
Alien Newell

J. C. Shaw
H. A. Simon

Chess-Playing Programs and the

Problem of Complexity

Abstract: This paper traces the development of

digital computer programs that play chess. The

work of Shannon, Turing, the Los Alamos group,

Bernstein, and the authors is treated in turn. The

efforts to program chess provide an indication of

current progress in understanding and constructing

complex and intelligent mechanisms.

320

Man can solve problems without knowing how he solves
them. This simple fact sets the conditions for all attempts
to rationalize and understand human decision making
and problem solving. Let us simply assume that it is good
to know how to do mechanically what man can do natu
rally both to add to man's knowledge of man, and to
add to his kit of tools for controlling and manipulating
his environment. We shall try to assess recent progress in
understanding and mechanizing man's intellectual attain
ments by considering a single line of attack the attempts
to construct digital computer programs that play chess.

Chess is the intellectual game par excellence. Without
a chance device to obscure the contest, it pits two intel
lects against each other in a situation so complex that
neither can hope to understand it completely, but suffi
ciently amenable to analysis that each can hope to out-
think his opponent. The game is sufficiently deep and
subtle in its implications to have supported the rise of
professional players, and to have allowed a deepening
analysis through 200 years of intensive study and play
without becoming exhausted or barren. Such character
istics mark chess as a natural arena for attempts at
mechanization. If one could devise a successful chess
machine, one would seem to have penetrated to the core
of human intellectual endeavor.

The history of chess programs is an example of the
attempt to conceive and cope with complex mechanisms.
Now there might have been a trick one might have
discovered something that was as the wheel to the human

leg: a device quite different from humans in its methods,
but supremely effective in its way, and perhaps very
simple. Such a device might play excellent chess, but
would fail to further our understanding of human intel
lectual processes. Such a prize, of course, would be
worthy of discovery in its own right, but there appears
to be nothing of this sort in sight.

We return to the original orientation: Humans play
chess, and when they do they engage in behavior that
seems extremely complex, intricate, and successful. Con
sider, for example, a scrap of a player's (White's) run
ning comment as he analyzes the position in Fig. 1:

"... Are there any other threats? Black also has a threat of
Knight to Bishop 5 threatening the Queen, and also putting
more pressure on the King's side because his Queen's Bishop
can come over after he moves his Knight at Queen 2; how
ever, that is not the immediate threat. Otherwise, his Pawn
at King 4 is threatening my Pawn .. ."

Notice that his analysis is qualitative and functional. He
wanders from one feature to another, accumulating vari
ous bits of information that will be available from time
to time throughout the rest of the analysis. He makes
evaluations in terms of pressures and immediacies of
threat, and gradually creates order out of the situation.

How can we construct mechanisms that will show
comparable complexity in their behavior? They need not
play in exactly the same way; close simulation of the
human is not the immediate issue. But we do assert that
complexity of behavior is essential to an intelligent per-

IBM JOURNAL • OCTOBER 1958

formance that the complexity of a successful chess
program will approach the complexity of the thought
processes of a successful human chess player. Complexity
of response is dictated by the task, not by idiosyncrasies
of the human response mechanism.

There is a close and reciprocal relation between com
plexity and communication. On the one hand, the com
plexity of the systems we can specify depends on the
language in which we must specify them. Being human,
we have only limited capacities for processing informa
tion. Given a more powerful language, we can specify
greater complexity with limited processing powers.

Let us illustrate this side of the relation between com
plexity and communication. No one considers building
chess machines in the literal sense fashioning pieces of
electronic gear into automatons that will play chess. We
think instead of chess programs: specifications written in
a language, called machine code, that will instruct a
digital computer of standard design how to play chess.
There is a reason for choosing this latter course in
addition to any aversion we may have to constructing a
large piece of special-purpose machinery. Machine code
is a more powerful language than the block diagrams of
the electronics engineer. Each symbol in machine code

Figure 1

• •

^^^^^^^^^s
o o o

0,
ft

^^^^^^^^^2

o o o

; :^C

IZZI

321

IBM JOURNAL • OCTOBER 1958

322

specifies a larger unit of processing than a symbol in the
block diagram. Even a moderately complicated program
becomes hopelessly complex if thought of in terms of
gates and pulses.

But there is another side to the relation between com
munication and complexity. We cannot use any old lan
guage we please. We must be understood by the person
or machine to whom we are communicating. English will
not do to specify chess programs because there are no
English-understanding computers. A specification in Eng
lish is a specification to another human who then has the
task of creating the machine. Machine code is an advance
precisely because there are machines that understand it
because a chess program in machine code is operation
ally equivalent to a machine that plays chess.

If the machine could understand even more powerful
languages, we could use these to write chess programs
and thus get more complex and intelligent programs from
our limited human processing capacity. But communica
tion is limited by the intelligence of the least participant,
and at present a computer has only passive capability.
The language it understands is one of simple commands
 it must be told very much about what to do.

Thus it seems that the rise of effective communication
between man and computer will coincide with the rise
in the intelligence of the computer so that the human
can say more while thinking less. But at this point in
history, the only way we can obtain more intelligent
machines is to design them we cannot yet grow them,
or breed them, or train them by the blind procedures that
work with humans. We are caught at the wrong equilib
rium of a bistable system: we could design more intelli
gent machines if we could communicate to them better;
we could communicate to them better if they were more
intelligent. Limited both in our capabilities for design
and communication, every advance in either separately
requires a momentous effort. Each success, however,
allows a corresponding effort on the other side to reach
a little further. At some point the reaction will "go," and
we will find ourselves at the favorable equilibrium point
of the system, possessing mechanisms that are both
highly intelligent and communicative.

With this view of the task and its setting, we can turn
to the substance of the paper: the development of chess
programs. We will proceed historically, since this arrange
ment of the material will show most clearly what progress
is being made in obtaining systems of increasing com
plexity and intelligence.

Shannon's Proposal

The relevant history begins with a paper by Claude
Shannon in 1949. 11 He did not present a particular chess
program, but discussed many of the basic problems in
volved. The framework he introduced has guided most
of the subsequent analysis of the problem.

As Shannon observed, chess is a finite game. There is
only a finite number of positions, each of which admits
a finite number of alternative moves. The rules of chess
assure that any play will terminate: that eventually a

Figure 2 The game tree and minimaxing.

position will be reached that is a win, loss, or draw. Thus
chess can be completely described as a branching tree (as
in Fig. 2), the nodes corresponding to positions and the
branches corresponding to the alternative moves from
each position. It is intuitively clear, and easily proved,
that for a player who can view the entire tree and see
all the ultimate consequences of each alternative, chess
becomes a simple game. Starting with the terminal posi
tions, which have determinate payoffs, he can work back
wards, determining at each node which branch is best for
him or his opponent as the case may be> until he arrives
at the alternative for his next move.

This inferential procedure called minimaxing in the
theory of games is basic to all the attempts so far to
program computers for chess. Let us be sure we under
stand it. Figure 2 shows a situation where White is to
move and has three choices, (1), (2), and (3). White's
move will be followed by Black's: (a) or (b) in case
move (1) is made; (c) or (d) if move (2) is made; and
(e) or (f) if move (3) is made. To keep the example
simple, we have assumed that all of Black's moves lead
to positions with known payoffs: (+) meaning a win
for White, (0) meaning a draw, and () meaning a loss
for White. How should White decide what to do what
inference procedure allows him to determine which of
the three moves is to be preferred? Clearly, no matter
what Black does, move (1) leads to a draw. Similarly, no
matter what Black does, move (2) leads to a loss for
White. White should clearly prefer move (1) to move
(2). But what about move (3)? It offers the possibility
of a win, but also contains the possibility of a loss; and
furthermore, the outcome is in Black's control. It White
is willing to impute any analytic ability to his opponent,
he must conclude that move (3) will end as a loss for
White, and hence that move (1) is the preferred move.
The win from move (3) is completely insubstantial,
since it can never be realized. Thus White can impute a
value to a position in this case draw by reasoning
backwards from known values.

To repeat: If the entire tree can be scanned, the best
move can be determined simply by the minimaxing pro-

c
i
i

C

f

r
r
c
h
v
c
e
ti
I:

S

ti

t

h
i;
fi
c
a

P
v
si

e
fi
f<
o
s<
cl
P
ir
rr
u:
a 4

SI
a
1.

3.

he

IBM JOURNAL • OCTOBER 1958

1

1

cedure. Now minimaxing might have been the "wheel"
of chess with the adventure ended almost before it had
started if the tree were not so large that even current
computers can discover only the minutest fraction of it
in years of computing. Shannon's estimate, for instance,
is that there are something like 10 1 - 0 continuations to be
explored, with less than 10 IG microseconds available in a
century to explore them.

Shannon then suggested the following framework.
Playing chess consists of considering the alternative
moves, obtaining some effective evaluation of them by
means of analysis, and choosing the preferred alternative
on the basis of the evaluation. The analysis which is the
hard part could be factored into three parts. First, one
would explore the continuations to a certain depth. Sec
ond, since it is clear that the explorations cannot be deep
enough to reach terminal positions, one would evaluate
the positions reached at the end of each exploration in
terms of the pattern of men on the chess board. These
static evaluations would then be combined by means of
the minimaxing procedure to form the effective value of
the alternative. One would then choose the move with the
highest effective value. The rationale behind this factor
ization was the reasonableness that, for a given evaluation
function, the greater the depth of analysis, the better the
chess that would be played. In the limit, of course, such
a process would play perfect chess by finding terminal
positions for all continuations. Thus a metric was pro
vided that measured all programs along the single dimen
sion of their depth of analysis.

To complete the scheme, a procedure was needed to
evaluate positions statically that is, without making
further moves. Shannon proposed a numerical measure
formed by summing, with weights, a number of factors
or scores that could be computed for any position. These
scores would correspond to the various features that
chess experts assert are important. This approach gains
plausibility from the existence of a few natural quantities
in chess, such as the values of pieces, and the mobility of
men. It also gains plausibility, of course, from the general
use in science and engineering of linearizing assumptions
as first approximations.

To summarize: the basic framework introduced by
Shannon for thinking about chess programs consists of
a series of questions:
1. Alternatives

Which alternative moves are to be considered?
2. Analysis

a) Which continuations are to be explored and to
what depth?

b) How are positions to be evaluated statically in
terms of their patterns?

c) How are the static evaluations to be integrated
into a single value for an alternative?

3. Final choice procedure
What procedure is to be used to select the final pre
ferred move?

We would hazard that Shannon's paper is chiefly remem
bered for the specific answers he proposed to these ques

tions: consider all alternatives; search all continuations to
fixed depth, n; evaluate with a numerical sum; minimax
to get the effective value for an alternative; and then pick
the best one. His article goes beyond these specifics, how
ever, and discusses the possibility of selecting only a small
number of alternatives and continuations. It also dis
cusses the possibility of analysis in terms of the functions
that chess men perform blocking, attacking, defending.
At this stage, however, it was possible to think of chess
programs only in terms of extremely systematic pro
cedures. Shannon's specific proposals have gradually been
realized in actual programs, whereas the rest of his dis
cussion has been largely ignored. And when proposals for
more complex computations enter the research picture
again, it is through a different route.

Turing's Program

Shannon did not present a particular program. His speci
fications still require large amounts of computing for
even such modest depths of analysis as two or three
moves. It remained for A. M. Turing3 to describe a pro
gram along these lines that was sufficiently simple to be
simulated by hand, without the aid of a digital computer.

In Table 1 we have characterized Turing's program in
terms of the framework just defined. There are some
additional categories which will become clear as we pro
ceed. The Table also provides similar information for
each of the other three programs we will consider.

Turing's program considered all alternatives that is,
all legal moves. In order to limit computation, however,
he was very circumspect about the continuations the
program considered. Turing introduced the notion of a
"dead" position: one that in some sense was stable, hence
could be evaluated. For example, there is no sense in
counting material on the board in the middle of an ex
change of Queens: one should explore the continuations
until the exchange has been carried through to the
point where the material is not going to change with the
next move. So Turing's program evaluated material at
dead positions only. He made the value of material domi
nant in his static evaluation, so that a decision problem
remained only if minimaxing revealed several alternatives
that were equal in material. In these cases, he applied a
supplementary additive evaluation to the positions
reached by making the alternative moves. This evalua
tion included a large number of factors mobility, back
ward pawns, defense of men, and so on points being
assigned for each.

Thus Turing's program is a good instance of a chess-
playing system as envisaged by Shannon, although a
small-scale one in terms of computational requirements.
Only one published game, as far as we know, was played
with the program. It proved to be rather weak, for it lost
against a weak human player (who did not know the
program, by the way), although it was not entirely a
pushover. In general its play was rather aimless, and it
was capable of gross blunders, one of which cost it the
game. As one might have expected, the subtleties of the
evaluation function were lost upon it. Most of the numer- 323

IBM JOURNAL • OCTOBER 1958

ous factors included in the function rarely had any influ
ence on the move chosen. In summary: Turing's program
was not a very good chess player, but it reached the bot
tom rung of the human ladder.

There is no a priori objection to hand simulation of a
program, although experience has shown that it is almost
always inexact for programs of this complexity. For
example, there is an error in Turing's play of his pro
gram, because he the human simulator was unwilling
to consider all the alternatives. He failed to explore the
ones he "knew" would be eliminated anyway, and was
wrong once. The main objection to hand simulation is the
amount of effort required to do it. The computer is really
the enabling condition for exploring the behavior of a
complex program. One cannot even realize the poten
tialities of the Shannon scheme without programming it
for a computer.

The Los Alamos Program

In 1956 a group at Los Alamos programmed MANIAC I
to play chess. 5 The Los Alamos program is an almost
perfect example of the type of system specified by Shan
non. As shown in the Table, all alternatives were con
sidered; all continuations were explored to a depth of two
moves (i.e., two moves for Black and two for White);
the static evaluation function consisted of a sum of
material and mobility measures; the values were inte
grated by a minimax procedure,* and the best alternative
in terms of the effective value was chosen for the move.

In order to carry out the computation within reason
able time limits, a major concession was required. Instead
of the normal chess board of eight squares by eight
squares, they used a reduced board, six squares by six
squares. They eliminated the Bishops and all special chess
moves: castling, two-square Pawn moves in the opening,
and en passant captures.

The result? Again the program is a weak player, but
now one that is capable of beating a weak human player,
as the machine demonstrated in one of its three games.
It is capable of serious blunders, a common character
istic, also, of weak human play.

Since this is our first example of actual play on a com
puter, it is worth looking a bit at the programming and
machine problems. In a normal 8x8 game of chess
there are about 30 legal alternatives at each move, on the
average, thus looking two moves ahead brings 304 con
tinuations, about 800,000. into consideration. In the
reduced 6x6 game, the designers estimate the average
number of alternatives at about 20, giving a total of about
160,000 continuations per move. Even with this reduc
tion of five to one. there are still a lot of positions to be
looked at. By comparison, the best evidence suggests that
a human player considers considerably less than 100
positions in the analysis of a move. 4 The Los Alamos
program was able to make a move in about 12 minutes on
the average. To do this the code had to be very simple

324

 The niinirnnx procedure was a slight modification of the one described
earlier, in that the mobility score for each of the intermediate positions \vas
added in.

and straightforward. This can be seen by the size of the
program only 600 words. In a sense, the machine barely
glanced at each position it evaluated. The two measures
in the evaluation function are obtained directly from the
process of looking at continuations: changes in material
are noticed if the moves are captures, and the mobility
score for a position is equal to the number of new posi
tions to which it leads hence is computed almost with
out effort when exploring all continuations.

The Los Alamos program tests the limits of simplifica
tion in the direction of minimizing the amount of infor
mation required for each position evaluated, just as
Turing's program tests the limits in the direction of
minimizing the amount of exploration of continuations.
These programs, especially the Los Alamos one, provide
real anchor points. They show that, with very little in
the way of complexity, we have at least entered the arena
of human play we can beat a beginner.

Bernstein's Program

Over the last two years Alex Bernstein, a chess player and
programmer at IBM, has constructed a chess-playing
program for the IBM 704 (for the full 8x8 board). 1 ' 2
This program has been in partial operation for the last six
months, and has now played one full game plus a number
of shorter sequences. It, too, is in the Shannon tradition,
but it takes an extremely important step in the direction
of greater sophistication: only a fraction of the legal
alternatives and continuations are consklered. There is a
series of subroutines, which we can call plausible move
generators, that propose the moves to be considered.
Each of these generators is related to some feature of the
game: King safety, development, defending own men,
attacking opponent's men, and so on. The program con
siders at most seven alternatives, which are obtained by
operating the generators in priority order, the most im
portant first, until the seven are accumulated.

The program explores continuations two moves ahead,
just as the Los Alamos program did. However, it uses the
plausible move generators at each stage, so that, at most,
7 direct continuations are considered from any given
position. For its evaluation function it uses the ratio of
two sums, one for White and one for Black. Each sum
consists of four weighted factors: material, King defense,
area control, and mobility. The program minimaxes and
chooses the alternative with the greatest effective value.

The program's play is uneven. Blind spots occur that
are very striking; on the other hand it sometimes plays
very well for a series of moves. It has never beaten any
one, as far as we know; in the one full game it played
it was beaten by a good player, 1 and it has never been
pitted against weak players to establish how good it is.

Bernstein's program gives us our first information
about radical selectivity, in move generation and analysis.
At 7 moves per position, it examines only 2,500 final
positions two moves deep, out of about 800,000 legal
continuations. That it still plays at all tolerably with a
reduction in search by a factor of 300 implies that the
selection mechanism is fairly effective. Of course, the

c
A

S,

lr
VI

F

Pi

L<

D

Ti

Sf

R<

E:

D,

IBM JOURNAL * OCTOBER 1958

