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THEORIES COF BOUNDED RATIOMALITY

Herbert A, Simon

Raticnality denotes a style of behavior (a) that is sppropriate
to the achievement of glven goals, (b) within the 1limits impoéed by

given conditicns and constrainte., Theories of rational behavior may

be ncrmative or descriptive--may prescribe how people or organizeiions

skould behave in order to achieve certain goals under certain conditions,

or may purport to describe how people or organizations do, in fact, ba-
have. This essay will be concermed with the structure of theories of
raticnal behavior, whether they are irtended prescriptively or descrip-

tively.

Iadividual and Organizational Rationality. A theory of rational
bekavior may be concerned with the ratiomality of individuals or the
ratlcnality of organizations., 1In fact, the two bodles of theory are not

1/

wholly distinct, = Cne plausible distinctién between them is that a
thearylof orgeaizational rationality must‘treaﬁ;tﬁé'phénéména of goal
caﬁfiict,fwhile a8 theory of individual rationality need not, This is
enly partly correét, for goai conflict may be important in individual
Go Lz grouep behavicr-<it 43 2 major theme of no-called "dissonsnce

‘ la ) .
theory" in paycholagy.f*/.A theory of individusl bekavior microscopic

pot
iR
Seee

1/ This p@inﬁ was mede by J. Marschak in hig first psper on teams,
"Zlewsuts for o Theory of Teams," Managewsnt Scieuce, 1: 127-137
. (Janusgry 1955)., I shall follow hias gned rreccdent.

i1, 2, Chapanie aud J, A, Chournis, “"Cognitive Dissonance. Five Years
Lazer "

-

Paycholondes? Bulleiin Sl: 1-23 (January 1964,
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enough to comcern itself with the internal organizatior (neurological or
functionzl) of the central nervous system will have a significant organ-

fizational‘component; A theory of orgenizational behsvior macroscopic

enough to treat the orgsnization as a monolith will be a theory of an

Ah.. 0 11

"indfvidual™. Although ihis chépter will be simed primarily &t under-
staxading individugsl ratieuﬁliﬁy, I ghall not hesitate to use the theory
of the firm--classicelly, the theory of s monolithic entrepremeurh-as a
convenient and enlighteming illustrative example.

From the standpoint of this chapter, then, the distinction between
individual and organization will not be very fmportent., A more signifi-
cant taxonocmy of theories of rational behavior, for our pﬁrposes, dig-
ferentiatez them by the assumptions they make about the ''givens''--the
given goals and given conditions. Particularly important is the distinc-
tion between those theories that locate all the conditions and constraints
in the enviroameat, outside the skim of the ratiomal actor, and those
theories that postulate important constraints arising from the limitations
of the sctor himself as an information prcocessor. Theories that incorpor-

ate constraints on the information-processing capacities of the actor may

ke celled theories of bounded rationality.

Rationality in thz Classical Theory of the Firm. The classical

theory of the firm in its simplest form provides a useful standard for com-
paring and differentiating theories of rationality. In the thsory of the

firm, the given cbicctive 1is to mexiwize profits, where profit is defined
8 the difference betweson gross vecelpts from sales and cost of production.

The given conditions are two in number:
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(I) the demend fusction: the quantity sold is a functionm of
price: |
(1) g4 = D), or p = D M (qy).
Since gross receipts equal price times qu&@ﬁigy; the demsnd fumc-

tion determines gross receipts:

- {2) Ra= Pq,-

(I1) the cost'function: the cost of production 18 a function of

the quantity produced:

(3) € =cC(q). |
If the quantity produced equals the quantity soid,

4)  4q, = q,,
then the profit, to be maximized, is simply the differenge between gross
recelpts and the cosg of production:
{(5) Profit =R - C = pq -~ C(q),
ard, under;ﬁpprapriate assunptions regarding diffepgatiability, we will
have for tﬁe maximum profitf
(6)  d(R-C/dg = p + qd(d L (q))/dq - dClq)/dq = 0,

The constraints in this theory, the demsnd and cost funetions, D and C,
are both located im the actor's environment. He is assumed to £ind the solu-
tion of equation (6). To do this, he must have perfect knowledge of these
constraints, and must be able to perforam the necessary calculations-~to
set the derivative of profit with respect to guantity equal to zero and to

solve the resulting algebraic equation.

Ihe Limivs of Raticnality. Theeries of bounded ratiomality can be

conptructed by modifying these assumptions in a variety of ways. Risk end

uncertainty can be introduced into the demand fumction, the cost function,
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or both. For example, certain parameters of one or both of these func-
tions can be assumed to be random variables with known distributions. Then
the assumption of the actor's perfect knowledge of these functions has been
roplaced by the assumption that he has perfect kﬁowledge of their distribu-
r'tians. This change in assumptions may, in turn,<make.it easier ox more
difficult to cérry,éut the calculationa for finding the optimmm~~usuaily
i: becomes much more diffﬁcult than in the correspoﬁding‘case of certainty.
Aacther way ihhéhich fatidnality can be bounded is by assuming that

tie actor has only incomplete informstion about alternatives. Fewer models

hiava been can&tructe@.to deQI with this situation than'the situstion where
ke has incomplete iﬁformation about consequences. However, in certain
seerch models it is assumed that the actér knows the probability distri-
bution of profits in a population of pqssible.altexnative ections, Spec-
ific setions become available‘to kim--say, by random sampling from this
population--as a function\ofvthe ambuug of rescurces he devotes to search.
Eis task i3 to find the alterﬁative that maxipizes his expected profit net
of the search cost.  In this class of models, ;;i;cting the best alterna-
tive from asmong those already discovered is assume& to be &8 trivial prob-
lem; the decisionm question has been switched to the question of how much
2/

of the actor's resources should be allocated to search, =

Finally, raticnality can be bounded by assuming complexity in the

cost function or other environmextal comstraints so great as to prevent

4f Por sn example, see Stigler., Thecries of the allocation of rescurces
to search cen glso ba constructed to deal with Ircomplete informsiion
sbout consequences., Sequential sampling  theory falle into this cate-
gory, for it emswers the question: Shall I make a decision now, or
wait until I have gathered additional informaticn? The question is
answered by comparing the incremental cest of enlarging the sampie
with the expected gsim through the resulting average improvement in
the decision.
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the actor from calculating the best course of actfon. Limits on ration-
ality stemming from this source have not been prominent in classical
theories of rational behavior. However, in numerical analysis, the theory
of approximstion provides analogues, for it s concerned with the rate at
viich an approximation can be expected to fmprove as s function of amount
of computational effort. By fatroducing explicitly into that theory the
cost of computational éffgrt, it can be transformed into & theoﬁy of op-

timal approximation.

Alternativas to the Classical Goals. The classical theory can be

modified not only by altering the nature of the conditions and constraints,
but also by alteriag the nature of the given goals‘. Some modern theories
of the f£irm depart from the classical theory, not along any of the dimen-
sions mentioned above, but by postulating different goals frem the class-
ical geoal of profit maximizationm, |
Baumol, for e#émplé, has developed a mbd31 iﬁfﬁhich the firm maxi-“
wizes sales subject to the constraint that profit should noi be less than

8 specified "satisfactory" level. 3/

According to this theory of Baumol,
equation (6) in the classical model should be replaced by:

(6') dR/dg = p + qd(D™'(q))/dq = 0,

subject to the constraint that

{(7) P=R-~-C > P.*

It wmny be observed that the informational and cemputational requirenents for

applying Boumol'c Lheoiy Lo concreie situations are not very different from

the requirements of.the classical model.

o

3/ W. J. Beumol, Business Behavior, Value and Growth (Hew York:
Macmillan, 1939), 45-53.




This essay will not be concerncd with variants of the theory of
rationality that sssume goals different from profit or utility maximi-

sation, except to the extent that there is significant interaction between

he aasumptions abcut‘goals and the gssumptions about conditions and com-

atvaints., We shall Lee, however, that this is a very important ex"hption.{

| I actual fset, maat of the variants of the theo:y tha? make significant
nodifizations in the asaampticns about conditicns and constraints also

- call for assumptions_about goals that are differentlfrom‘the classicél_aé-

pumptions of profiﬁlpr_utility maximization. The reasons for this inter-

action will appear as we proceed,

APPROACHES TO RATIONAL CHOICE IN CHESS

A number of‘the persons who have engaged in research on rational
decision msiking have taken the game of chess as a ndcrocosm that mirrors
interesting properties of decision-making situatioﬁs in the real world.
The rescarch on rational choice in chess provides some useful i{llustra-
tions of alternaiive approaches to rstionality.

The problem.coﬁfronting a chess player whose turn it is to move can
be intetpreted in e@ither of two ways: First, it can be interpreted as a
problem of finding a good (or the best) strategy--where “strategy' means
2 conditicnel sequence of moves, defining what move will be made at each
successive stage after each possible response of the opponent,

Second, the problem can be interpreted as one of finding a set of
accurate evaluaticns for the altermative moves immediately before the
@1ayar; |

Prom a2 classical standpoint, thecse two probleme are not distinguish-

able, If the plaver hes unlimited cowmputstional power, it does mot matier
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whether he seclects & complate strategy for his future behavicr in the

ganwe, or selects each of his mnﬁas; cae at a t;me, when 1t is his twru

to play. For the wayiinvwhich he goes cbout evaluating the next move

is by constructing.alternative complete strategies for the entire future
pPlay of the game, and selecting the one that promises the bes: retwra (i.e.,
‘the best return under the'aSSumption that the eppcnenﬁ will algo do hig
best to win). This.ig the approech taken iu the von Neumannrnorgenstern.

theory of games,

The Geme-Theoretical Definition of Rationelity in Chess. As von

Neumann and Morgenstern cbserved, chess is a trivial geme, " . . . if the
theory of Chess [i.e., the complete tree of possible games] were really

fully knowm there would be nothing lefz to play." [Theory of Cemes snd

Economic Behavior, p. 125.] Each terminqs of the tree of possible games
represents a win, loss, or draw for White. Moving backward one branch on
the tree, the player whose move it is at4£hat branch can examine tha termini
to which it could lead by his choice of move, and can choose the move having
;éﬁé préferﬁed‘tErmdnus. The value of that terminus becowes, then, the
value of the branch that leads to it. Working backward in this way, a
value--win, lose, or draw for White--can be assigned to each posziticn, and
ultimutely to each of the initial legal moves for White. HNHow osch player
can specify an optimsl strategy--a strategy that will gusrantee hin at
least as good an outcome as any other--by specifying which move he would
select at each branch point in the txee whenever it is his move.
Unfortunately, as von Neumenn and Morgenstern alsc observed, the
trivielity of chess offers no practical help to a player in actually

choosing a move. '"But our proof, which guarantees the validity of one
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{and only one) of these three altefna;ives [that the game wmust hawve the

valve of "win" "lese" or "draw" for White]; gives no prextically usable
wethod to determine'théitrue one, This relative, human difficulty neces-
sitates»the use of those incomplete, heuristic methods of playing, which
constitute *good' Chess; and without it fiere would be no element of ‘str#ggia’
“and fgurprise’ in that game,ﬁ [ibid.]

What “impracticality” ﬁeana becomes more vivid when we calculate how
much search would beAinyolved in finding‘the_game-theoretically covrect
strategy in.chess.i}On Fhﬁ average, at any given positioa in 2 geme of chésa,
there are about 30 legal moves--in round'numbers,-fo: a move and ite replies,
.én average of about 103 continuations, Fofty moves would be & not unreszson-
able estimate of the average length of a game, Then there would be perhaps
10120 possible gangé of chess. Obviously the exact nusber does not matier:

#é'nuﬁber_like31040‘€;ﬁld be less spectacular, but quite large ewough to
support the con@lusidns of the present argument.

Studies of tﬁe‘éécisian méking of chess players indica&a strongly

that strong players seldoﬁ look at as many as one hundred possibilities-~
that is one hundred continuations from the given positicnomiﬁ 3alecting a
move or strategy. One hundred is a reasonably large nueber, by some stuamde

; |
0“203 Chess players do not counsider gll

ards, but somewhat smaller than 1
pogsible strategles and pick the best, but generate and examine a vathor smsll
nunber, making a choice as soon as they discover one that they ragardvaz
satigfactory. 4/

Before we consider in detasil how they do it, let us return to the

classical model and ask whether there is any way in which we could make it

4/ A, de Groot, Thirking in Chess (Amsterdam: Mounton, 1964).
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relevent to the practical chelce problem, taking account of the size of
tke problem space, in a game like chess, Oune possible way would be te yre-
place the actuval problem space with a very much smaller space that approni-
mates the actusl one in some appropriate sense, and then apply the clacsi-
cal theogy to the smaller approximate space, |

‘This approach was taken in some of the eariy computer programs o
playing chess and checkers. In the Los Alamns progrim, f&x-eaample, the
computer génerated all legal moves, all legal repliea“to each, and 80 ca,
two moves deep. Each gf the te:minal-positionsAthus‘generated (sbout a
million in a two-move analysis) was evaluated, and the minimax procedure
applied, w@rking backwarﬂs, to find the best first mové. Thus, a space of
about 106 elgmenta y&s substituted for the space of 10120 elements that
~ represents the "real“.world.of chess,
| The scheme waé apprgximate, because the actual chess values of fhe
million terminal positions were not known, and could not be known accurately

20 elements~-~that is, returning to

without returning to the'space of 101
the game-theoretical analysis cf the full game. ‘In piace of these unkunown
trqe values, approximate values were computed, using rules of thumb that

are comsronly employed by chgss players~-conventional numerical vaiueg fox

the pleces, and meaéures of mobility. Thus, the approximate schems wao

not guaranteed to sclect the»objectiveiy best move, but oaly tha move lesd-
ing to the positions that appesred best, in terms of these heuristic ériteria,
after an analysis two moves deep. Experience indicates that it is not ros-
sitle to make such approximate evaluations accurately enough to enable the

program to play good chess. The optimal decision in the approximated world

is not necessarily even a good decision in the real worid,
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Satisficing Proczsses in Chess Thinking. Chess programs now exist

that teke the altermative course, trying to emm:late the humen chess player

in looking at only a very few continuations. The effectiveness of such a

scheme depeunds critically on three components: the move generators, processes

thet select the continuatioms to be explorad; the evaluators, processes that

determine how good each continvation is; and the stop rules, criteris thst

determine whem the search should be terminated and a move selected.

by scenning a chess position, features cof the position can be
detected that suggest appropriate moves, To take an extreme case, suppose
a chess player discovers, when it is his move, that one of his Pawns at-
tacks the opponent's Queen. Obviously, the cegpture of the Queen by the
Pawn is\one move that deserves consideration. It may turn out to be a
pocr move--another piece will checkmate him, say, if he captures the Queen--
but its superficial merits are obviouz, and its deficiencies can only be
detected by considering it and evaluating it dynemically. A simple process
that would generste this move, and others like it, would consist in deter-

mining which of the opponent's pileces were attacked by a piece of lesser
value, or were undefended and attacked by any piece. Thus, a suitable
set of move-generating processes might identify for further analysis all
cr wust of the moves deserving serious consideration, If the generators
were ordered appropriately, they might usually identify first the most pro-
mlising moves, then the ones slightly less promising, and sc on.

Possible moves, produced by the move generators, can be evaluated by
a combination of static snd dynamic criteria. Static critsria are festures
oi the positicm, or differences between suvccessive positions, Thus, one of

the imporiant stetic evaluators used by all chess plavers 15 the piece count:
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a
each picce is assigred/conventional value (say, Pawn=l, Kuight aud Bishops=3,

RoekaS,‘QueenMQ), and the sums oﬁ thevvalues.for the two playera sre con-
pared, fln general, if the piece count of one player exceeds that of the
cther b§ wore than one point (or eveﬁ, in many cases by a singlc poiut),
the player with the higher count car find .8 winnirg contiauvetion uynless the
balance is very quickly redressed by a sequence of forceful moves. (Lhus,
it does not matter being 5 points down 1f you can capture the opponent’sa
Queén dn the next move without further reprisals.)

The -short-run tactical considerations are handléd by carrying cut
dynamic aﬁalysia of plausible continuations until & position is weached
that is sufficiently quiet or "dead" that it can safely be evaluated by
means of the statiq_evaluators. These static evaluatqrs are then propagatiaed
backwards, to the mpve.under conglderation by the fahiliar minimax procadure,

Two kinds of stop rules are needed in a program having this structure:
rules to stop exploration at dead positions that cen be evalusted statizally,
and rules to stop the entire process andvselect a move when & satisfactory
one has been found. . The former class of stop rules has already beon dic-
cussed: the latter needs to be examined more closely, If the &1terﬁét1vas
in a choice situation are not given, but have to be discovered or invenied,
and if the numbsr of possible alternatives is very large, than & cholioe has
to be made before all or.mQSt of them have been looked at., It was pracisely
this difficulty in the claéSical requirement of cowparing alli alternatives
that led to the approach described here. But i1f all slternatives are rnot

to be examined, some criterion must be used to determine that an adequaic,

or satisfactory one has been found. In the psychological literature, critevia




that perform this function in decision processes are called aspiration

levels. The Scottish word "satisficing" (=satisfying) has been revived
to denote problem solving and decision making that sets an agpiration
level, searches until an alternative is found that is satisfactory by
the aspiration level criterion, and selects that alternative, 3/

In satisficing procedures, the existence of a satisfactory alternative
is made likely by dynamic mechanisms that adjust the aspiration levels to
reality cn the basis of information sbout the environment. Thus, in a chess-
playing program, the initial aspiration level can be set (preferably with
a little upward biés) ou the basis of a static evalustion of the position.
As altermative moves are considered and evaluated by dynamic and static
analysis, the evaluation of the position can gradually be reduced untii
the best wove discevered so far reaches or exceeds in value the aspiration

13\?@1 [-]

The Limits of Rationaiity in Chess . in the introductory section

of this paper, three limits on perfect rationality‘ were listed: wuncertainty
zbout the counsequences that would follow ffom each alternative, incomplete
information abiout the set of altermnatives, and complexity preveating the
necessary computations from being carried out. Chess illustrates how, in
real-world problem-solving situations, these three categories tend to
- mRTrge.

1£ we describe the chess player as choosing a strategy, then his dif-
ficulty in behaving wxationally--and the impossibility of his behaving as
gome theory says he should--resides in the fact that he has incomplete

information as to what alternatives (strategies) are open to him. He has

3/ H. A. Simon, Hodels of Man (New York: Wiley, 1957), Part IV.
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time to discover only a minute fraction of these strategies, and to specify
the ones he discovers omly incompletely.

Alternatively, 1f we describe the chess player as chocsing a move,
his difficulty in behaving rationally_lies in the fact that he has only
- rough information about the conseguences of”adpptiné each of the slterna-
tives (moves). that is open to him, It would not be impcssible for him to
generate the whole set of his legal moves, for they seldom number more
then about thirty. However, he can evaluate them, even approximately, only
by carrying out further analysis through the immense, branching, move tree,
Since only a limited amount of processing time is available for the evalu-
ation, he must allocate the time among the alternative moves. The practical
facts of the macter~are.that it is usually better to generate only a few
of the entire set ofllegal moves, evaluating these father thorcughly,
than it is to generate all of then, evaluatingvthem superficially. Hence
the good chess player does not exsmine all the moves open to him, but only
a small fraction of them., (Data presented by de Groot suggests that typically
a half dozen to a dozen of a set of thirty legal moves may be generated and
explored by the chess player,)

From still a third staﬁdppint, the chess player's difficulty in be-~
having rationslly has ncthing to do with uncertainty-»whetnev cf conse-

quences or alternativeSa-but is & matter of complexity. For there is no

risk or uncertainty, in the sense in which those terms are used in cconomics
or statiétical decisioﬁ theory, in the game of chess. As von Neumann end
Morgeastera observe, it 1is a game of perfect information, ﬁo probabilities
.of future events need enter the calculations, and no contingencies, in a

statistical sense, arise.
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From & game-theoretical standpoint, the presence of the cpponent decs
not introduce contingencies, The opponent can always be counted on to do
his worst. The point becomes clear if we replace the task of playing
chess with the task of proving theorems. In the latter task, theve is ao
‘-opponent. Nor are there contingencies: the true and the derivable tileorens
reside eternally in Plato's heaven, Rationality in theorem proving iz a
prthem oﬁly because the maze of possible proof paths is vast and complex.

What we refer to as "uncertainty” inlchéss or theorem proviang, there-
fore, is uncertainty iﬁtroduced into a perfectly certain environment by
inability--computational inability--to ascerﬁain'the structure of that en-
vironment., But the result of the uncertaint}, whatever its source, ish
the same: approximation:mugt replace exactrness in reaching = decision.

In particular, when the uncertainty takes the form of an unwieldy problem
space to be explored, the problem-solving process must incorporate mechanisus
for determirning when the search or evaluation will>stop end an alternative

will be chosen.

.Satisficing and Optimizing, The terms satisficing end optimizing,
which we have already introduced, areilabels for two brcad approaches to
ratiénal behavior in situvations whare complexity and uncertainty make
global rationality impossible, In these situations, optimizstion becomes
approximate optimizatioﬁu-the description of the real-world situation is
radically simplified until reduced to a degree of.complication that the
decision maker can handle., Satisficing approeches seek this simplificaéion
in a somewhat different direction, retaining more of the detsil of the
real-world situation, but settling for a satisfactory, rather then an ap~
proximate-best,decision. One cannot predict in general which approach

will lead to the better decisions as measured by their real-world consequences,
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In chess at least, good players have clearly found satisficlng more vie-
ful than approximating-and-optimizing.

A satisficing decision procedure can oftem be turned into & procedure
for optimizing by introducing a rule for optimal amount of search, or,
what amoﬁnts to the same thing, a rule for fixing the aspiration level
optimally, »Thus, the aspiration level in chess might be adjusted, dy-

. namically, to such aglével that. the expected improvement im the move chosean,
. per minute of additional search, would just balance the incremental cost
of the search.

Although such ;.ttanslation is formally‘possiﬁle, to carry it out in
practice requires additional information and assumptions beyond those
needed for satisficing, First, the values of alternatives must be measured
in units comparablg with the units for measuring search cost, in order to
permit comwparison at the margins. Second, the marginal produciivity of
search--the expected increase in the value per unit of search time--must
be estimated on some basis or other. If one were designing a chess-playing
program, it is doubtful whether effort spent in attempting to imbed the
program in such a dynamic optimizing framework would be nearly as worth
while as equivalent effort spent in improving the selectivity of the pro-
gram's move~generating and move-evaluating heuristics.

Another quite different translation between optimizing and satisficing
schemes has also been suggested‘ffom.time to time. A chess program of
the "classical” type, which makes optimal decisions in an approximated
world, can be regarded as a particular kind of satisficing progrsm, in
which "satisfactory" is defined by the approximating procedure that is

used. Hence, it is difficult to draw a formal distinction between optimizing
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and satisficing procedures that is so iron-clad &3 to prevent either frow
being reiunterpreted in the frame cf the othérn The practiceal differenca,
howegern—the difference in emphasis that resulits from adopting one view-
poin# ox'the other--is often very great.

?:In regearsh on optimizing procedures, considerable stteation hac been
paid to the formal properties of the evalustion functions, to the existence
and efficiency of procedures for computing the optimum, and to procedures
for reducing upcertainty (e.g., forecasting methods). The nature of the
~ approximations that are necessary to cast real-world problems into ferms.
suitable for optimization, and the means for choosing among alternative
#pproximations, havé.béen less fully and les; systemaﬁically atudied, Much
effort, for example, has gone into the discovery of efficient algorithms
for solving linear programming problems., Finding an éppropziate way of
formulating a concrete real-world decision problem as a linear-prograns:ing
problem remains largely an art. &/

Research on satisficing procedures has focussed primarily on the ef-
ficiency of search--on the nature of the heuristic metheds thsat eﬁable the
rare solutions in enormous spaces of possibilities to be sought and found
with moderate amounts of Sear&h effort. Since moderate changes in heuris-
tics often make order-offmagnitude changes In search effectivensss, highly
accurzte means for asaessiﬁg the quality of solutions or the effort re-
quired to find them may be relatively unimportant. It probsbly does nct

require delicate evaluation functions or stop rules to change a luffer's

chess play to a reasonably effective move-~choosing program,

6/ The work of A. Charnes and W, W. Cooper, Management Mocdels and Industrial
Applications of Linear Programming (Mew York: Wiley, 1961) is full of
sophisticated examples of this art. See, for instances, Appendix B
and Chapter 1l of Volume I.
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BOUNDED RATIONALITY IN DESIGN

The engineering activities usually called "design" have not been -
much discussed under the heading of rational decision making, The reason
for this should be clear from the foregoing discussion: classical decision
theory has been concerned with choice among ggggg.alternativeé; design is
concernad with the discovery and elaboration of alternatives. Ouruex-
ploration of the microcosm of chess has indicated, however, how the theory
of design can be assimilated to a satisficing theory Qf rational choice.

Let me spell the point out a little more fully. |

Consider that interpretation of chess yhich Qiews the task as one
of chcosing a strategy, end not just a single move, Specifically, con-
sider a situation where a player is searching for.a combination (a strategy)
that will definitely checkmate his opponent, even though it may require
sacrifices of pieces along the way. A chess player will ordinarily not
enter into such a course of action unless he can see it through to the
end-éunless he can design, that is, a water-tight mating combination,

As we have seen already, the evaluations and comparisons that take
place dq:ing this design process are not, in general comparisons among
compiete desigﬁs; Evaluations take place, first of all, to guide the search--
the elaboration of the design itself. They provide the basis for decisions
that the design should be elaborated in one direction rather than another.
Complete designs (in this case, mating combinations), when they are finally
arrived at, are not generally evaluated sy comparing them with slternative
designs, but by comparing them.with standards defined by aspiiation levels,

In the chess situation, as soon as the player discovers a strategy that
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guarantees a checkmate, he adopts it. He does no: look for 211 possib]
checkmating strategies and adopt the best.-ll

In the design of complex objects--a bridge, say, or sn eirplanc-~
the process has an even more involved search structure. Here, the esariy
stages of search take place in highly simplified spaces that absirvact most
of the detall from the real-world problem, leaving only its most fmportant
elements in summarized form. When a plan, a schematized and aggregated
deszign, has been elaborated in the planning space, the detail of the prob-
lem can be reintroduced, and the plan used as a guide in the search for
a. complete design.

More than twe spaces may be used, of course; there may be a ﬁhole
hicrarchy of planning spaces, leading from a highly abstract and global
design to successive specification of detail., At each of these levels
of abastraction, the design process, too, may be differently structured.
Since the more abstract spaces tend to be "smoother," it is often possible
to use optimization models for planning purposes, reverting to satisficing
search models to £ill in the detail of design Thus, lincar programming
or dynamic programming may be used for general planning of facioxy oper-
ations, while more heuristic techuniques are used for scheduling of indivim
dual jobs. In other situatioms, the over-all design process may cmploy
satisficing search procedures, while optimizing techniques may be used to

8/

set parameters once the general design has been fixed.

1/ H., A, Simon and P, A, Simon, "Trial and Exzor Search in Solving Dif-
ficult Problems," Behavioral Science 7: 425-429,(Octoher 1962),

8/ Some modern semi-automated procedures for the design of chemical pro-
cessing plants proceed from heuristic techniques for selecting the unit
operations and their flow, then employ linear programming to. determine
the parameters of the system so specified.
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BOUNDED RATIONALITY IN MAMAGEMENT SCIENCE

Most of the formal techniques that constitute the technical back-
bone of management science and operations research are procedures for
finding the best of a set of alternatives in termsfof some criterion~;
that is, they fall in our category of "glassical" procedures. Linear and
dynamic prcgramming:a:e among the most powerful of these techniques. The
dominant approach to problems in this sphere has been to simplify the
real-world problems to the point where the formal optimizing models caﬁ
be used as approximations.

Some industrial problems of a combinatorial sort have not yielded
easily to this approach. Typically, the recalcitrant problems involve
integer solutions, or, what uéually amounts to the same thing, the con-
sideration of possible permutations snd combinations of a substantial
number of elements, Warehouse location is a problem of this kind, The
task is to "determine the geographical pattern cf warehouse locations
which will be most profitable to the company by equating the margiaal
cost of warehouse operation with the transportation cost savings and in-
cremental profits resulting from more rapid delivery." 8/

A heuristic program devised by Kuehn and Hamburger for lecating ware-
houses has €w9 parts: "(1) the main program, which lccates warchouses cae
at a time until no additional warehouses can be added to the distribution
network without increasing total costs, and (2) the bump and shift routine,

« - « 5 which attempts to modify solutions . . . by evaluating the profit

9/ Alfred A, Ruehn and Michael J. Bamburger, "A Heuristic Program for
Locating Warehouses," Management Science 9: 643-666 (July 1963), at
page 643,
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implications of dropping individual warehouses or of shifting them from
one location to another.” 19/

This program fits ocur earlier characterization of design procedures.
4 possible plan is gradually built up, step by ctep, through a2 sesrch pro-
cedure, and then possible local modifications sre investigated before the
firal plan is settled'upon, In building up the initinl plarn, iscations
are tried that are near concentrations of demand, adding at cach step the
warehouse that prodgces the greatest cost savings for the eutire system.
Only a fraction of the possible warehouse sites, which preliminasry screening
selects as "promising," are evaluated in detail at each stage. Finslly,
a so-called "bump~-shift" routine modifies the programs tentatively arrived
at by (1) eliminating warehouses no longer eccnomical because new ware-
houses have been introduced at later steps of ths program, (2) considering
shifting warehouses tc alternative sites within their territories., The
flow diagram of the warehouse location programs, which will seive to il-
lustrate the typical structure of heuristic programs when they are
formalized, is shown in Figure 1.

Kuehn and Hamburger have carried out some détﬁiled comparisons of
the heuristic progrem with optimizing techniques, Tﬁey conclude that “in
thzory, s linear prograﬁmiag approach ., . . could be used to scive the
problem, 1In practice, however, the size snd nonlinearities inmvolved in
many problems are such that application is not curreantly feasible.” 2/
They attribute the superior performence of the heuristic program to two

main causes: "(1) computational simplicity, which results in substantial

reductions in solution times and permits the trestment of large-scale

10/ Ibid., p. 645,
11/ Ibid., p. 658.




A HEURISTIC PROGRAM FOR ILOCATING WAREHOUSES

1

v o

Read in:

a) The factory locations,

b) The M potential warehouse sites.

¢) The number of warechouse sites (M) evaluated in detail
on each cycle, 1.e., the size of the buffer.

d) Shipping costs between factories, petential warehouses
and customers,

e} Expected sales volume for each customer.

£} Cost functions associated with the operation of each

o warehouse,
g) Opportunity costs associated with shipping delays, or
alternatively, the effect of such delays on demand.

4

2.

L _servicing them,

,betermine and place in the buffer the N potential ware-
‘house sites which, considering only their local demand,
‘would produce the greatest cost savings if supplied by

local warehouses rather than by the warehouses currently

l

3.

Evaluate the cost savings that would result for the total
system for each of the distribution patterns resulting

from the addition of the next warehouse at each of the N

locations in the buffer.

{

Eliminate from further consideration any of the N sites

which do not offer cost saviﬁj? in excess of fixed costs.

L

Do any of the N sites offer cost aavingsrin excess of
fixed costs?

Yes \ | 6. Locate a warehouse at that sige
‘ which offers the largest savings,

No

7. Have all M potential warehouse sites
beenn either activated or eliminated?

AN
4

No

h\ g

J, Yes
Bump~Shift Routine
a) Eiiminate those warehouses which have become uneconomicsl
as a result of the placement of subsequent warehousas.

Each customer formerly serviced by such a warehouse will

now be supplied by that remaining warehouse which can
perform the serwice at the lowest cost,

b) Evaluate the economics of shifting each warehouse located
above to other potential sites whose local concentra-
tions of demand are now serviced by that warehouse.

v

9. Stop

Pigure 1. Flow diagram
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problems, and (2) flexibility with respect to the underlying cost functions,
eliﬁinating the need for restrictive aBSumptions."lg/

Perhaps the technique most widely used iﬁ management science to deal
with situations too complex for the application of known optimization
metheds is eimulation. The amouat of detail incorporated in the simulation
of a larga system is limited only by remputacional feasibiljity. On the
stheyr h&ﬂd, simulation, unaided by other formal tools of analysis, provides
ne direct uesans for discovering and evaluating alternstive plans of sction,
In ¢iloulation, the trial and error is supplied by the human investigators

rather than by the technique of analysis itself. 13/

3

CORCLUSION

The theory of rationsl decision has undergone extremely rapid devel-
cprent in the past thirty years, A considerable bart of the impetus for
chis dewelopment came, during and since World War II, fromthe‘attempt to
use formal decision procedures in actual real-world situétions of consider-
able complexity. To déal with this complexity the fqrmal models have growm
in power and sophistication. But complexity has also stimulatad the devel-
opuent of new kinds of models of rational decision that take special ac-
count of the very limited informationfgathering and computing capacity
© of human beings and their asgociated:cqmpﬁtems,
One respon#e to the comcern with uncertainty, with tha difficulties

of discovering or designing alternatives, and with computational complexity

has been to introduce search and information transmission processes explicitly
into the rmodelz,  Zacthor (net cxclusivae) response hss been to replace op-

timization criteris with criterfa of satisfactory performamce. The gatisiicireg

12/ Ifidu, P. 656 '
soe
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approach hes been most often employed in wedels where ‘‘heuristic" or
trial-and-error methods are used to aid the search for plsusible alterna-
tives,

As a zesult of all these developments, the decision maker today,
in businass, goveroment, universities, has aﬁailable to him an unprece-
dented collection of models and computatiomal tools to aid him in his
decision-~nsking processes, Whatever the compromises he must make with
reality in order to comprehend and cope with it, these tools make sub-
sisntially mwore iractable the task of matching man's bounded capabilities

with the difficulty of his problems,




