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This article proposes a theory of the processes that enable a student to learn 
while engaged in solving a problem. It gives a microscopic account of learning 
in a specific situation, based on a detailed analysis of a single human problem- 
solving protocol. It proposes general mechanisms, however, that make no spe­ 
cific reference to an individual subject or task, and it shows how these interact 
with specific task information gained during the problem-solving process. The 
adequacy of the mechanisms for producing the learning is guaranteed by a 
computer simulation of the process in the form of an adaptive production 
system.

Learning takes place in a wide variety of 
situations and probably by a number of dif­ 
ferent processes. This article proposes a the­ 
ory of the specific processes that enable a 
student to learn while engaged in solving a 
problem. No claim is made that the theory 
embraces all possible kinds of learning by 
doing. Instead, the theory focuses on giving 
a sufficiently microscopic account of learning 
in a specific situation to guarantee that the 
mechanisms proposed by the theory are ade­ 
quate to that situation. The guarantee is but­ 
tressed by expressing the theory as a computer 
program that when confronted with a prob­ 
lem situation, will work on the problem and 
learn while it works. The issue of the gen­ 
erality of the program and its component 
mechanisms (Cnpaddressed later in the article.

The theory we propose had its origins in 
our detailed analysis of a single human prob­ 
lem-solving protocol of about 1| hours, which 
provides very specific evidence that one par-
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ticular person, at least, did learn by using 
processes closely resembling those that we 
have incorporated into our computer program. 
As part of our exposition of the theory, there­ 
fore, we give our analysis of this protocol. 
Finally, we comment on how specific or gen­ 
eral the resulting theory is.

The Learning Task

Problem-solving tasks of any complexity al­ 
low considerable leeway in solution strategy 
because, generally, considerable numbers of 
alternative strategies are available, all of 
which are adequate for reaching a solution 
(Amarel, 1968; Bruner, Goodnow, & Austin, 
1956; Katona, 1940; Newell & Simon, 1972; 
Simon, 1975). For this reason, solution strat­ 
egy becomes an important intervening variable 
in human behavior in problem-solving situa­ 
tions.

This is not to say that all strategies are 
equivalent. Some may be far more efficient 
than others in terms of speed in arriving at 
the solution, in terms of the load they place 
on short-term memory, in terms of the ease 
of retaining them, or in terms of the range of 
tasks to which they can be transferred. Since 
the most efficient strategies for a particular 
task may not be the most obvious ones to 
someone encountering the task for the first 
time, we might expect a person to employ a 
sequence of strategies as he or she gains skill 
in performing the task. Initially, the solver

Copyright 1979 by the American Psychological Association, Incf 0033-295X/79/0000-0000$00.75

124



LEARNING BY DOING 125

might hit on one of the "obvious" strategies, 
and then gradually progress to more efficient 
ones with increasing familiarity with the prob­ 
lem domain.

If such progressions take place, they have 
great importance for understanding how prob­ 
lem-solving skill is acquired. To explain the 
learning process, we have to show how each 
of these problem-solving strategies emerges 
from the one that just preceded it. If the 
strategies themselves are expressed as pro­ 
grams production systems, say we have to 
explain how one such production system is 
transformed into another. A complete explana­ 
tion would presumably take the form of an 
adaptive production system capable of carry­ 
ing out the sequence of transformations (Wa­ 
terman, 1975).

The Tower of Hanoi puzzle provides a con­ 
venient task domain in which to study the 
strategy transformation process. A number of 
the different strategies that have been identi­ 
fied for solving this puzzle have been described 
as production systems (Simon, 1975). Hence, 
we have a good foundation for identifying the 
strategies used by subjects, and we know that 
a number of reasonable alternative strategies 
are available. However, there do not appear 
to be any published studies that throw light 
on the processes that subjects use to acquire 
or transform these strategies.

The present article addresses itself to these 
transformation phenomena. Its empirical base 
is an exceptionally rich protocol of a subject 
who was previously unfamiliar with the puzzle 
and who developed a sophisticated strategy 
for solving the puzzle over a period of about 
1^ hours. During that time, the subject tried 
solving the five-disk Tower of Hanoi puzzle 
four times from the initial disk configuration. 
On each trial, she used a strategy that was 
transformed from, and more efficient than, 
the strategy she used on the previous trial.

The subject's protocol is analyzed to pro­ 
vide a detailed picture of the transformation 
process in particular, the sequence of cues 
she noticed in the problem structure and the 
use she made of these cues in order to modify 

strategy. We first programmed each of 
her four strategies as a production system so 

that by comparing these systems, we could

see exactly what changes in the program were 
involved in moving from one strategy to an­ 
other. After examining the protocol evidence 
as to how the transformations came about, 
we next describe an adaptive production sys­ 
tem that has the ability to create each new 
strategy from the preceding one. This adap­ 
tive production system is offered as a theory 
of the basic learning capabilities that the sub­ 
ject exhibited and the basic mechanisms that 
she used to accomplish the successive improve­ 
ments in strategy that her protocol exhibited.

Method 

Subject and Design

The experiment was carried out in a single session 
that lasted for about 1^ hours. The subject was an 
adult female liberal arts college graduate whose na­ 
tive language is Japanese. Prior to the experiment, 
she had seen the Tower of Hanoi apparatus but had 
had no experience in trying to solve the puzzle.

The subject was instructed to think aloud while 
solving the problem, and the protocol of her verbal­ 
izations was recorded on tape. An English translation 
of the problem instructions (including the descrip­ 
tion of the problem) is reproduced here, and a 
literal English translation of the complete transcript 
of the subject's protocol is presented in the appendix 
of this article. The protocol is divided into 224 state­ 
ments numbered consecutively from Si to S224. The 
starting peg for the problem is Peg A, and the goal 
peg is Peg C. The disks are numbered from 1 (small­ 
est) to 5 (largest).

The instructions for the thinking aloud protocol 
for the 5-disk problem were as follows:

There are three pegs on the board, which are 
named Peg A, Peg B, and Peg C from the left to 
the right. There are five disks of different size on 
Peg A with the configuration that each disk lies 
above the disks bigger than it is.

Your task is to transfer those disks to Peg C by 
moving one disk at a time to one of the pegs other 
than the peg on which the disk lies, and by follow­ 
ing the rules: (a) You can not put a disk on any 
disk smaller than it is, and (b) you can not move 
a disk on which another disk lies.

The purpose of this experiment is to analyze what 
and how you think when you solve the problem. 
Thus, I would like you to tell aloud whatever you 
think during the solving process. If you think that 
your solving process would not lead to a good solu­ 
tion procedure, you may give up that process and 
start from the initial situation. I hope that you 
can find a good solution procedure for the problem.
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The last two sentences of the problem instructions 
encouraged the subject to find not merely a solution 
for the problem but a good solution procedure: In 
pursuance of this instruction, the subject solved the 
problem three times following one unsuccessful solu­ 
tion attempt. As we shall see, in each successive solu­ 
tion attempt, she used a different strategy.

The shortest solution path for the five-disk Tower 
of Hanoi problem is 31 moves. The subject made only 
about three incorrect moves during her first two suc­ 
cessful solution attempts, and she corrected all of 
these immediately. She made no errors during the 
third successful attempt.

Results 

Analysis oj the Protocol

The 224 protocol statements can be divided 
into four episodes (E1-E4), corresponding to 
the subject's four solution attempts. The first, ' 
unsuccessful, attempt (El), is recorded in SI- 
823. Statements S24-S74 record E2, which 
terminated with the first successful solution 
of the problem. In E3, which contains S75- 
S162, she achieved a second solution using a 
new strategy; and in E4, which contains 
S163-S224, she achieved a third solution using 
yet another strategy.

Of the 224 protocol statements, 96 are bare 
statements announcing a move that the 
ject was making. An additional 14 statements 
announce a move but also comment on the 
reason for it. The remaining 114 statements, 
a little more than half of the protocol, fall into 
three categories: (a) specific means-ends rea­ 
soning to calculate the correct next move (49 
statements), (b) metastatements about the 
solution method (32 statements), and (c) an 
explicit analysis of the recursive structure of 
the problem at the beginning of E3 (33 state­ 
ments, S75-S107). In our analysis of the pro­ 
tocol, we shall be particularly interested in 
the statements belonging to the last two cate­ 
gories.

The protocol is so explicit throughout as to 
leave little or no uncertainty about the strat­ 
egy that the subject was employing at each 
moment. Oft the other hand, there is much less 
explicit information in the protocol to dis­ 
close the subject's learning process how she 
acquired each new piece of information that 
permitted her to alter her strategy adaptively, 
or just how the adaptation occurred.

The first episode. From the very begin­ 
ning, the subject's approach to the problem 
was far from random. Her strategy during El 
may be described as a search strategy, but a 
highly selective one. The number of legal 
moves at each step in the Tower of Hanoi 
problem was very small, only two or three. At 
no time did the subject reverse a move just 
made or move the same disk twice in succe^s- 
sion (this would always be inefficient, since 
the same result could be gained in a single 
move), although she never mentioned these 
restrictions. These restrictions reduce the 
number of legal moves at each step to one 
(when the smallest disk has just been moved) 
or two (when the smallest disk is to be 
moved). With these restrictions, also, the 
smallest disk will be transferred on odd-num­ 
bered moves.

On no occasion during El did the subject, 
on successive odd-numbered moves, transfer 
the smallest disk and then return it to its 
previous peg (see S4). This further restriction 
completely eliminates any choice beyond the 
initial move that is, the restrictions taken 
together constitute a complete strategy, ex­ 
cept for the choice of the very first move. It 
can be seen that the subject's search was very 
selective.

The subject had a reason (S4, S6) for her 
initial move, too: She preferred not to move 
the smallest disk to the ultimate target peg, 
since the larger disks would have to go to 
that peg first. This decision, though motivated, 
happened to be the wrong one for the five- 
disk problem, accounting for her failure on 
the first attempt.

The subject pursued her first attempt 
through eight moves, at which point she no­ 
ticed that she was moving the fourth disk to 
block access of the largest disk to the target 
peg (SI2-13). After persevering a little 
longer (814^19), she decided to return to the 
original configuration, ending the first episode.

The strategy that the subject followed dur­ 
ing El (we cannot tell how consciously or ex­ 
plicitly) will be referred to as the selective 
search strategy. It eliminates all further 
search after the initial move has been selected.

There is some indication, however, that the 
subject did not follow the selective search
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strategy in pure form. At some points in the tested her understanding by going through 
protocol, she mentions goals and moves taken the moves of the one-disk problem, the two- 
in order to accomplish goals (See S8, S13). disk problem, the three-disk problem, and the 
The fact that she decided she was on the four-disk problem (S7S-S107), respectively, 
wrong track when she saw that the largest In the course of this rehearsal, she explicitly 
disk could move to Peg B if she continued formulated and applied the recursive rule that 
(S13) is perhaps the clearest evidence that guided her through the solution of the five- 
she was forming some goals. Most of the sub- disk problem in E3. A clear example of an 
ject's pauses occurred just before she moved application of the rule is found in S82-S84: 
the smallest peg (S10, S30, S32, S39). This "Oh yes, 3 will have to go to C first; for that, 
suggests that she was not executing the strat- 2 will have to go to B; for that, um . . . , 1 
egy automatically, but was engaging in some will go to C." Other examples are found at 
kind of reasoning about the moves perhaps S78, S86-S87, S99-S101, S121-S123, S130- 
already using part of the goal-peg strategy S132, S140-S143, and S153-S155. The sub- 
that emerged clearly in the second episode. ject summed up this procedure in SI62.

From the first episode, the subject retained In E3, therefore, the subject found the idea 
in long-term memory at least two pieces of in- of a recursive goal 'calculation. That is, to 
formation: (a) On the first move, the smallest achieve a goal (-G1), we need to achieve a 
disk should be transferred to the goal peg and subgoal (G2); to achieve G2, we must achieve 
not to peg B, as in her first attempt (S26); another subgoal (G3); and so on. She arrived 
and (b) the largest disk should be moved to inductively at this strategy, which we will call 
the goal peg (S48, S72). the recursive sub goal strategy, by working up- 

The second episode. The second episode wards from the simplest one- and two-disk 
started with the correct move, remembered problems. (See especially S78-S86.) 
from El. More precisely, what was remem- The fourth episode. The subject was evi- 
bered (S25-S26) is that the smallest disk dently satisfied with the recursive goal strat- 
(Disk 1) must be moved to the target (Peg egy and only solved the problem a third time 
C) so that the largest disk (Disk 5) might because the experimenter asked her to (S162- 
eventually reach that peg. SI63). She appeared to bring not; n£w infor- 

In the second episode, unlike the first, the mation from the third episode but began to 
subject guided herself explicitly by mention- apply her strategy exactly as before. Never- 
ing intermediate goals: to move Disk 4 to theless, a subtle but significant change began 
Peg B (S34), to move Disk 5 to Peg C (S48), to take place in her solution process. She be- 
to move Disk 4 to Peg C (S59), and to move gan, for the first time, to speak of sets of 
Disk 3 to Peg C (S63). She summarized this disks and to set goals of transferring such 
strategy of moving first the largest and then sets. In SI79, she said, "I only need move 
the successively smaller disks to C in S72- three blocking disks to B." In SI93, she said 
S74. We refer to this as the goal-peg strategy. "I will move the remaining four from B to 
The subject did not make explicit how she C." She then followed with the important 
calculated back from these goals to her next comment (S194): "It's just like moving four, 
moves, but the principal pauses in the proto- isn't it?" From this point on, she repeatedly 
col occurred just after each such goal has been refened to goals of moving sets of disks (S196, 
achieved, when the plan for achieving the next S208, S210, S211, S216, and S223). ^ 
had to be formulated. We will call this final strategy that the sub- 

The main information that the subject ap- ject attained, which involves solving the whole 
peared to retain from the second episode and Tower of Hanoi problem by solving smaller 
to bring to the third episode is that the trans- problems of exactly the same kind, the pyra- 
fer of the biggest remaining disk to the goal mid subgoal strategy. The new strategy ap- 
peg is a good subgoal (S73-S74). pears to have been arrived at less systemati- 

The third episode. Before undertaking to cally certainly with less awareness than 
solve the five-disk problem again; the subject the goal recursion strategy. Perhaps it would
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not be misleading to call the learning process ther evidence of a plurality of learning pro-
here perceptual. The subject learned to view cesses cognitive and perceptual.
the goals in a new way requiring not the
transfer of a succession of disks but the trans- _,. . . , , , .fer of a pyramid of disks. Unfortunately, in &»«**"» of Protocol by a Fixed Production
this task environment as in others that have ^5 em
been studied, the verbal protocols give us r^ .' , , . ,. ,'. ., ,, ,.,,,', . ,. . , ,f ., To gain a deeper understanding of the sub- only the slightest hints of the perceptual pro- . ,, , . ^ Ip. , , -.,, . , *, , , , . ., . ject's learning processes, we modeled her De- cesses and the perceptual learning that may i . . e *r. ." . , , ., ,,. . , .,. , ^ ^ & j havior in two stages in detail. First we built
Q* ° , . .   , . a production system that embodied the fourSummary We have now accounted in some strat ies that she had used in successive
detail for the content of the subject's protocol ^ and showed that we CQuld model most
and for the gradual transformation of her Qf ^ fing ^^ Qf her behaviof {n each ^
strategy. In summing up, we may claim the This production system did not> however>
following: model the learning process. Essentially, it

1. With varying degrees of awareness, the contained a "big switch" that shifted from
subject definitely generated at least four sue- one strategy to the next at points correspond-
cessive strategies. jng approximately to the points in the pro-

2. Information stored in long-term memory tocol where the same shift occurred for the
in the previous trial appears to provide the subject.
basic cues for strategy transformation, ex- The initial production system was com-
cept in the last case in which perceptual cues partmentalized into substructures, each repre-
may have played the main role. senting one of the strategies and consisting of

3. Short-term memory appears to be used from six to nine productions, including pro- 
mainly to store subgoals during the course of ductions that gathered information for later 
problem solution. Other information is re- use (i.e., for switching strategies) and produc- 
trieved from long-term memory or by direct tions that used information gathered in previ- 
perception of the problem situation. Rehearsal Ous episodes. Apart from the information- 
occurs only when information gathered in the gathering and information-using productions, 
previous episodes is required in the current the actual strategies each consisted of five or 
one. Examples of information obtained from six productions. Seme characteristics of the 
perception are the set of admissible moves structure and output of the system are sum- 
(e.g., S4, S26) and noticing the disk next marized below:
smaller to a given disk among the disks on i. The five main strategic modules (cor-
somepeg (e.g., S82-S83). responding to search, selective search, goal,

4. During each episode, we see evidence of peg, recursive subgoal, and pyramid subgoal 
at least four kinds of processes: (a) applying strategies) share a common local structure, 
the current strategy, (b) gathering informa- Roughly, productions for gathering informa­ 
tion that will later be used to modify the tion for later use come first, those for using 
strategy, (c) using information gathering in information gathered in previous episodes 
previous episodes, and (d) deciding to termi- come last, and those for applying the current 
nate the solution attempt (successfully or un- strategy are placed in-between. The produc- 
successfully ^ons *n a strategic module are scanned from

5. The most deliberate (explicitly men- top to bottom. In the first stages of executing 
,. , . i/i a strategic module, productions near the bot- tioned) changes in Strategy took place be- - ^ ten*d to fire; rather than those .near the 

tween the first and second episodes and be- top; Hence, each of the observed strategies be­ 
tween the second and third episodes. Less ^ns by utiiizing information gathered in the 
conscious (unverbalized) strategy changes previous episode, then proceeds to execute the 
took place during the first and the fourth epi- algorithm, and finally collects information for 
sodes. Perhaps this difference provides fur- use by subsequent modules.
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2. All five main modules except the first in- Thus, the main trend of strategy transfor-
clude the following subset of productions: mation can be diagrammed simply as:

1. (GOAL XPQ) (LEGAL XPQ) selective/research -»recursive calculation //
-^(REMOVE (GOAL XPQ)) (MOVE XPQ) for smaller disks -> recursive calculation
2. (GOAL XPQ) (ON (NEXTSMALLERX P)P) for all disks  > recursive calculation for
-»(GOAL (NEXTSMALLER x P) P (OTHER P Q)) larger sets of disks.
3. (GOAL XPQ) (ON (NEXTSMALLER x Q) Q) ^^^
-»(GOAL (NEXTSMALLER x Q) Q (OTHER P Q)) 4. Important information,(74yitems in all,

	stored and recalled through long-term mem- 
Production 1 means that if the subgoal is ory is tabulated in Table 1. The table shows 

to transfer Disk X from Peg P to Peg Q and that such information (except Item 1, which 
the move is admissible, then the subgoal is re- asserts that the top goal is to move all disks 
moved from short-term memory and the move from Peg A to Peg C) is recalled only in the 
is performed. Production 2 means that if the episode immediately following the episode in 
subgoal is to transfer X from P to Q but there which it was stored. Item 1, stored before the 
lies on Peg P the disk next smaller to X, then solving Process starts> is recalled mostly in 
the new subgoal of moving the next smaller th* earlier ePisodes and rarely in the recursive
disk from P to the peg other than P and Q is sub/oal or pyramid subSoal niodules- ,

_.,.,", - As a consequence, the strategy transforma-
set up. Production 3 is the same as 2, except ^ process ^ globally simplej for new gtrat_
that the peg of the next smaller disk is Q, the egies are dependent only on ^ strategies that
target peg of the current goal. immediately precede them. It must not be

Productions 1-3 construct a recursive se- presumed, however, that information, acquired
quence of subgoals that try to attain the cur- in the preceding module is. the sole basis for
rent subgoal. The existence of these produc- learning the recursive strategies. It is also
tions in most of the main modules implies that necessary to assume that the subject had a
recursive subgoal calculation plays an im- number of kinds of procedural knowledge prior
portant role in all the strategies. Only the to entering into the experiment-^knowledge,
initial stage of selective search is an exception^ for example, that could lead to the selective

.1. . ,, . j ,. . Al_ r- . . A search in Trial 1 and the recursive calculationso that the mam productions in the first two .   . . .
... j i i. t  * j-ce * m Trial 2.strategic niodules have a form quite different 5 The recursiye subgoal stmtegy ^ pyra_

from Productions 1-3. mid subgoal strategy used by the subject bear
3. Even though Productions 1-3 are em- a close simiiarity to the goal-recursion and 

bedded in most of the strategic modules, they inner-directed goal-recursion strategies ana- 
are not used in the same way in the successive lyzed formally by Simon (1975), thus provid- 
episodes. In the second strategic module, in ing some empirical support for his theoretical 
which they appear for the first time, they are exploration of the range of strategies available 
used only for the disks smaller than Disk 4. to human subjects in this task environment. 
In the third module, which simulates the goal- Although the initial production system did 
peg strategy, they are used for the disks bigger not Provide a simulation of the learning pro-
than Disk 3, and then their use is generalized cess> !t did 8ive us a minute description of

  ,. , ,, . . ., , ., . . each of the strategies that had to be learnedto all disks so that in the fourth recursive sub- .  , A j A ,.   .n. t i u, A ^ , . A , ,   , and allowed us to detect in the protocol much
goal .strategy module they are fully used and of ^ ̂ ^ of information that the subject
form the main part of this module. Finally, in fixated in long.term memory and carried over
the pyramid goal module, their use is agajn from one trial to the next to be used ior learn-
restricted to smaller disks. Bigger disks are ing the next strategy. We turn next to some
transferred using the recursive subgoals of observations of her learning processes and,
moving subpyramids. particularly, on the prior knowledge about
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Table 1
Information Stored and Recalled Through Long-Term Memory

Corresponding 
Episode strategy8

El PROBLEM-INSTRUCTION
SELECTIVE SEARCH

'

E2 GOAL PEG

E3 RECURSIVE SUBGOAL

E4 PYRAMID SUBGOAL

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Information stored*

(TOPGOAL MOVE ALL FROM PEGA TO PEGC)

(MOVE 1 FROM PEGA TO PEGC)

(MOVE 4 OFF PEGA)

(MOVE 5 FROM PEGA TO PEGC)

(SUBGOAL : MOVE 5 TO PEGC)

(SUBGOAL? MOVE 4 TO PEGC)

(SUBGOAL : MOVE 3 TO PEGC)

(SUBGOAL: MOVE 2 TO PEGC)

(SUBGOAL : MOVE 1 TO PEGC)'

(REMEMBER : BLOCK 3)

(MOVE PYRAMID 4 TO PEGC)

(REMEMBER: SMALL BLOCK 2)

Information 
recalled (item 

no.)a

1

1

1

2,4,

1

1

1

1

5-9

5

10

1

3,1

* Inferred from the protocol/the table shows at approximately what points in the protocol the information 
was initially noted and subsequently recalled and applied.

possible strategies that she brought to the 
learning task.

Knowledge Accumulation in Learning

In drder to form new and more effective 
strategies, the subject extracted knowledge 
about the problem structure from her solution 
attempts. Her ability to do this, however, de­ 
pended fundamentally on her having already 
available in long-term memory some sophisti­ 
cated learning capabilities and some prior 
knowledge of possible types of strategies (e.g., 
means-ends analysis). From her protocol, we 
can infer at least five important ways in 
which prior knowledge was combined with 
new information gathered while solving the 

to contribute to the learning process.

Knowledge From Selective Search

Acquisition of essential subgoals was not "at 
all trivial for the subject. As a preliminary

step, the search space had to be simplified on 
the basis of knowledge permitting the aban­ 
donment of possible but uninterestig moves 
(e.g., moves that returned to previously at­ 
tained positions). In the Tower of Hanoi puz­ 
zle, after these repetitive moves are elimi­ 
nated, only a single admissible move remains 
at each choice point after the first. The req­ 
uisite prior knowledge is simply that move 
repetitions are inefficient and avoidable. Using 
this knowledge requires remembering the most 
recent moves and the next-to-most-recent 
moves.

With the elimination of move repetitions, 
and as a consequence, the elimination of 
branching in the search tree, it becomes much 
easier for the problem solver to look ahead 
(i.e., to imagine a sequence of future moves 
without actually carrying them out), since no 
information about subgoals or the like now 
needs to be kept in short-term memory, and 
hence memory capacity is available for stor-

h
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ing anticipated moves. The looking-ahead pro­ 
cedure plausibly leads to the generation of 
subgoals.

Organization of Subgoals

If a subgoal of moving a bigger disk to the 
goal peg is remembered, the subtree of the 
 oaptree that contains the subgoal as its root 
can be detached from the original tree and 
handled independently of its larger context. 
Thus, it is important to have prior knowledge 
of this kind of means-ends analysis. Remem­ 
bering good subgoals helps encode the hier­ 
archical organization of the original structure 
and reduces the load on short-term memory.

Even if such encoding succeeds, the com­ 
plicated subgoal structure still needs to be 
organized for encoding a strategy in efficient 
form. The subgoal hierarchy formed by mov­ 
ing Disk X to the goal peg (X = 5, 4, 3,2,1) 
is such an organization of subgoals con­ 
structed by the subject. It seems to have been 
first conceived when the subject encountered 
the problem instructions. (S6 in the protocol 
provides some evidence.) But fixation of this 
organization within a particular strategy had 
to wait for the subject's experience of apply* 
ing these subgoals (e.g., S73).

As mentioned in the previous section, the 
kernels of the main strategic modules all have 

r structuresA<ffiEicj£)similarity may be 
derived from the subject's prior general knowl­ 
edge of means-ends analysis and her selective, 
looking-ahead search in the first £pisode. 
These kernels facilitate generating a sequence 
of subgoals, from future to present, looking 
backwards. After they are generated, moves 
are made to attain the subgoals consecutively 
starting with the immediate one.

Chunking Moves

Successive moves without pauses of Disks 1 
and 2 or Disks 1,2, and 3 occurred frequently. 
A sequence of moves made without a pause 
and without a reference to subgoals may come 
to be regarded as a single chunk. These chunks 
are of great help for encoding a strategy, for 
they save effort in making decisions about the 
moves of the smaller disks. The subject's abil-

ity to form chunks facilitated her learning 
overall strategies.

The protocol shows that the concept of 
three-disk chunks was not yet formed in the 
earlier part of E3 (see, e.g., S114-S126). The 
first evidence for it appeared in the middle 
stage of E3 (S130-S138, S144-S151). The 
concept of two-disk chunk moves became ap­ 
parent also in E3 (S114-S117/S124-S126, 
S132-S134, S136-S138). In thfese instances, 
the moving of Disk 3 was still driven by a 
subgoal. It was after the concept of blocking 
disks was discovered (SI79) that the concept 
of 3-disk chunk moves was completely fixated 
(S180-S186). (S197-S207 still used a sub- 
goal for Disk 3.)

Concepts of a Goal Stack and Moving a Set 
of disks

The subject's discovery of the pyramid sub- 
(grou£)strategy (S193-S194) may have been 
inspired by discovery of the concept of a set 
of blocking disks (SI79), also a chunking abil­ 
ity. The concept of moving a set of disks was 
apparently discovered perceptually. Any sub- 
pyramid has a pyramidlike shape similar to 
the initial (and goal) configuration of disks. 
But this perceptual discovery might not have 
occurred if the subject had not obtained the 
concept of a set of blocking disks.

To obtain the pyramid subgoal strategy, it 
is crucial to discover the concept of a goal 
stack and the concept of retaining several sub- 
goals in the stack at one time. This can be 
done by replacing a current subgoal with a 
sequence of subgoals functionally equivalent 
to it. Chunking subgoals should 'make this 
equivalence transformation easier. Evidently, 
the chunking of subgoals required a long 
learning process, as did the chunking of 
moves, because the pyramid subgoal strategy 
was acquired only toward the end of the whole 
problem-solving sequence.

Perception in Learning the Strategies

The production system program is based on 
the ability of the system to make three basic 
perceptual discriminations: (a) that two pegs 
are distinct, (b) that one disk is larger than
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another, and (c) that a particular disk is 
on a particular peg. Of these, only the third is 
time dependent, changing as successive moves 
are made. Some verbalizations from the pro­ 
tocol indicating perceptual processing are:

10 place else" (S4), "open" (S37, S191) and 
"bottom" (S78). These traces are related di­ 
rectly to the third class of perceptual tests.

Analysis of the program structure indicates 
that most of the information-gathering pro­ 
ductions include a perceptual primitive of the 
third class on the condition side, whereas the 
information-utilizing productions, with one 
exception, do not include such a primitive. 
Moreover, every information-gathering pro­ 
duction includes a subgoal condition or a con­ 
dition referring to information stored in long- 
term memory. From these data, we may infer 
that the information-using process is usually 
a conceptual process, whereas the information- 
gathering process involves cooperation of con­ 
ceptual and perceptual processing.

An Adaptive Production System

On the basis of our analysis of how the 
subject went about devising new strategies, we 
proceeded to build an adaptive production 
system that uses similar processes to progress 
from an initial primitive search strategy to a 
strategy that avoids repetition of moves, a 
means-ends strategy, and an inner-directed 
recursive strategy. Although the system does 
not simulate in detail the actual temporal 
course of the subject's learning, it demonstra- 
bly uses the same kinds of information that 
the subject used and arrives at three of the 
strategies that she generated. The structure of 
the adaptive production system and the repre­ 
sentation it employs are discussed from an 
artificial intelligence viewpoint in Anzai ^n£ 

and computational results are de- 
icribed in detail in Anzai (1978).

Basic Assumptions and Procedure

Before describing the adaptive production 
system in detail, it will be helpful to outline 
the basic assumptions about learning that it 
incorporates.

1. At the heart of learning is the ability of 
the system to acquire knowledge about the ef­ 
fectiveness of its choices of moves (knowl­ 
edge of results) and to use that knowledge to 
modify itself. The knowledge of results is of 
two kinds: (a) recognition that a move or 
sequence of moves has had unfavorable con­ 
sequences and (b) recognition that a move or 
sequence of moves has improved the situa­ 
tion. More specifically, under a, the system 
is able to recognize that it has moved the 
same disk twice or that it has returned to a 
situation that it had already reached a move 
or two earlier. A double move by one piece 
and a move sequence that causes "looping" 
can always be improved. Under b, the system 
is able to recognize when it has achieved a 
subgoal.

2. When the system has recognized a bad 
or good outcome of a sequence of moves, it is 
able to create one or more new productions 
and insert them to modify its behavior in a 
direction that will tend to avoid bad conse­ 
quences and to enhance the likelihood of good 
ones. To do this, it must reason backwards 
from the bad or good outcome and find a pat­ 
tern of preceding moves that can be inter­ 
preted as having caused the outcome.

To simplify the structure of the production 
system and, in particular, to make it easier to 
analyze its behavior, the full range of a priori 
knowledge that it needed to acquire the three 
strategies was not given to it at the outset 
(Table 2). Instead, in Run 1 it was given 
enough prior knowledge to enable it to learn 
to avoid repetitions of moves; then its be­ 
havior while using the productions it had 
learned was tested in Run 2, without addi­ 
tional learning. In Run 3, it was given the 
prior knowledge that it needed to acquire pro­ 
ductions that use means-ends analysis. Again, 
its performance using the newly acquired pro­ 
ductions was tested in Run 4 without addi­ 
tional learning. In Run 5, it was given the 
prior knowledge that it needed in order to 
make use of the idea of pyramids as chunks 
and to incorporate new productions based on 
this idea. Finally, its performance was tested 
again in Run 6, after this last piece of learn­ 
ing had been accomplished. Hence, the system 
learned during the odd-numbered runs, and its
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Table 2
Results of Computer Simulations and Their Relation to Protocol Data

CorrespondingProductions Corresponding protocol Run executed Strategy Learning episode segment

1
2
3
4
5
6

914
656
371
280
431
296

  » selective move
selective move

  » recursive subgoal
recursive subgoal

  * pyramid subgoal
pyramid subgoal

yes
no
yes
no
yes
no

1
2
2
3 (part)
4
 

1- 24
-     ...
25- 70

108-162 ()
163-224 t

    ^^

learning was tested during the even-numbered symbols that must be held in short-term mem- runs, ory during execution of the program. Hence,
	for humans, the pyramid goal strategy may Effort Measurements be significantly more efficient, in time and in

Run 1 of the program was roughly equiva- memory load, than the recursive subgoal strat-lent to Episode 1 in the subject's thinking- egy, even though this was not the case for ouraloud protocol. Runs 2 and 3 were roughly production system.
equivalent to Episode 2 and the first portion From the comparison of the corresponding of Episode 3. Run 4 was roughly equivalent to <@ odd-numbered runs with-even-numbered the remainder of Episode 3, and Run 5 was runs, we get some measure of the additional roughly equivalent to Episode 4. Nothing in effort that was required to solve the problem the protocol corresponded to Run 6. As a while learning. Although it went only halfway crude measure of the improvement in prob- to the solutiont Run 1 required nearly half lem-solving performance produced by the again as many executions as Run 2 (914- learning, we may compare the number of pro- 656); Run 3, a third more than Run 4 (371- ductions that had to be executed in each run 280); and Run 5, a third more than Run 6 to solve the problem. These numbers are dis- (431-296). Not all of this difference can be played in Table 2. Looking first at the even- attributed to the cost of the learning processes numbered runs, we see that the recursive sub- themselves because during the early portions goal strategy required less than two fifths as of the learning (odd-numbered) runs, the pro- many production executions as the selective duction ^ystem was still using the previous, search strategy with avoidance of repetition usually less efficient, solution method. How- (280 as compared with 656). On the other ever, the learning processes require a sub- hand, from Runs 4 and 6, we see that the stantial expenditure of effort, but by no means pyramid goal strategy required the execution an excessive expenditure compared with the of slightly more productions than the recur- gains they produce in the efficiency of per- 
sive subgoal strategy (296 as compared with formance. 
280). .

Although the general implications of these Task Independence of Prior Knowledge numbers are clear, we should not assume that
the number of productions executed in carry- Let us look next at the specific learning ing out a strategy is exactly proportional to strategies used in Runs 1,3, and 5 and, par- the time or energy a human subject would ticularly, at the prior knowledge that is em- expend in carrying out the same strategy. In bedded, implicitly or explicitly, in these strat- particular, the chunks of moves created by the egies. From "prior knowledge" we exclude, of pyramid goal strategy might be executed by course, knowledge that the subject might have humans in compiled rather than interpreted gained either from reading the problem in- fashion and with much decreased effort, be- structions or during the course of her prob- cause compilation reduces the number of lern-solving efforts.
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Here a small apology is in order. In the ver- of states or moves of the task representation, 
sion of the program actually implemented, we It simply refers to them by their labels or 
did not succeed in making a complete separa- names.
tion of these two kinds of knowledge. Hence, Now, with a little more sophistication, we 
some of the productions in the learning part can go a step further. Suppose Al is repre- 
of the system contain information about the^ sented in the Tower of Hanoi task as 
representation of the Tower of Hanoi prob- N (MOVE 1 c B)
lem. As a result of this programming exercise, ("Move disk 1 from peg c to peg B") 
we now know how to make the boundary 
sharper and the separation cleaner between and A2 as 
the program's general learning capabilities,
which make no reference to the task environ- (MOVE 1 B c). 
ment of the Tower of Hanoi and its knowl­ 
edge of the way in which that particular task Then a generalization process can replace 
environment is represented. We will describe the constants in these actions by symbols that 
the learning program in this cleaned-up form, denote variables of the appropriate types  
and hence as a task-independent general learn- making the same replacements in both Al and 
ing system, comparable in this respect to the A2 and thus producing 
general nroblem splver.
^"The system begins with capabilities for se- (PAST-MOVE x p Q) -»
lective search: It can make (legal) moves, and' (EXCLUDE (MOVE x Q p)). 
it can consider moves without necessarily mak­ 
ing them. Its path through the problem space Clearly, this generalization requires no 
can be represented as an alternation of states knowledge of the representation other than an 
or positions (in the Tower of Hanoi puzzle, ability to identify the types of the arguments 
particular arrangements of disks on pegs) and of the two functions (i.e., the types of the 
actions (moves, applications of operators), symbols 1, B, and C).
Each action leads to a new position, and each Similarly, if the system can notice that the 
position permits a new action (from the set of path (PI Al P2 A2 P3) is longer than (PI 
legal actions for that position) to be taken. A3 P3) but reaches the same position, it can 
All learning that we will consider is based on learn to avoid the longer path. Suppose A! = 
retaining in memory and using information (MOVE 1 A B), A2 = (MOVE 1 B c), A3 = (MOVE 
about a segment of the search path. 1 A c). If the system notices that DISK (A! ) =

DiSK(A2), the desired production, suitably
A voiding Bad Moves (Selective Search) generalized, is

The method of avoiding bad moves uses the (PAST-MOVE x p Q) -»
following schema: Let PI, P2, and P3 be sue- (EXCLUDE (MOVE x Q R) ). 
cessive positions along a search path and let
Al and A2 be the actions that take PI into These particular pieces of learning are 
P2 and P2 into P3, respectively. Then, if based on the idea that it is inefficient to visit 
PI = P3 (the two positions are identical), the same state twice or to move the same disk 
create a production of the form: twice in a row and on the ability to detect

identity between two states or two disks (the
(PAST-MOVE A!) » (EXCLUDE A2) latter abilities obviously being task depen­ 

dent). Variants of the same idea are possible.
and insert it in the program so that it will be Suppose the system had both the (task-inde- 
executed while moves are being considered pendent) knowledge that it was undesirable to 
and before they are made. Notice that the return the same object to the same location on 
subsystem that creates this production need two successive moves of that object (without 
have no knowledge of the internal structures necessarily restoring the entire state) and the
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(task-dependent) knowledge of which argu­ 
ments'in the move operator designated objects 
and which ones designated positions. The lat­ 
ter knowledge would permit it to perform the 
test, INVERSE A! A2, to discover that MOVE 3 
A c followed by MOVE 3 c A creates a loop in 
this generalized sense. Then such loops could 
be avoided by creating the production

(PAST-PAST-MOVE A!) (INVERSE A! A2)  »
(EXCLUDE A2).

Again, if the production were created for 
specific moves, Al and A2, these could be gen­ 
eralized by application of the generalization 
operator, exactly as before.

The capabilities we have just described are 
essentially the capabilities (although in less 
elegant form) that the adaptive production 
system employed in Run 1 to create new pro­ 
ductions for avoiding bad moves, and the pro­ 
ductions we have described are equivalent to 
those that were created.

Goal Recursive Strategy

When the system has learned to avoid bad 
moves, its search is narrowed. If it has ac­ 
quired the full selective search strategy, it 
even becomes linear. It is then in a position 
to learn other strategies.

To acquire a goal recursive strategy, the 
system must first be able to posit goals. Our 
implementation assumes that the subject is 
able from the problem instructions to infer 
goals such as: GOAL i FROM A, where I = 1, 2, 
3, 4, 5, and GOAL i TO c, where I   5, 4, 3, 2, 1. 
Once the system has such goals and has used 
its selective search strategy to reach one or 
more of them, it can use a priori knowledge to 
create new recursive subgoals by means of 
the following strategy.

Suppose that the system in state PI has 
GOAL A2 and discovers, by search, the Success­ 
ful path segment tl, Al, p2, A2 (to be read: 

xjrl is operated on*"rjy ^1 m produce P2, which 
is^operated on by A2*). When^2 nas been 
reached in this segnrcnt, GOAL A2Tias been at­ 
tained. Hence, it is known tHat applying .M 
to P! creates a new state, P2, in which A2 can*^ nPbe applied. Therefore, inTl, GOAL Al can be 

taken as a subgoal to GOAL A2 and a task-in­ 
dependent learning system c6*uld create a pro­ 
duction such as

( CURRENT-STATE P!) (GOAL
( GOAL A 1 ) ) .

Of course this production is too specific to 
be very useful because it would be evoked 
only if the system were precisely in state PI. 
Let us see how we might generalize it using 
the system's knowledge of the requirements 
for a legal move in this task environment. Let 
the tests for the legality of move A be repre­ 
sented by T1(A), T2(A), and T3(A). All of 
these tests are satisfied for A2 in P2 because 
A2 was made in that situation. They were 
not all satisfied for A2 in PI because although 
the system then had the goal of taking action 
A2, it in fact took action Al. As the condition 
for our production, instead of specifying the 
entire state PI, we simply provide a list of the 
tests that are and are not satisfied to obtain 
the modified production

(CURRENT-TESTS Tl T2 NOT (T3))
(GOAL A2)   » (SET (GOALA!)).

Again, this production is readily general­ 
ized by replacing all constants by variables of 
the same type. However, the full generaliza­ 
tion requires the system to notice appropriate 
relations between the components of Al on 
the one hand and of A2 and the tests on the 
other   for example, to notice that the disk 
of Al in the above production is the next 
smaller to the disk of A2. This too is task- 
dependent knowledge, requiring a sufficiently 
powerful perceptual system for acquiring it.

The new productions created during Run 3 
were of the kind that we have just described. 
As can be seen from their form, given both 
a goal and a situation, they create a subgoal 
that is appropriate for progressing toward the 
goal in that situation.

Chunking Moves

We have seen that our subject learned to 
move her three smallest disks as a single 
chunk. This chunk corresponds to the produe-
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tion interest for psychology if it merely described
a set of idiosyncratic learning processes used

(GOAL 3 x Y) -» (MOVE 1 x Y) (MOVE 2 x z) by a single subject on one occasion to improve 
(MOVE 1 YZ) (MOVE3XY). her performance in a problem-solving task.

We make a stronger claim for the system: It
We did not implement the learning of this provides a psychological theory of some gen- 

production in our simulation, but it would erality explaining how a person can learn in 
proceed in much the same way as the learning the course of performing a task of this gen- 
of the pyramid subgoal chunks, which we will eral kind.
discuss next. It may be objected that a general psycho­ 

logical theory cannot be supported by a
Pyramid Subgoal Strategy sin§le case - One swallow does not make a

	summer, but one swallow does prove the ex-
Since the term pyramid is not task inde- istence of swallows. And careful dissection of

pendent but refers to a particular arrangement even one swallow may provide a great deal of
of disks in the Tower of Hanoi puzzle, a pro- reliable information about swallow anatomy,
cedure for learning the pyramid subgoal strat- Although the generality of the theory we have
egy cannot be quite as general as the learning constructed remains to be tested, we under-
procedures described previously. Nevertheless, took to model accurately the learning mech-
we can describe it in a form that will clearly anisnis that we observed in the behavior of our
separate the task-dependent from the task-in- single human subject, modeling them in such
dependent components. a way that their applicability would not be

Suppose the system has (task-dependent) limited to the specific task environment, the 
knowledge that leads it to notice the feature Tower of Hanoi puzzle, in which we discov- 
F(P), in any state P where that feature is ered them. As we have seen, the key mecha- 
present. Suppose that in a segment of the nisms are completely independent of this par- 
solution path, the feature F is present at the ticular task and fully applicable to other prob- 
beginning of the segment and the feature F* lem-solving environments in which heuristic 
is present at the end. Suppose further that search can be employed. In this sense, the the- 
Goal F* is present at the beginning of the seg- ory is generalizable over subjects and tasks, 
ment. And suppose, finally, that the sequence Knowledge of results obtained through 
of actions in this segment is Al, A2, A3. Then, search of the problem space provided the foun- 
it is a simple matter to create the production dation for all of the learning. If the search

	led to bad results (e.g., repetition), new pro-
(CURRENT-FEATURE F) (GOAL F*)  » ductions were formed that detected the cir-

(MOVE Al A-2 A3), cumstances in which repetition had occurred
	and avoided the offending moves. When good

This production can be generalized in the results were attained (e.g., a known subgoal
same manner as the others by replacing all reached), new productions were formed that
constants by variables of the same type. All could make the appropriate preparatory moves
of the task-dependent information that it re- when it was noticed that the subgoal was
quires is embedded in the productions that nearly within reach. When it was noticed
recognize the feature F and the productions that a brief sequence of moves always at-
that know enough about the types of argu- tained a subgoal of a given kind, a production
ments to be found in goals and moves to re- was formed to execute this sequence of rnoves
place constants by appropriate variables. whenever the subgoal was evoked (chunking).

	These are all general processes that make no
~. . reference to the Tower of Hanoi or any other Discussion . 

specific task environment.
The adaptive production system described One way to characterize learning processes 

in the previous section would have only limited of this sort is to observe that if a person can
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solve a problem by any method however in- and moving a set of disks. The three strategies 
efficient or crude then the correct solution that use subgoals look backward to construct 
path can be used as a template on which to subgoals and then generate actual moves, 
form new productions capable of discovering Thus, the strategy transformation proceeded 
the solution more efficiently. David Neves from looking ahead to looking backward. 
(1978) has used a similar idea to construct Learning the strategies seemed to involve 
an adaptive production system that learns both conceptual and perceptual information, 
from examples that have already been worked Particularly, information gathered in the im- 
out (i.e., in a textbook). Given a single step- mediately preceding episode played a main 
by-step example of the process of solving a role for generating a new strategy. In this 
linear algebra equation, Neves's system con- sense, the learning process had, globally, a 
structs an algorithm with fairly general cap- simple sequential structure, 
abilities for solving such equations. The idea An initial production system was con- 
underlying the learning program of Neves and structed to simulate the subject's execution of 
the program presented here is that knowledge the strategies that she used in successive trials, 
of the correct solution path provides informa- Careful comparison of the behavior of the pro- 
tion not only about the steps that have to be duction system with the subject's protocol 
taken to follow that path but also about the provided hints as to the information she used 
cues present in the successive situations to learn each new strategy in the context of 

(eached that indicate what next step may be the preceding one. This information was of at 
ppropriate. The new productions generated least three different kinds: (a) task-depen- 

by the adaptive system link the cues with dent information extracted from the task in- 
their actions. structions, (b) task-dependent information

Finally, there is some empirical evidence obtained by observation in the course of solv-
that other naive subjects confronted with the ing the problem, and (c) task-independent
Tower of Hanoi problem will have learning ex- prior information about classes of possible
periences similar to those of our subject. Six strategies.
subjects have been observed by Andy /Kahn A second, adaptive, production system was
(Note 1) to achieve a subgoal strategy in then constructed that incorporated a set of
much the same way as our subject did. Al- learning capabilities. Presented with the
though five of Kahn's subjects then went on, Tower of Hanoi task, this system learned
like ours, to attain the pyramid subgoal strat- three of the four strategies that the subject
egy, one gradually shifted from the simple acquired, requiring a portion of a trial, as the
subgoal strategy to the move pattern strategy subject did, to learn each new strategy. This
described in Simon (1975). simulation gave a precise specification of both

	the task-independent prior knowledge and the
Conclusion task-dependent information that is required

	for such learning.
One particular subject's protocol in solving We have indicated how the adaptive pro-

the Tower of Hanoi puzzle was analyzed in duction svstem we have described, although
some detail to study strategy transformation de™ed from thf evidence of a ?n/e P™™*™-
processes in problem-solving tasks. The sub- solvin8 fotoco1' 1S constructed from mecha-
f A . , , . ,.  nisms of some generality. It is proposed hereject successively generated four different strat- a§ ft theoretkal - model of the processes tbat
egies with varying degrees of awareness. people use to learn in the course of sdlving

The first strategy involved selective forward problems to learn by doing, 
search for a proper move while avoiding repeti­ 
tions of moves. The second used a mixed sub-, ,. ,  ,, . . , , , . -Reference Note goal hierarchy. The remaining two strategies
incorporated recursive subgoals. The latter of L Kahn> Andy Personal communication, April IS,
these two involves the concepts of a goal stack 1978.
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Appendix

Protocol of the Subject

1. I'm not sure, but first I'll take 1 from A and 
place it on B.

2. And I'll take 2 from A and place it on C.
3. And then, I take 1 from B and place it on C. 

(If you can, tell me why you placed it there.)
4. Because there was no place else to go, I had 

to place 1 from B to C.
5. Then, next, I placed 3 from A to B.
6. Well . . . , first I had to place 1 to B, be­ 

cause I had to move all disks to C. I wasn't too 
sure though.

7. I thought that it would be a problem if I 
placed 1 on C rather than B.

8. Now I want to place 2 on top of 3, so* I'll 
place 1 on A.
s_ 9. Then I'll take 2 from C, and place it on B. 
"" 10. And I'll take 1 and . . . place it from A to B.

11. So then, 4 will go from A to C.
12. And then . . . , urn . . . , oh . . . , um, . . , 

- 13. I should have placed 5 on C. But that will 
take time. I'll take 1 ...
(If you want to, you can start over again. If you 
are going to do that, tell me why.)

14. But I'll stay with this a little more ...
15. I'll take 1 from B and place it on A.
16. Then I'll take 2 from B to C.
17. Oh, this won't do . ..
18. I'll take 2 and place it from C to B again.
19. And then, I'll take 1, and from A ...
20. OA no! If I do it this way, it won't work!
21. rll return it.
22. Ok?

23. I'll start over. 
(Go ahead.)

24. If I go on like this, I won't be able to do it, 
so I'll start over again.

25. Let's see ... I don't think 5 will move.
26. Therefore, since 1 is the only disk I can 

move, and last I moved it to B, I'll put it on C 
this time . . . from A to C.

27. So naturally, 2 will have to go from A to B.
28. And this time too, I'll place 1 from C to B.
29. I'll place 3 from A to C.
30. And so I'll place 1 from B ... to C.
31. Oh, yeah! I have to place it on C.
32. Disk 2 ... no, not 2, but I placed 1 from 

B to C . . . Right?
33. Oh, I'll place 1 from B to A. 

(Go ahead.)
34. Because ... I want 4 on B, and if I had 

placed 1 on C from B, it wouldn't have been able 
to move.

35. 2 will go from 'B to C.
36. 1 will go from A to C.
37. And so, B will be open, and 4 will go from 

AtoB.
38. So then, this time . . . It's coming out pretty 

well...
39. 1 will... 1 will go from C . . . to B.
40. So then 2, from C, will go to ... A ...
41. And then, i will go from B to A.
42. And then, 3 will go from C to B.
43. 1 will go from A to C.
44. What?
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45. And then, 2 will go from A to B.
46. And then, oh, it's getting there.
47. 1 will go from C to B.
48. So then, 5 will finally move from A to C.
49. And then, 1 will go from B to A.
50. Oh, I'll put 1 from B to C. 

(Why?)
51. Because if 1 goes from B to A, 2 will go 

from B to C .. .
52. Let's try it again, ok?
53. Urn ... it's hard, isn't it?
54. I didn't know it would be so hard . . . It's 

hard for me to remember . . .
55. And so I guess I have to do it logically and 

systematically.
56. And 1 will go from A to C.
57. 3 will go from B to A.
58. 1 will go from C to B.
59. Because I want to move 4 to C, and to do 

that I have to move 2, don't I?
60. And to do that, 2 will go from C to A.
61. And then, I will go from B to A.
62. And then, 4 will go from B to C.
63. This time, if I think of 3 on C, that will be 

good, so 1 will go from A to C.
64. 2 will go from A to B.
65. 1 will go from C to B.
66. And then, I'll bring 3 from A to C.
67. This time it's easy, and 1 will go from B 

to A.
68. 2 will go from B to C.
69. And then 1 will go from A to C.
70. All right, I made it.
71.1 wonder if I've found something new.
72. I don't know for sure, and little ones will 

have to go on top of big ones ... big ones can't 
go on top of little ones, so first, bit by bit, C will 
be used often before 5 gets there.

"M. And then, if 5 went to C, next I have to 
think of it as 4 to go to C . . .

74. This is my way of doing it. ...
75. Can I move it like this?
76. First, if I think of it as only one disk, 1 

could go from A to C, right?
77. But, if you think of it as two disks, this will 

certainly go as 1 from A to B and 2 from A to C, 
then 1 from B to C.

78. That . . . that anyway 2 will have to go to 
the bottom of C, naturally I thought of 1 going 
to B.

79. So, if there were three . . . , yes, yes, now it 
gets difficult.

80. Yes, it's not that easy . ..
81. ... this time, 1 will...
82. Oh, yes, 3 will have to go to C first.
83. For that, 2 will have to go to B. 
34. For that, urn . . . , 1 will go to C.

85. So, 1 will go from A to C, 2 will go from 
A to B, 1 will go back from C to B, I'll move 
3 ... That's the way it is!

86. So, if there were four disks, this time, 3 
will have to go to B, right?

87. For that, 2 will have to stay at C, and then, 
for that, 1 will be at B.

88. So 1 will go to B.
89. And then, 2 will go from A to C.
90. And then, 1 will go back to C from B.
91. And then, 3 will move from A to B.
92. And then, I will move 1 from C to A.
93. And then, first, I will move 2 from C to B.
94. And then, I will move 1 from A to B,
95. and then, 4 from A to C.
96. And then, again this will go from A ... 1 

will.. .
97. Wrong . . . , this is the problem and . . .
98. 1 will go from B to C . . .
99. For that, um . . . , this time 3 from B, um 

. . . , has to go on C, so ...
100. For that, 2 has to go to A.
101. For that, 1 has to go back to C, of course.
102. And then, 2 will go from B to A,
103. and then, 1 will go from C to A,
104. and then, 3 will go from B to C.
105. So then, 1 will go from A to B.
106. 2 will go from A to C,
107. and then, 1 will go from B to C. 

(All right.) 
108.1 think I can do five now.
109. ... Ah, it's interesting . ..
110. If it were five, of course, 5 will have to go 

to C, right?
111. So, 4 will beat B.
112. 3 will be at C.
113. 2 will beat B.
114. So 1 will go from A to G. 

(Fantastic.)
'>! 5. This is the way I think!! 

116. And then, 2 will go from A to B. 
117.1 will go back from B to C.
118. 3 will go from A to C.
119. For that, um . . ., this time, again -. . . , as 

this time 4 will have to go to B . ...
120. Let's move back 1 from B to A ...
121. Jf 4 has to go from A to B, it means ...
122. 2 will have to go to 3.
123. Because 1 will,. .
124. So, 1 will go back from B to A.
125. And then, 2 will go from B to C.
126. And then, 1 from A to C.
127. And then, 4 from A to C.
128. And then, this time . . . , it's the same as 

before, I think . . . , um ...
129. Of course, 5 will go to C, right?
130. For that, 3 will have to go to B, so
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131. 2 will go back to A,
132. 1 from C to B.
133. 2 from C to A.
134. 1 from B to A.
135. 3 from C to B.
136. 1 from A to C.
137. 2 from A to B.
138. 1 from C to B.
139. And then, finally 5 will go from A to C,
140. and then, this time; um . . . , um, 4 will go 

to C, so ...
141. 3 goes to A,
142. 2 goes to B,
143. and then, 1 will go to A.
144. So, anyway, I will move 1 from B to A.
145. 2 from B to C.
146. And then, 1 from A to C.
147. 3 from B to A.
148. 1 from C to B.
149. And then, 2 from C to A.
150. And then, 3 from B . ..
151. 1 fromB to A.
152. And then, finally, I have succeeded in mov­ 

ing 4 from B to C.
153. So, this time, um . . . , oh, this time, 3 

naturally has to go here, so,
154. for that, 2 has to go to <B.
155. So 1 will go from A to C,
156. place 2 from A to B,
157. place 1 from C to B,
158. and then, 3 from A to C.
159. Place 1 from B to A,
160. place 2 from B to C,
161. and then, move 1 from A to C.
162. Oh, yeah . . . , In this way, think bit by bit 

.. . , think back ... 
(Ok, why don't you try again?)

163. After all, it's the same thing, isn't it?
164. First 1 will go from A to C.
165. Because, 5, at the end, willgo to C, so,
166. So, 4 will go to B.
167. And then, 3 will go to G.
168. And then, 2 will go to B.
169. So, 1 will go from A to C.
170. 2 will go from A to B.
171. Move 1 from C to B,
172. move 3 from A to C.
173. Next, 4 will go to B. So ...
174. move 1 from B to A,
175. move 2 from B to C.
176. Move 1 from A to C,
177. and then, move 4 to B.
178. Next, 5 has to go to C, so ...
179. I only need move three blocking disks te 

,.. B.
180. So, first... 1 will go from C to B,

181. move 2 from C to A,
182. and then, move 1 from B to A.
183. Move 3 from C to B,
184. 1 from A to C.
185. Move 2 from A to B,
186. and then, 1 from C to B.
187. And then, 5 can go to C ...
188. It's easy, isn't it?
189. 5 has already gone to C.
190. Next. .. , 5 was able to move, because . : .
191. A and C were open, right?
192. 5 is already at C, so ...
193. I will move the remaining four from B to 

C...
194. It's just like moving four, isn't it?
195. So ... I will have to move 4 from B to 

C...
196. For that, the three that are on top have to 

go from B to A ...
197. Oh, yeah, 3 goes from B to A!
198. For that, 2 has to go from B to C,
199. for that, 1 has to go from B to A.
200. So, 1 will go from B to A.
201. 2 goes from B to C.
202. 1 will go from A to C.
203. And then, 3 can go from B to A.
204. Then, it'll be good if 1 and 2 go to A, so.
205. . . . first 1 goes from C to B,
206. 2 moves from C to A. 

. 207. And then, 1 moves from B to. A.
208. Um, with this, the three at B have moved 

to A, so ...
209. move 4 from B to C.
210. Next, if the three at A go to C, I will be 

done.
211. So first, the top two disks will be moved 

toB.
212. For that, 1 goes from A to C.
213. 2 goes from A to B.
214. And then, 1 goes from C to B,
215. and then, 3 goes from A to C.
216. Oh! This time, the two on B will be moved 

to C.
17. Right. ..

218. 1 moves from B to A,
219. 2 fromB to C.
220. And then, 1 will move from A to C.
221.1 did it!
222.1 think I finally got it...
223. This time, if 5 goes to C, it'll be just like 

moving four ... , but...
224." I still don't quite yet.. .
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