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Abstract: This paper traces the development of 

digital computer programs that play chess. The 

work of Shannon, Turing, the Los Alamos group, 

Bernstein, and the authors is treated in turn. The 

efforts to program chess provide an indication of 

current progress in understanding and constructing 

complex and intelligent mechanisms.
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Man can solve problems without knowing how he solves 
them. This simple fact sets the conditions for all attempts 
to rationalize and understand human decision making 
and problem solving. Let us simply assume that it is good 
to know how to do mechanically what man can do natu 
rally both to add to man's knowledge of man, and to 
add to his kit of tools for controlling and manipulating 
his environment. We shall try to assess recent progress in 
understanding and mechanizing man's intellectual attain 
ments by considering a single line of attack the attempts 
to construct digital computer programs that play chess.

Chess is the intellectual game par excellence. Without 
a chance device to obscure the contest, it pits two intel 
lects against each other in a situation so complex that 
neither can hope to understand it completely, but suffi 
ciently amenable to analysis that each can hope to out- 
think his opponent. The game is sufficiently deep and 
subtle in its implications to have supported the rise of 
professional players, and to have allowed a deepening 
analysis through 200 years of intensive study and play 
without becoming exhausted or barren. Such character 
istics mark chess as a natural arena for attempts at 
mechanization. If one could devise a successful chess 
machine, one would seem to have penetrated to the core 
of human intellectual endeavor.

The history of chess programs is an example of the 
attempt to conceive and cope with complex mechanisms. 
Now there might have been a trick   one might have 
discovered something that was as the wheel to the human

leg: a device quite different from humans in its methods, 
but supremely effective in its way, and perhaps very 
simple. Such a device might play excellent chess, but 
would fail to further our understanding of human intel 
lectual processes. Such a prize, of course, would be 
worthy of discovery in its own right, but there appears 
to be nothing of this sort in sight.

We return to the original orientation: Humans play 
chess, and when they do they engage in behavior that 
seems extremely complex, intricate, and successful. Con 
sider, for example, a scrap of a player's (White's) run 
ning comment as he analyzes the position in Fig. 1:

"... Are there any other threats? Black also has a threat of 
Knight to Bishop 5 threatening the Queen, and also putting 
more pressure on the King's side because his Queen's Bishop 
can come over after he moves his Knight at Queen 2; how 
ever, that is not the immediate threat. Otherwise, his Pawn 
at King 4 is threatening my Pawn .. ."

Notice that his analysis is qualitative and functional. He 
wanders from one feature to another, accumulating vari 
ous bits of information that will be available from time 
to time throughout the rest of the analysis. He makes 
evaluations in terms of pressures and immediacies of 
threat, and gradually creates order out of the situation. 

How can we construct mechanisms that will show 
comparable complexity in their behavior? They need not 
play in exactly the same way; close simulation of the 
human is not the immediate issue. But we do assert that 
complexity of behavior is essential to an intelligent per-
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formance that the complexity of a successful chess 
program will approach the complexity of the thought 
processes of a successful human chess player. Complexity 
of response is dictated by the task, not by idiosyncrasies 
of the human response mechanism.

There is a close and reciprocal relation between com 
plexity and communication. On the one hand, the com 
plexity of the systems we can specify depends on the 
language in which we must specify them. Being human, 
we have only limited capacities for processing informa 
tion. Given a more powerful language, we can specify 
greater complexity with limited processing powers.

Let us illustrate this side of the relation between com 
plexity and communication. No one considers building 
chess machines in the literal sense fashioning pieces of 
electronic gear into automatons that will play chess. We 
think instead of chess programs: specifications written in 
a language, called machine code, that will instruct a 
digital computer of standard design how to play chess. 
There is a reason for choosing this latter course   in 
addition to any aversion we may have to constructing a 
large piece of special-purpose machinery. Machine code 
is a more powerful language than the block diagrams of 
the electronics engineer. Each symbol in machine code
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specifies a larger unit of processing than a symbol in the 
block diagram. Even a moderately complicated program 
becomes hopelessly complex if thought of in terms of 
gates and pulses.

But there is another side to the relation between com 
munication and complexity. We cannot use any old lan 
guage we please. We must be understood by the person 
or machine to whom we are communicating. English will 
not do to specify chess programs because there are no 
English-understanding computers. A specification in Eng 
lish is a specification to another human who then has the 
task of creating the machine. Machine code is an advance 
precisely because there are machines that understand it  
because a chess program in machine code is operation 
ally equivalent to a machine that plays chess.

If the machine could understand even more powerful 
languages, we could use these to write chess programs  
and thus get more complex and intelligent programs from 
our limited human processing capacity. But communica 
tion is limited by the intelligence of the least participant, 
and at present a computer has only passive capability. 
The language it understands is one of simple commands 
 it must be told very much about what to do.

Thus it seems that the rise of effective communication 
between man and computer will coincide with the rise 
in the intelligence of the computer so that the human 
can say more while thinking less. But at this point in 
history, the only way we can obtain more intelligent 
machines is to design them we cannot yet grow them, 
or breed them, or train them by the blind procedures that 
work with humans. We are caught at the wrong equilib 
rium of a bistable system: we could design more intelli 
gent machines if we could communicate to them better; 
we could communicate to them better if they were more 
intelligent. Limited both in our capabilities for design 
and communication, every advance in either separately 
requires a momentous effort. Each success, however, 
allows a corresponding effort on the other side to reach 
a little further. At some point the reaction will "go," and 
we will find ourselves at the favorable equilibrium point 
of the system, possessing mechanisms that are both 
highly intelligent and communicative.

With this view of the task and its setting, we can turn 
to the substance of the paper: the development of chess 
programs. We will proceed historically, since this arrange 
ment of the material will show most clearly what progress 
is being made in obtaining systems of increasing com 
plexity and intelligence.

Shannon's Proposal

The relevant history begins with a paper by Claude 
Shannon in 1949. 11 He did not present a particular chess 
program, but discussed many of the basic problems in 
volved. The framework he introduced has guided most 
of the subsequent analysis of the problem.

As Shannon observed, chess is a finite game. There is 
only a finite number of positions, each of which admits 
a finite number of alternative moves. The rules of chess 
assure that any play will terminate: that eventually a

Figure 2 The game tree and minimaxing.

position will be reached that is a win, loss, or draw. Thus 
chess can be completely described as a branching tree (as 
in Fig. 2), the nodes corresponding to positions and the 
branches corresponding to the alternative moves from 
each position. It is intuitively clear, and easily proved, 
that for a player who can view the entire tree and see 
all the ultimate consequences of each alternative, chess 
becomes a simple game. Starting with the terminal posi 
tions, which have determinate payoffs, he can work back 
wards, determining at each node which branch is best for 
him or his opponent as the case may be> until he arrives 
at the alternative for his next move.

This inferential procedure called minimaxing in the 
theory of games is basic to all the attempts so far to 
program computers for chess. Let us be sure we under 
stand it. Figure 2 shows a situation where White is to 
move and has three choices, (1), (2), and (3). White's 
move will be followed by Black's: (a) or (b) in case 
move (1) is made; (c) or (d) if move (2) is made; and 
(e) or (f) if move (3) is made. To keep the example 
simple, we have assumed that all of Black's moves lead 
to positions with known payoffs: ( + ) meaning a win 
for White, (0) meaning a draw, and (  ) meaning a loss 
for White. How should White decide what to do what 
inference procedure allows him to determine which of 
the three moves is to be preferred? Clearly, no matter 
what Black does, move (1) leads to a draw. Similarly, no 
matter what Black does, move (2) leads to a loss for 
White. White should clearly prefer move (1) to move 
(2). But what about move (3)? It offers the possibility 
of a win, but also contains the possibility of a loss; and 
furthermore, the outcome is in Black's control. It White 
is willing to impute any analytic ability to his opponent, 
he must conclude that move (3) will end as a loss for 
White, and hence that move (1) is the preferred move. 
The win from move (3) is completely insubstantial, 
since it can never be realized. Thus White can impute a 
value to a position in this case draw by reasoning 
backwards from known values.

To repeat: If the entire tree can be scanned, the best 
move can be determined simply by the minimaxing pro-
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cedure. Now minimaxing might have been the "wheel" 
of chess with the adventure ended almost before it had 
started if the tree were not so large that even current 
computers can discover only the minutest fraction of it 
in years of computing. Shannon's estimate, for instance, 
is that there are something like 10 1 - 0 continuations to be 
explored, with less than 10 IG microseconds available in a 
century to explore them.

Shannon then suggested the following framework. 
Playing chess consists of considering the alternative 
moves, obtaining some effective evaluation of them by 
means of analysis, and choosing the preferred alternative 
on the basis of the evaluation. The analysis which is the 
hard part could be factored into three parts. First, one 
would explore the continuations to a certain depth. Sec 
ond, since it is clear that the explorations cannot be deep 
enough to reach terminal positions, one would evaluate 
the positions reached at the end of each exploration in 
terms of the pattern of men on the chess board. These 
static evaluations would then be combined by means of 
the minimaxing procedure to form the effective value of 
the alternative. One would then choose the move with the 
highest effective value. The rationale behind this factor 
ization was the reasonableness that, for a given evaluation 
function, the greater the depth of analysis, the better the 
chess that would be played. In the limit, of course, such 
a process would play perfect chess by finding terminal 
positions for all continuations. Thus a metric was pro 
vided that measured all programs along the single dimen 
sion of their depth of analysis.

To complete the scheme, a procedure was needed to 
evaluate positions statically   that is, without making 
further moves. Shannon proposed a numerical measure 
formed by summing, with weights, a number of factors 
or scores that could be computed for any position. These 
scores would correspond to the various features that 
chess experts assert are important. This approach gains 
plausibility from the existence of a few natural quantities 
in chess, such as the values of pieces, and the mobility of 
men. It also gains plausibility, of course, from the general 
use in science and engineering of linearizing assumptions 
as first approximations.

To summarize: the basic framework introduced by 
Shannon for thinking about chess programs consists of 
a series of questions:
1. Alternatives

Which alternative moves are to be considered?
2. Analysis

a) Which continuations are to be explored and to 
what depth?

b) How are positions to be evaluated statically in 
terms of their patterns?

c) How are the static evaluations to be integrated 
into a single value for an alternative?

3. Final choice procedure
What procedure is to be used to select the final pre 
ferred move?

We would hazard that Shannon's paper is chiefly remem 
bered for the specific answers he proposed to these ques

tions: consider all alternatives; search all continuations to 
fixed depth, n; evaluate with a numerical sum; minimax 
to get the effective value for an alternative; and then pick 
the best one. His article goes beyond these specifics, how 
ever, and discusses the possibility of selecting only a small 
number of alternatives and continuations. It also dis 
cusses the possibility of analysis in terms of the functions 
that chess men perform blocking, attacking, defending. 
At this stage, however, it was possible to think of chess 
programs only in terms of extremely systematic pro 
cedures. Shannon's specific proposals have gradually been 
realized in actual programs, whereas the rest of his dis 
cussion has been largely ignored. And when proposals for 
more complex computations enter the research picture 
again, it is through a different route.

Turing's Program

Shannon did not present a particular program. His speci 
fications still require large amounts of computing for 
even such modest depths of analysis as two or three 
moves. It remained for A. M. Turing3 to describe a pro 
gram along these lines that was sufficiently simple to be 
simulated by hand, without the aid of a digital computer.

In Table 1 we have characterized Turing's program in 
terms of the framework just defined. There are some 
additional categories which will become clear as we pro 
ceed. The Table also provides similar information for 
each of the other three programs we will consider.

Turing's program considered all alternatives that is, 
all legal moves. In order to limit computation, however, 
he was very circumspect about the continuations the 
program considered. Turing introduced the notion of a 
"dead" position: one that in some sense was stable, hence 
could be evaluated. For example, there is no sense in 
counting material on the board in the middle of an ex 
change of Queens: one should explore the continuations 
until the exchange has been carried through   to the 
point where the material is not going to change with the 
next move. So Turing's program evaluated material at 
dead positions only. He made the value of material domi 
nant in his static evaluation, so that a decision problem 
remained only if minimaxing revealed several alternatives 
that were equal in material. In these cases, he applied a 
supplementary additive evaluation to the positions 
reached by making the alternative moves. This evalua 
tion included a large number of factors mobility, back 
ward pawns, defense of men, and so on points being 
assigned for each.

Thus Turing's program is a good instance of a chess- 
playing system as envisaged by Shannon, although a 
small-scale one in terms of computational requirements. 
Only one published game, as far as we know, was played 
with the program. It proved to be rather weak, for it lost 
against a weak human player (who did not know the 
program, by the way), although it was not entirely a 
pushover. In general its play was rather aimless, and it 
was capable of gross blunders, one of which cost it the 
game. As one might have expected, the subtleties of the 
evaluation function were lost upon it. Most of the numer- 323
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ous factors included in the function rarely had any influ 
ence on the move chosen. In summary: Turing's program 
was not a very good chess player, but it reached the bot 
tom rung of the human ladder.

There is no a priori objection to hand simulation of a 
program, although experience has shown that it is almost 
always inexact for programs of this complexity. For 
example, there is an error in Turing's play of his pro 
gram, because he the human simulator was unwilling 
to consider all the alternatives. He failed to explore the 
ones he "knew" would be eliminated anyway, and was 
wrong once. The main objection to hand simulation is the 
amount of effort required to do it. The computer is really 
the enabling condition for exploring the behavior of a 
complex program. One cannot even realize the poten 
tialities of the Shannon scheme without programming it 
for a computer.

The Los Alamos Program

In 1956 a group at Los Alamos programmed MANIAC I 
to play chess. 5 The Los Alamos program is an almost 
perfect example of the type of system specified by Shan 
non. As shown in the Table, all alternatives were con 
sidered; all continuations were explored to a depth of two 
moves (i.e., two moves for Black and two for White); 
the static evaluation function consisted of a sum of 
material and mobility measures; the values were inte 
grated by a minimax procedure,* and the best alternative 
in terms of the effective value was chosen for the move.

In order to carry out the computation within reason 
able time limits, a major concession was required. Instead 
of the normal chess board of eight squares by eight 
squares, they used a reduced board, six squares by six 
squares. They eliminated the Bishops and all special chess 
moves: castling, two-square Pawn moves in the opening, 
and en passant captures.

The result? Again the program is a weak player, but 
now one that is capable of beating a weak human player, 
as the machine demonstrated in one of its three games. 
It is capable of serious blunders, a common character 
istic, also, of weak human play.

Since this is our first example of actual play on a com 
puter, it is worth looking a bit at the programming and 
machine problems. In a normal 8x8 game of chess 
there are about 30 legal alternatives at each move, on the 
average, thus looking two moves ahead brings 304 con 
tinuations, about 800,000. into consideration. In the 
reduced 6x6 game, the designers estimate the average 
number of alternatives at about 20, giving a total of about 
160,000 continuations per move. Even with this reduc 
tion of five to one. there are still a lot of positions to be 
looked at. By comparison, the best evidence suggests that 
a human player considers considerably less than 100 
positions in the analysis of a move. 4 The Los Alamos 
program was able to make a move in about 12 minutes on 
the average. To do this the code had to be very simple
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 The niinirnnx procedure was a slight modification of the one described 
earlier, in that the mobility score for each of the intermediate positions \vas 
added in.

and straightforward. This can be seen by the size of the 
program only 600 words. In a sense, the machine barely 
glanced at each position it evaluated. The two measures 
in the evaluation function are obtained directly from the 
process of looking at continuations: changes in material 
are noticed if the moves are captures, and the mobility 
score for a position is equal to the number of new posi 
tions to which it leads hence is computed almost with 
out effort when exploring all continuations.

The Los Alamos program tests the limits of simplifica 
tion in the direction of minimizing the amount of infor 
mation required for each position evaluated, just as 
Turing's program tests the limits in the direction of 
minimizing the amount of exploration of continuations. 
These programs, especially the Los Alamos one, provide 
real anchor points. They show that, with very little in 
the way of complexity, we have at least entered the arena 
of human play we can beat a beginner.

Bernstein's Program

Over the last two years Alex Bernstein, a chess player and 
programmer at IBM, has constructed a chess-playing 
program for the IBM 704 (for the full 8x8 board). 1 ' 2 
This program has been in partial operation for the last six 
months, and has now played one full game plus a number 
of shorter sequences. It, too, is in the Shannon tradition, 
but it takes an extremely important step in the direction 
of greater sophistication: only a fraction of the legal 
alternatives and continuations are consklered. There is a 
series of subroutines, which we can call plausible move 
generators, that propose the moves to be considered. 
Each of these generators is related to some feature of the 
game: King safety, development, defending own men, 
attacking opponent's men, and so on. The program con 
siders at most seven alternatives, which are obtained by 
operating the generators in priority order, the most im 
portant first, until the seven are accumulated.

The program explores continuations two moves ahead, 
just as the Los Alamos program did. However, it uses the 
plausible move generators at each stage, so that, at most, 
7 direct continuations are considered from any given 
position. For its evaluation function it uses the ratio of 
two sums, one for White and one for Black. Each sum 
consists of four weighted factors: material, King defense, 
area control, and mobility. The program minimaxes and 
chooses the alternative with the greatest effective value.

The program's play is uneven. Blind spots occur that 
are very striking; on the other hand it sometimes plays 
very well for a series of moves. It has never beaten any 
one, as far as we know; in the one full game it played 
it was beaten by a good player, 1 and it has never been 
pitted against weak players to establish how good it is.

Bernstein's program gives us our first information 
about radical selectivity, in move generation and analysis. 
At 7 moves per position, it examines only 2,500 final 
positions two moves deep, out of about 800,000 legal 
continuations. That it still plays at all tolerably with a 
reduction in search by a factor of 300 implies that the 
selection mechanism is fairly effective. Of course, the
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