
Learning Effective Search Control Knowledge: 
An Explanation-Based Approach

Steven Minton

March 1988 
CMU-CS-88-133

Department of Computer Science
Carnegie-Melton University

Pittsburgh, PA. 15213

Submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy in Computer Science at Carnegie-Melton University.

This research was supported in pan by an AT&T Bell Laboratories PhJX Scholarship, in pan by the Office 
of Naval Research under Contract N00014-84-K-0415 and in pan by the Defense Advanced Research 
Projects Agency (DOD), ARPA Order No. 4976 under contract F33615-87-C-1499, monitored by the 
Avionics Laboratory, Air Force Wright Aeronautics Laboratories, Aeronautical Systems Division (AFSC), 
Wright Patterson AFB, OHIO 45433-6543. The views and conclusions contained in this document are 
those of the author and should not be interpreted as representing the official policies, either expressed or 
implied, of Bell Laboratories, DARPA, the Air Force Office of Scientific Research or the US government.





Table of Contents

1. Introduction 5
1.1. Overview 5
1.2. What is Explanation-based Learning? 6

1.2.1. The Terminology of Explanation-based Learning 6
1J. EBL in the PRODIGY System 9
1.4. Perspectives on the Learning Process 10
1.5. Scientific Contributions 11
1.6. A Reader's Guide to the thesis 12

2. Analyzing the Utility Problem 15
2.1. Using EBL to Improve Performance 15
22. A Simple Model of EBL 16
2.3. Removing Inefficiencies 20
2.4. Extending the Simple Model 23
2.5. Will the Utility Problem Go Away? 26

3. Overview of the PRODIGY Problem Solver 29
3.1. System Overview 29
3.2. Using the Problem Solver 29
33. An Example Problem 32
3.4. Control Rules 34
3.5. PRODIGY'S Description Language (PDL) 36

3.5.1. Syntax 36
3.6. Semantics 37

3.6.1. The Role of Generators in PDL 37
3.6.2. Extensions to PDL 39

3.7. The Problem Solver's Control Structure in Detail 40
3.7.1. Choosing a Node 40
3.7.2. Choosing a Goal 41
3.73. Choosing an Operator 41
3.7.4. Choosing a Set of Bindings for the Operator 41
3.75. Creating a New Node 43
3.7.6. Summary 44

3.8. Domains 45
3.9. Advanced Features 46

3.9.1. Complex Descriptions 46
3.9.2. Negated Goals and Goals with Variables 46
3.93. Reason Maintenance 47
3.9.4. Negated Effects in Inference Rules 47
3.9.5. Meta Predicates 47
3.9.6. Conditional Effects 48
3.9.7. Interleaving Goals 49
3.9.8. User Interface 49



11

4. Specialization 51
4.1. Target Concepts 52
42. Scanning the Search Tree for Examples 53
43. Constructing an Explanation: The EBS Method 54

4 J.I. EBS and Bias 57
4.4. EBS: An Example 57
4.5. Utility Issues 59
4.6. Summary 60

5. Compression 61
5.1. How Compression is Used 61
5.2. Implementing Compression 63

5.2.1. Partial Evaluation 63
5.2.2. Taking Advantage of Logical Equivalences 67
5.23. Conjunct Reordering 67
5.2.4. Domain-Specific Transformations 68

53. The Cost of Compression 70
5.4. The Benefits of Compression 71
5.5. Summary 74

6. Utility Evaluation 75
6.1. Defining Utility 75
62. Measuring Utility 76

6.2.1. Estimating Utility 77
6.2.2. Empirical Utility Validation 78

63. Interactions between Rules 79
6.4. The Costs and Benefits of Utility Analysis 79
6.5. Summary 79

7. Learning from Success 81
7.1. Methods for Learning from Success 81
12. How PRODIGY Learns from Success 82
73. Heuristics for Selecting Examples of Success 83
7.4. Examples of Learning from Success 84

7.4.1. Scheduling Domain Example 84
7.4.2. Grid World Example 87

7.5. Problems 90
7.6. Factors Influencing Utility 91

8. Learning from Failure 95
8.1. How PRODIGY learns from Failure 95
82. Heuristics for Selecting Examples 97
83. Examples of Learning from Failure 98

83.1. An In-depth Look at Explaining a Failure 100
83.2. The Utility of Learning From Failure: An Example 102

8.4. Factors Influencing Utility 105
9. Learning from Goal Interactions 107

9.1. How PRODIGY learns from Goal Interference 107
92. Heuristics for Selecting Examples 110
93. A Blocksworld Example 110
9.4. A Scheduling Example 112
9.5. Factors Influencing Utility 114

10. Performance Results 115



Ill

10.1. Randomly Generating Problems 115
10.2. Standards for Comparisons 116
10.3. Methodology 117
10.4. Performance in the Blocksworld Domain 118
10.5. Performance in the STRIPS Domain 123
10.6. Performance in the Scheduling Domain 126
10.7. Evaluating the Components of the Learning System 129

10.7.1. Target Concepts 129
10.7.2. Compression Analysis 130
10.73. Utility Evaluation 132

10.8. Comparison with Macro-Operator Learning 132
10.9. Discussion of Performance Results 137

11. Proofs, Explanations, and Correctness: Putting It All Together 139
11.1. The Missing Level of Description 139
11.2. Explanations, Proofs and Weakest Preconditions 140

11.2.1. Proofs as Explanations 141
11.2.2. Proof Systems 141
11.2.3. The EBL Process 142
11.2.4. Correctness of EBS 143

11.3. Generality 146 
11.3.1. Transforming Explanations to Improve the Utility of EBL 151

11.4. Conclusion 152
12. Related Work 153

12.1. Explanation-Based approaches 153
12.1.1. The EBG Approach 154
12.1.2. Other EBG Related Research 157
12.1 J. Constraint-Based Generalization 158
12.1.4. Dejong's Paradigm: EBL for Schema Acquisition 160
12.1.5. STRIPS and MORRIS 162

12.2. Other Knowledge Intensive Learning Methods 164
12.2.1. Chunking in SOAR 164
12.2.2. Analogical and Case-based Reasoning 165
12.2J. Other Macro-operator Systems 166

12.3. Summary 167
13. Conclusion 169

13.1. Summary of Central Principles and Contributions 170
13.2. Where is the Knowledge? 171
13 3. Looking Ahead 172

Appendix A. Domain Specifications 173
A.I. Scheduling World 173

A.I.I. Procedure for Generating Scheduling Problems 173
A.1.2. Domain Specification 174

A.2.3D Gridworid 178
A.2.1. Domain Specification 178

AJ. Blocksworld 180
A J.I. Procedure for Generating Problems 180
AJ.2. Domain Specification 180

A.4. Extended STRIPS Robot Domain 181
A.4.1. Procedure for Generating Problems 182
A.4.2. Domain Specification 183
A.4 J. Initial Control Rules for STRIPS Domain 186



IV

Appendix B. Details of the Correctness Proof for EBS-WP 189
B.I. Terminology 189
B.2. Definitions 189
B J. Description of Procedure EBS-WP 191
B.4. Lemmas 191
B.5. Correctness Proof for EBS-WP 193

B.5.1. PART ONE: Derivability 193
B.5.1.1. Derivability: Case One 194
B.5.L2. Derivability: Case Two 194
B.5.L3. Derivability: Case Three 195

B.5.2. PART TWO: Generality 195
B.5.2.1. Generality: Case One 196
B.5.&2. Generality: Case Two 196
B.5.2J. Generality: Case Three 197

Appendix C. Performance Data 199
C.I. Training Phase Data 199
C.2. Test Phase Data 203
C3. Macro-Operator Comparison Data 208

Appendix D. Architectural-Level Proof Schemas 211
D.I. Architecture-Level Schemas for SUCCEEDS 211
D.2. Architecture-Level Axioms relevant to FAILS 212
DJ. Architecture-Level Schemas for SOLE-ALTERNATIVE 216 
D.4. Architecture-Level Schemas for GOAL-INTERFERENCE 216
D.5. Architecture-Level Axioms for Computing Regressions 217



Abstract

In otder to solve problems more effectively with accumulating experience, a problem solver must be able 
to learn and exploit search control knowledge. Although previous research has demonstrated that 
Explanation-Based Learning (EBL) is a viable approach for acquiring control knowledge, in practice the 
learned control knowledge may not be useful. For control knowledge to be effective, the cumulative 
benefits of applying the knowledge must outweigh the cumulative costs of testing whether the knowledge is 
applicable. Previous research in EBL has ignored this issue, which I refer to as the utility problem. Most 
researchers have simply demonstrated that EBL can improve performance on particular examples without 
analyzing exactly when performance improvement will occur. In practice, it is much more difficult improve 
performance over a population of examples man it is to improve performance on isolated examples.

One answer to the utility problem is to search for "good" explanations - explanations that can be 
profitably employed to control problem solving. Instead of simply adding control knowledge haphazardly, 
a learning system must be sensitive to the problem solver's computational architecture and the potential 
costs and benefits of adding knowledge. This thesis analyzes the utility of EBL, and describes a method for 
searching for good explanations. The method, implemented in the PRODIGY/EBL system, consists of a 
three-stage heuristic search. Given a problem solving trace, PRODIGY first selects what to learn. The 
system chooses from a variety of target concepts, each representing a different strategy for optimizing 
performance. Secondly, after creating an initial explanation from the trace, PRODIGY searches for a 
representation of the explanation that is efficient to match. Finally the system empirically tests the 
effectiveness of the learned control knowledge to determine whether it is actually worth keeping.

The thesis includes a set of comprehensive experiments testing the performance of the PRODIGY/EBL 
system and its components in several domains. In addition, a formal description of EBL is presented, 
together with a correctness proof for PRODIGY'S generalization method.




