesis: A cognitive psychology perspective.
Psychological Review, 90(3), 377-389.

Lehman, J. Fain, Lewis, R., and Newell, A. (1991). Natural language comprehension in Soar
(Tech. Rep.). Carnegie Mellon University Technical Report CMU-CS-91-117.

Lehman, J. Fain, Lewis, R., and Newell, A. (1991). Integrating Knowledge Sources in Language
Comprehension. Proceedings of the Thirteenth Annual Conferences of the Cognitive
Science Society. .

Newell, A. (1990). Unified Theories of Cognition. Cambridge, Massachusetts: Harvard
University Press.

Polk, T. A. and Newell, A. (August 1988). Modeling human syllogistic reasoning in Soar.
Proceedings of the Annual Conference of the Cognitive Science Society. .

Whorf, B. L. (1956). Language, Thought, and Reality: Selected Writings. Cambridge, Mass:
Technology Press of M.I.T.

Table of Contents
1. Language as Transducer 0
2. The Architecture Replies 1
3. The impasse from Task to Language: Linguistic Task Operators (LTOs) 4

3.1. A brief digression: VR-Soar and the categorical syllogism task 5
3.2. LTO's: Reprise 7

4. The impasse from Language to Task: Taskification 7
4.1. A brief digression: NL-Soar and the task of language comprehension 8
4.2. Taskification: Reprise 10

5. Beyond Whorf: Predictions from the architecture 11

11

	List of Figures
Figure 2-1: The Soar architecture 1
Figure 2-2: Possible relationships between language and cognition. 2
Figure 2-3: Language transduction in the blocks world. 3
Figure 3-1: Linguistic task operators. 4
Figure 3-2: VR-Soar, a system for solving syllogisms. 5
Figure 4-1: NL-Soar, a system for language comprehension. 9
Figure 4-2: The taskification of language. 10

