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Abstract

In otder to solve problems more effectively with accumulating experience, a problem solver must be able 
to learn and exploit search control knowledge. Although previous research has demonstrated that 
Explanation-Based Learning (EBL) is a viable approach for acquiring control knowledge, in practice the 
learned control knowledge may not be useful. For control knowledge to be effective, the cumulative 
benefits of applying the knowledge must outweigh the cumulative costs of testing whether the knowledge is 
applicable. Previous research in EBL has ignored this issue, which I refer to as the utility problem. Most 
researchers have simply demonstrated that EBL can improve performance on particular examples without 
analyzing exactly when performance improvement will occur. In practice, it is much more difficult improve 
performance over a population of examples man it is to improve performance on isolated examples.

One answer to the utility problem is to search for "good" explanations - explanations that can be 
profitably employed to control problem solving. Instead of simply adding control knowledge haphazardly, 
a learning system must be sensitive to the problem solver's computational architecture and the potential 
costs and benefits of adding knowledge. This thesis analyzes the utility of EBL, and describes a method for 
searching for good explanations. The method, implemented in the PRODIGY/EBL system, consists of a 
three-stage heuristic search. Given a problem solving trace, PRODIGY first selects what to learn. The 
system chooses from a variety of target concepts, each representing a different strategy for optimizing 
performance. Secondly, after creating an initial explanation from the trace, PRODIGY searches for a 
representation of the explanation that is efficient to match. Finally the system empirically tests the 
effectiveness of the learned control knowledge to determine whether it is actually worth keeping.

The thesis includes a set of comprehensive experiments testing the performance of the PRODIGY/EBL 
system and its components in several domains. In addition, a formal description of EBL is presented, 
together with a correctness proof for PRODIGY'S generalization method.




