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Discussions in the psychological literature of cognitive processes 
generally treat separately a category of behavior called "problem solving," on 
thfe one hand, and a category called "concept attainment," "pattern 
induction," or "rule discovery," on the other. We will use the phrase "rule
induction" to refer to any of the diverse tasks in the second category. We find i 
this division already in the 1938 edition of Woodworth's Experimental ^_fc 
Psychology, where the penultimate chapter is devoted to problem-solving 
behavior, and the final chapter primarily to rule induction. In explanation of 
this organization, Woodworth comments:

Two chapters will not be too many for the large topic of thinking, and we may 
make the division according to the historical sources of two streams of experimenta 
tion, which do indeed merge in the more recent work. One stream arose in the study <*r-~«~- 
of animal behavior and went on to human problem solving; the other started with 
human thinking of the more verbal sort [Woodworth, 1938, p. 746].

Far from merging, the two streams are still treated as quite distinct in 
more recent works. For example, in his 1968 Annual Review survey of 
artificial intelligence studies and their relevance to psychology, Earl Hunt 
devotes separate sections to "deductive problem solving" and "inductive 
problem solving," his categories corresponding closely to those introduced 
above. Similar categories appear in the principal contemporary textbooks.

This dichotomization cannot be regarded as satisfactory, for it 
fragments theories of thinking into subtheories with no apparent relation 
between them. In proposing information processes to account for problem 
solving, the theorist then assumes no responsibility for the relevance of these . ; 
processes to concept attainment or other rule induction tasks, and vice versa. "^ 
It is of course possible that these two kinds of thinking activity are entirely - . 
separate and independent, but possibility is not plausibility. It would be
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much better if we could show just how they are related; or, if they are not 
related, if we could provide a common framework within which the two 
classes of activities could be viewed.

Hunt's (1968) dichotomy of "deductive" and "inductive" will not do, for 
it is easy to show that from a logical standpoint the processes involved in 
problem solving are inductive, not deductive. Hunt may have been misled by 
the fact that the earliest artificial intelligence systems for problem solving 
(e.g., the Logic Theorist) dealt with the task environment of theorem proving. 
To be sure, the proof of a theorem in a formal mathematical or logical system 
is a deductive object; that is to say, the theorem stands in a deductive relation 
to its premises. But the problem solving task is to discover this deduction, 
this proof; and the discovery process, which is the problem-solving process, is 
wholly inductive in nature. It is a search through a large space of logic 
expressions for the goal expression   the theorem. Hence, both a theory of 
problem solving and a theory of rule induction must explain inductive 
processes   a further reason for believing that these theories should have 
something in common.

Recent developments in the theory of problem solving (Newell, 
Newell & Simon, 1972; Simon, 1972c) give us a clue as to how to go about 
building a common body of theory that will embrace both problem solving 
and rule induction, including concept attainment. It is the aim of this paper 
to outline such a theory. We shall not adduce new empirical evidence, nor 
even refer to particular experiments in the literature. Instead, we shall take 
as our starting points the recent formulation of the theory of problem solving 
mentioned above (Newell & Simon, 1972), and a recently formulated and 
rather general process model of concept attainment (Gregg & Simon, 1967), 
and show how both of these relate to the more general framework that is our 
goal. Since these theories have substantial empirical underpinnings, the 
discussion will be tied firmly to empirical data, albeit indirectly.

PRELIMINARY REMARKS

Before proceeding, we need to say more clearly what we mean by 
"common body of theory." A theoretical explanation of the behavior of a 
subject confronted with a problem-solving task or a concept-attainment task 
might take the form of a program, an organization of information processes, 
more or less appropriate to carrying out the task. This is, in fact, the form of 
the problem-solving theory of Newell and Simon and the concept attainment 
theory of Gregg and Simon mentioned in the last paragraph. To the extent 
that two programs explaining behavior in these two kinds of task 
environments employ the same basic processes, or to the extent that the 
processes are organized isomorphically, we may say they express a common 
theory.
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But we must be more specific about what is common to them. The fact 
that two physical theories can both be stated in terms of differential 
equations connects them only superficially. Even less should we be surprised 
or impressed to find that two theories of human information processing 
performance can be written in the same programming language. Computer 
languages IPL-V, LISP, SNOBOI^-are almost completely general, cap 
able of describing any organization of information processes. Anything that 
can be done by a Turing Machine can be described in any of these languages. 
When we speak of a common theory for problem solving and rule induction 
we intend to assert more than that man is a Turing Machine.

Nor is it sufficient or very informative to show that it is possible to 
write a single program that will simulate and describe human behavior in 
both a problem-solving and a concept-attaining environment. That kind of 
generality could be achieved by a "big switch" a pair of subprograms 
joined only by a simple test to identify the task environment, and to select 
from the pair the appropriate subprogram to deal with it.

The generality we seek, then, is not the nearly vacuous generality of 
either the Turing Machine or the Big Switch. Our aim is to show a much 
closer relation between problem-solving processes and rule-inducing 
processes than is implied by either of these. Exactly what this means will 
become clear as we proceed.

Because "problem solving" and "rule induction" are themselves 
heterogeneous domains with ill-marked boundaries, we will make matters 
more concrete by referring to some specific illustrative tasks. For problem 
solving, we will pay special attention to two tasks analyzed at length in Newell 
and Simon (1972): cryptarithmetic and discovering proofs for theorems in 
logic. For rule induction we will use as examples the standard concept 
attainment paradigms (Bruner, Goodnow, & Austin, 1956; Gregg & Simon, 
1967; Hunt, 1962), extrapolation of serial patterns (Feldman, Tonge, & 
Kanter, 1963; Simon & Kotovsky, 1963; Simon, 1972a), and induction of the 
rules of a grammar (Klein & Kuppin, 1970; Solomonoff, 1959; Siklossy, 
1972).

Our undertaking is a little more ambitious than has been indicated thus 
far. For, not only have distinct bodies of theory grown up to deal with 
problem solving and rule induction, respectively, but there has been relatively 
little unity in theorizing across the whole of the latter domain. In partic 
ular, previous theoretical treatments of concept attainment do not include 
extrapolation of patterned sequences, and theories of sequence extrapolation 
do not encompass the standard experimental paradigms for studying concept 
attainment. Here we will aim at a unified treatment of the whole range of 
things we have here been calling "rule induction," and a comparison of 
these, kn turn, with the activities called "problem solving."

L
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We will begin by outlining the basic features of the information 
processing theory of problem solving, and then use these features to construct 
the broader theory.

. Jut

PROBLEM SOLVING

In solving a well-structured problem (and this is the only kind we shall 
deal with), the problem solver operates within a problem space. A problem 
space is a set of points, or nodes, each of which represents a knowledge state. 
A knowledge state is the set of things the problem solver knows or postulates 
when he is at a particular stage in his search for a solution. For example, at a 
certain point in his attempt to solve the cryptarithmetic problem, DONALD 
+ GERALD = ROBERT, the problem solver may know that the number 5 
must be assigned to the letter D, the number 0 to T, the number 9 to E; and 
he may know also that R is odd and greater than 5. The conjunction of these 
bits of knowledge defines the particular node he is currently at in his problem 
space, and the space is made up of a collection of such nodes, each 
representing some set of pieces of knowledge of this kind.

Problem-solving activity can be described as a search through the space 
(or maze, or network) of knowledge states, until a state is reached that 
provides the solution to the problem. In general, each node reached contains 
a little more knowledge than those reached previously, and the links 
connecting the nodes are search and inference processes that add new 
knowledge to the previous store.

Thus, in the cryptarithmetic problem, the solution state is one in which 
each letter has been assigned a digit and in which it has been verified that 
these assignments provide a correct translation of the encoded addition 
problem. The problem solver moves from one state to another by inferences 
(or conjectures) and by visual searches of the problem display. For example, 
knowing that E = 9 and that R is odd and greater than 5, he may infer that 
R = 7. Or knowing that E = 9, he may discover, by scanning, the E in 
ROBERT, and replace this by a 9, obtaining: A + A = 9 (apart from carries) 
for the third column from the right.

Similarly, in discovering the proof for a theorem, a problem solver 
organized like the General Problem Solver (GPS) starts with some initial 
expressions (premises) and the goal expression (the theorem to be proved), 
and applies rules of inference to generate new expressions that are derivable

1
50NAL5 
GERAL5 
ROBERO

D=5 
T=0 
R > 5, odd

FIG. 5.1. A knowledge state in .a cryptarithmetic task. (The figure shows what the problem 
solver knows after his initial processing of the sixth, fifth, and first columns of the display.)

v 
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FIG. 5.2. Search tree generated by GPS in logic. (Initial expression (node 1) was (R D' P)
(~R3 Q). Above each node (knowledge state) is shown the new expression that has been 
derived here. Below each node is shown the order in which it was generated. On each link is 
shown the operator used to generate the next node. See Newell & Simon, 1972, pp. 420-425.)

from the premises, until an expression is generated that is identical with the 
desired theorem. In this case, the knowledge states of which the problem 
space is composed are sets of expressions that have been derived along 
particular inference paths.

The search through such a problem space is generally highly selective, 
being guided by the information that becomes available at each successive 
knowledge state. Given that the problem solver has already visited a certain 
number of points in the problem space, he can determine the direction in 
which he will continue to search by two kinds of decisions: (a) selection, from 
among those already visited, of a particular knowledge state from which to 
continue his search and (b) selection of a particular operator (inference rule, 
or "move") to apply at that node in order to reach a new knowledge state.

Means-ends analysis, which appears to be used extensively by human 
subjects in many problem environments, is a particular kind of scheme for 
making the choice of operator. It is the key selection mechanism incor 
porated in GPS. For means-ends analysis, the information in a particular 
knowledge state that has already been reached is compared with the 
specification of the solution to discover one or more differences between 
them. Corresponding to one of these differences, an operator is selected that 
is known, from previous experience, often to eliminate differences of that 
kind. The operator is applied to reach a new knowledge state.

We may formalize and generalize this description of problem solving as 
follows:

1. There is a problem space whose elements are knowledge states.
2. There are one or more generative processes (operators) that take a 

knowledge state as input and produce a new knowledge state as output.

s
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Goal: Transform object A into object B

Match A to B 
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difference D
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reduce D
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FIG. 5.3. GPS methods flow diagram. Information in the form of differences between the 
current knowledge state and the goal is used to select operators that may reduce the differences. 
(Reprinted with permission from Newell & Simon, 1972, Fig. 8.7, p. 417.)

3. There are one or more test processes for comparing a knowledge state 
with the specification of the problem state and for comparing pairs of 
knowledge states and producing differences between them.

4. There are processes for selecting which of these generators and tests 
to employ, on the basis of the information contained in the knowledge states.

The crucial points in this characterization are the third and fourth 
postulates: that information contained in the knowledge state can be used to 
guide the generation of new knowledge states, so that the search through the 
problem space can be selective rather than random. The problem-solving 
process is an information gathering process as much as it is a search process. 
The accumulation of information in the course of search permits the search 
to be selective, and gives problem solving in very large problem spaces a 
chance of success. The processes for using this information to steer the search 
are generally processes of inductive inference. Being inductive, they do not 
provide certainty, but have only heuristic value in guiding the search and 
making it efficient.

Characterizing problem solving as information gathering gives us the 
framework we need to deal with the whole range of tasks in which we are
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interested. We shall describe the process for all of these tasks as a search 
through a problem space guided by information accumulated during the 
search. And we shall undertake to show that the fundamental search 
processes (generation, test, and selection processes), as well as the inference 
processes, are of the same kind in rule induction tasks as in problem-solving 
tasks, and are organized in a very similar way. Finally, we shall see that the 
basic difference between the two domains is that rule induction involves an 
alternation of activity between two distinct, but interrelated, problem spaces, 
while only a single space is involved in problem solving.

Information Gathering in Theorem Proving

Consider the following GPS-like system for discovering proofs for 
theorems in symbolic logic. Many subjects in the laboratory have been 
observed to follow essentially this process. The knowledge states are sets of 
logic expressions that have been derived from the initial premises. Two kinds 
of information are used to guide the search: (a) the degree of similarity or 
difference between the expressions contained in a given knowledge state and 
the goal expression and (b) the specific character of the differences between 
particular expressions in the knowledge state and the goal expression. The 
first kind of information measures the progress that has been made in 
reaching a knowledge state if it contains an expression that is highly similar 
to the goal expression, then it can be taken as a likely starting point for 
further search. The second kind of information suggests how a closer 
approximation to the goal expression can be obtained the specific 
differences that are detected suggest specific operators to remove them (see 
Fig. 5.3).

Information Gathering in Cryptarithmetic

We shall use the cryptarithmetic task as a "bridge" from the topic of 
problem solving to the topic of rule induction because it is possible to give an 
interpretation to the task which places it in either of the two categories. 
Although the information gathering process in solving cryptarithmetic 
problems could be described in a manner very similar to our description of 
information gathering in theorem proving, we shall look at matters in a 
slightly different way. Let us consider the knowledge states in cryptarithmetic 
to be made up of two distinguishable components: the problem display in 
which digits have replaced those letters to which assignments have already 
been made and the list of assignments themselves. The problem-solving goal 
can then be described in two ways: (a) to replace all letters in the display by 
digits in such a way that the resulting problem in arithmetic is correct or (b) 
to complete the list of assignments of digits to letters so that each letter has a 
distinct digit assigned to it. Of course, both conditions must be satisfied to

L
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^ DONALD D=5
+ G E RA LD 

ROBERT

Problem Display List of Assignments 
(Instance Space) (Rule Space)

FIG. 5.4. Dual problem space interpretation of cryptarithmetic task.

solve the problem, but if appropriate consistency checks are made when the 
display is modified, and when a new assignment is added to the list, then 
reaching either goal will guarantee achievement of the other.

How is information extracted from knowledge states in the course of 
solving the problem? Whenever sufficient information has been accumulated 
in any column in the display, one or more new assignments of digits can be 
inferred from it by applying simple arithmetic processes. For example, in 
DON ALD +GERALD = ROBERT, if D = 5 has been assigned, so that the 
display becomes: 5ONAL5+GERAL5 = ROBERT, it can be inferred that 
the last T is 0, so that T=0 can be added to the list of assignments. The 
inference is made by a "Process Column" operator that takes the column of 
the display (together with information about carries) as input, and produces 
the assignment as output.

Conversely, whenever a new assignment is added to the list, the display 
can be changed by substituting the assigned digit for the corresponding letter 
whenever the latter occurs in the display. For example, suppose we have the 
display 5ONAL5 + G9RAL5 = ROB9RO and the list of assignments: (D=5, 
T=0, E = 9). Suppose we now add to the list the new assignment, R = 7. We 
can now alter the display to read: 5ONAL5+G97AL5 = 7OB970. Here, the 
input is an assignment from the list of assignments, the output is a modified 
display. The modification is made by a "Substitution" operator that searches 
the columns of the display for instances of the letter in question, and 
substitutes the digit for it wherever it is found.

Other inferential processes for producing new information may operate 
internally to the list of assignments or to the display respectively. As an 
example of the former, suppose that the list of assignments includes the 
information: E = 9 and R = 7 v 9. Then, if there is a process for examining 
the consistency of assignments, that process can draw the inference that 
R = 7, and replace R = 7 v 9 on the list by this more precise assignment. Sim 
ilarly, processing column 1 of the problem with the information that D = 5, 
leads both to the inference that T = 0, and that a 1 is carried into the second 
column. The latter piece of information can be entered directly on the 
display.
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The situation can now be redescribed in the following way. We consider 
two problem spaces: a space of sets of assignment rules (rules for substituting 
digits for letters in the display), and a space of sets of instances (columns of 
the display). The goal is to complete the set of rules, so that there will be a 
distinct assignment rule for each letter. The proposed rules are tested against 
the instances. Each column of the display, which we are now interpreting as 
an instance, provides a partial test of the consistency of the rules. The 
situation so described differs from the usual concept attainment paradigm 
only in the fact that the instances are not completely independent, but 
interact through the carries from one column to the next (Fig. 5.5). In every 
other respect, the task is now a standard concept attainment task. Simply by 
changing our way of viewing the problem space (or spaces), we have 
transferred the cryptarithmetic task from the category of problem solving to 
the category of concept attainment, pattern induction, or rule discovery.

From this example, we hypothesize that the trademark that distin 
guishes these two classes of tasks is the presence or absence of more than one 
distinguishable problem space in which the problem-solving activity takes 
place. If there is only one space, we describe problem solving as a search 
through that space, made more or less selective and efficient by drawing 
upon the information that is available at each of the nodes that is reached. If 
there are two spaces, we describe problem solving as a search through one of 
them (usually, as we shall see, through the space of rules), made more or less 
selective and efficient by using information available in each space to guide 
search in the other. By focussing our attention on the processes for obtaining 
and utilizing information, we can provide the common framework that we 
have been seeking for all of these tasks.

RULE INDUCTION

If the theory of rule induction is to bear a close relation to the theory of 
problem-solving processes, then it must be constructed of the same basic 
modules: one or more generating processes, one or more test processes, and 
one or more processes to select the generators and tests to be applied, and to 
determine the order of their application. Newell (196j£ 1973) has proposed a ft//

10C2 
10C3 
10C4 
10C5 
10C6

FIG. 5.5. Space of instances in cryptarithmetic. (Showing interdependence of instances by 
virtue of carries, C2-C6.)
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** taxonomy of general problem-solving methods that lists the principal ways in
which these modules can be combined into operative systems. By "general 
methods" Newell means methods that make relatively unspecific demands 
upon the task environment, and hence, are widely applicable.

Some General Methods

* We will be concerned with just three of the methods Newell defines: the 
generate-and-test method, the heuristic search method, and the induction (or 
hypothesis-and-match) method. We shall see that the first two of these are 
characteristic of problem-solving systems, the third of rule induction systems, 
but that they differ mainly with respect to the information flows among the 
modules. All of these methods may draw upon one or both of two 
submethods: the matching method, and the means-ends method.

At a minimum, any goal directed system must include a generator for 
producing new knowledge states and a test for determining whether a state 
produced by the generator is in fact a solution state. The simplest solution 
method is just this minimal generate-and-test. The power and efficiency of 
the method derives from information that is implicit in its structure. If, for 
example, the generator can produce only a very small set of states, and if this 
set is guaranteed to contain a solution, the method will be powerful, for the 
solution will be found promptly. If the test can reject inadequate solutions 
rapidly say, by means of a matching process then the cost of testing will 
be relatively small.

In the generate-and-test method, the order in which nodes are generated 
is independent of the knowledge that is gradually accumulating the 
information is used only by the test process. Consider next a more 
sophisticated system, where the generator is no longer insensitive to 
knowledge that has been produced. Now information flows back from the 
test to the generator. This feedback requires the test to provide more 
information than just the success or failure of the match between the 
knowledge states generated, and the specification of the desired knowledge 
state (the goal). Using the test information, the generator produces a new 
knowledge state by modifying a state produced previously in the search. This 
dependency of generation upon the test outcome characterizes the heuristic 
search method.

We have already remarked on two kinds of information that can be used 
by the generator in heuristic search: first, information to select which of the 
previously generated states will be modified to produce the next state; 
second, information to select which of several available operators will be 
applied to the knowledge state to modify it. If the latter choice depends on 
the test's detecting specific differences between a state and the goal state, 
then we speak of the means-ends submethod.
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Thus far everything that has been said applies equally well to problem 

solving and to rule induction. In the former case, the search ends with the 

discovery of the problem solution; in the latter, with the discovery of a rule 

that is consistent with a set of instances. In both cases, the key process is a 

search an inductive process. The search for a rule can be (and usually will 

be) a heuristic search, and can employ the means-ends submethod, as we 

shall see.
What distinguishes rule induction tasks from problem-solving tasks is 

the nature of the test process. In a rule induction task, the attainment of a 

solution is determined by applying the proposed rule to objects (instances), 

and by then testing whether the application gives a correct result. The test is 

not applied directly to the rule, but to another set of expressions, the 

instances. The evaluation of the rule thus takes an indirect path, and the 

feedback of information from test to generator retraces this path. A rule is 

rejected or modified if false instances are associated with it, or if there exist 

true instances that are not associated with it.
In a rule induction task we can define a space of sets of instances in 

addition to the space of sets of rules. The test process for the rule induction 

system operates within the space of instances. It can incorporate an instance 

generator (unless the instances are generated by the experimenter), as well as 

instance tests (which may or may not make use of knowledge of results 

provided by the experimenter). Suppose that the overall test process contains 

both generator and test subprocesses operating in the space of the instances. 

These subprocesses and their organization may, in turn, exhibit various levels 

of sophistication in their use of information e.g., in the feedback of 

information from the test subprocess to the generator subprocess. A 

primitive test process would employ only the generate-and-test method; a 

more powerful one, heuristic search, possibly including the means-ends 

submethod.
In Newell's taxonomy, a system uses the induction method if there are 

separate generators for rules and instances, and a match process to test 

whether an instance agrees with (is associated with) a rule. Since all heuristic 

search methods are inductive, as we have seen, it will be better to refer to this 

method as the rule induction method. It is clear that the rule induction 

method, so defined, is really a whole collection of methods. Nor is the locus of 

variation limited to the test process, as sketched in the last paragraph. There 

can also be various arrangements for the flow of information between the 

instance space and the space of rules i.e., between the test process and the 

generator process of the entire rule induction process (see Fig. 5.6).
In the mpst primitive system, there is no feedback of information from 

test to rule generator (Channel e, Fig. 5.6); the test simply eliminates rules 

that have been generated, but does not provide information to help the 

generator select the next rule. In this case, the method is a rule induction 

version of the generate-and-test method, adapted to the dual problem space.
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Experimenter's 
Classifier

.^Correct 
I Class

FIG. 5.6. Information flows in rule induction processes. (Broken lines show information 
channels used in some, but not all, variants of the rule induction task.)

On the other hand, if the rule generator does not create each rule anew, but 
produces it by modifying previous rule sets on the basis of information 
received from the test of instances (Channels a and e. Fig. 5.6), then we have a 
rule induction version of the heuristic search method.

Further, the existence of two spaces and two generators, one for rules 
and one for instances, opens up possibilities for methods that are not 
available when there is only a single problem space. For example, the 
instance generator need not be autonomous, but may instead derive 
information from the rules that have been generated and the previous tests 
that have been performed a flow of information from rule space to instance 
generator (Channel b, Fig. 5.6) as well as from instance space to rule 
generator (Channel a). Thus, each new rule may be generated on the basis of 
the instances constructed up to that point (heuristic search for rules), while 
each new instance may be generated on the basis of the rules constructed up 
to that point (heuristic search for instances). This, in fact, is just what is 
happening in the cryptarithmetic solution method described earlier when we 
view the columns of the problem display as instances, and the list of 
assignments as a list of rules.

A General Rule Induction Program

We are now ready to define a formal system that expresses the common 
theory we are seeking. Fig. 5.7 gives the definition of a General Rule 
Induction (GRI) Executive Program. In order to make it as readable as 
possible, the definition is expressed in the informal programming language 
defined in Newell and Simon (1972, pp. 38-51).

The GRI system is extremely simple, consisting of a subprocess to 
generate rules, and a second subprocess to generate and test instances. The 
output of the test (test-result) is available as an input to the rule generator, to 
help guide the next step of generation. Whether this information will be used, 
and in what way, depends on the internal structure of the rule generator, 
which is not specified. Thus GRI employs the generate-and-test method. 
Whether it employs heuristic search or even more elaborate methods depends
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on the specification of the sub-processes and the information flows between 
them. Notice that just as the test results are available as input information to 
the rule generator, so the set of rules is available as input information to the 
instance generator.

Fig. 5.7 makes patent that the only feature distinguishing a rule induc 
tion system from a problem-solving system is that the tests of the rule 
induction system operate in a different space from the generator. Generator 
and test use the same space in a problem-solving system. The fundamental 
generator-test alternation is identical for both kinds of systems, but the 
similarity between them extends much further. In both problem-solving and 
rule-induction systems, the selectivity of generators depends upon the 
feedback of information from the test processes. Because the rule induction 
system may contain two generators, rather than just one, there-is a larger 
number of possible channels of information flow, hence, a richer taxonomy of 
possible specialized systems.

In Fig. 5.6, we have shown the flows of information in GRI. Some of 
these (shown by broken lines) are "optional," in the sense that variants can 
be devised that include or exclude them. We will illustrate this point in the 
next sections, when we discuss how GRI would handle some of the standard 
paradigms for concept attainment, series extrapolation, and grammar 
induction.

GRI is capable of performing the whole range of tasks just mentioned. 
We must be careful as to what we mean by this claim. The space of concepts 
appropriate to the usual concept attainment tasks is different from the space 
of grammar rules or the space of sequential patterns. For a program to 
undertake to solve problems in any one of these domains, it will require in 
addition to its general mechanisms and organization, common to all the 
domains particularized equipment for dealing with the specific domain 
before it.

The situation here is the same as the situation confronting the General 
Problem Solver. GPS is a general organization for performing means-ends

General Rule Inducer:
1. generate rules (=> rules);

generate instances (=* instance);
classify instance by. rules (=> instance-class);
test instance-class (=* test-result).
if test-result = 'correct' tally = tally + 1,

else set tally = 0; 
if tally = criterion exit, 

else go to 1.

FIG. 5.7. Executive program for the General Rule Inducer.
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analysis, and for guiding search through a space of knowledge states. Before 

GPS can go to work on any specific problem, it must be provided with a 
specification of the problem domain: the objects, the definition of the 
knowledge states, the operators, the differences, and the associations of 
operators with differences. The General Rule Inducer needs the same kinds 
of problem specification in order to tackle specific tasks. GRI its ;lf is an 
executive program providing an organization within which the specialized 
subprocesses can operate. We now present some examples of such specialized 
subprocesses that are applicable to the specific task domains of concept 
formation, series extrapolation and grammar induction.

"~~*+

Concept Attainment

In the commonest laboratory form of the concept attainment task, the 
subject sees a sequence of stimuli that differ along one or more dimensions 
(e.g., "large blue square"). Certain of these stimuli are instances of a concept 
(e.g., "square"), others are not. The subject guesses whether each is an 
instance, and is told whether he is right or wrong. His task is to induce the 
concept so that he can classify each successive stimulus correctly. In heuristic 
search terms, the subject searches through a space of possible concepts for 
the right one. The information that guides this search, however, is not 
information about concepts, but information about whether certain stimuli 
are instances of concepts or not.

The behavior of subjects in concept attainment tasks of the kinds 
studied by Bower and Trabassoiand others has been formalized by Gregg and 
Simon (1967) in a family of programs whose individual members differ only 
with respect to the amount of information the subject is assumed to retain as 
a basis for guiding the concept generator (Channels a and e of Fig. 5.6). The 
programs described by Gregg and Simon conform to the organization of the 
GRI executive.

In those variants of the program where no information is fed back 
(Channel a inoperative), whenever a guess has been wrong, the generator 
selects a concept at random from the set of available concepts. A slightly 
more efficient generator (which, strictly speaking, requires feedback via 
Channel e only to signal whether or not the last instance was classified 
correctly) samples randomly from the set of available concepts, but without 
replacing those already eliminated. A somewhat more efficient generator, 
using also feedback via Channel a, produces a concept consistent with the 
correct classification of the most recent instance. A still more efficient 
generator produces a concept consistent with the classifications of all 
previous instances. Empirical data in the literature indicate, according to 
Gregg and Simon, which of these methods will be employed by a human
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subject depends on the limits of his short-term memory and the availability of 
time to fixate information or of external memory to record it.

The paradigm described by Gregg and Simon's program does not 
incorporate a flow of information from the space of concepts to the generator 
of instances (Channel b in Fig. 5.6), since the instances in those experiments 
are produced by the experimenter independently of the subject's problem- 
solving processes. The two spaces are linked only through the problem 
solver's guesses (Classify Instance, Fig. 5.6 and 5.7) as to the correct 
classification of the instances as they are produced. In fact, these guesses are 
irrelevant, since the information is actually provided by the experimenter's 
reinforcement of each guess as correct or incorrect. The same problem- 
solving methods would work if the experimenter simply classified each 
instance as corresponding or not corresponding to the concept, without 
demanding a response from the problem solver. The flow of information is 
entirely from the instances to the concept generator, and not in the opposite 
direction.

However, in other forms of the concept attainment experiment (Bruner 
et al., 1956) the problem solver himself generates the instances. He may, of 
course, generate them randomly; but he may also select instances so 
constructed as to choose between two classes of hypotheses. This information 
flow, from the space of rules to the generator of instances (Channel b), 
enables solution methods that are more efficient than any with a one-way 
flow of information. Notice that the criterion for selection of instances is 
indirect and sophisticated: instances are valuable for solving the problem 
(finding the correct concept) to the degree that information on their 
classification imposes new restrictions on the domain of the rule generator.

The programs of Gregg and Simon do not cover the concept attainment 
paradigm in which the subject selects the instances. However, it is easy to 
generalize their programs to cover this case within the executive program of 
Fig. 5.7. A set of processes that accomplishes this is shown in Fig. 5.8. Each 
of the four processes modify rules, generate instances, classify instance, and 
test instance-class is extremely simple. The rule generator and instance 
generator embody particular assumptions about the subject's strategy for 
using information to enhance selectivity. The rule generator remembers 
which hypotheses have already been rejected, and also requires the new 
hypothesis to be consistent with the previous instance. The particular 
instance generator that is provided here generates instances that are positive 
for the current rule on half the trials and negative on the other half. As a 
guarantee of the completeness of the analysis, a SNOBOL version of the 
program of Fig. 5.7 and 5.8 has been written and tested. By modifying the 
several processes in simple ways, always employing the executive of Fig. 5.7, a 
wide range of experimental paradigms and of subject strategies within each 
of those paradigms can be simulated.

;*.
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Modify rules (=> rules):
set tally = 0;

1. delete rules from hypothesis-list; 
select item randomly from 

hypothesis-list (=> rules); 
classify instance (=?• instance-class); 
test instance-class (=> test-result); 
if test-result = 'right' exit, 

else go to 1.

Generate instances (=> instance); 
if parity = 'odd' set parity = 'even',

else set parity = 'odd'; 
produce instance randomly

from instance-description (=> instance); 
classify instance (=> instance-class); 
if parity = 'even'

then if instance-class = 'positive' exit,
else set complement(rules) = rules in instance & exit; 

else if instance-class = 'negative' exit,
else set rules = complement(rules) in instance & exit.

Classify instance (=> instance-class):
if rule E instance set instance-class = 'positive' & exit, 

else set instance-class = 'negative' & exit.

Test instance-class (=> test-result); 
if correct-rule E instance 

set correct-class = 'positive',
else set correct-class = 'negative'; 

if instance-class = correct-class 
set test-result = 'right' 
set tally = tally +1 & exit,

else set test-result = 'wrong' & exit.

FIG. 5.8. Program for concept attainment task. (Subroutines for executive program of 

Fig. 5.7.)

Extrapolation of Patterned Sequences

A theory of how human subjects discover the patterns implicit in 
sequences of letters or numbers and use these patterns to extrapolate the 
sequences was developed in the form of a computer program by Simon and 
Kotovsky (1963). The relation of this theory to other theories of performance
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in this task and to the empirical data has been reviewed by Simon (1972a). 

The pattern discovery program is also an instance of the schema of Fig. 5.7.

In the sequence extrapolation task, the subject is presented with series of 

symbols followed by one or more blanks (e.g., "ABMCDMJ'X His task is to 

insert the "right" symbols in the blanks that is, the symbols that continue 

the pattern he detects in the given sequence. The goal object, then, is a 

sequence of symbols in which all of the blanks have been replaced 

"appropriately." But to fill in the blanks "appropriately," we must employ 

the notions of "same" and "next" between pairs of symbols, and perhaps 

other relations, in order to characterize the pattern as a basis for 

extrapolating it. 1 If the problem solving is to be characterized as a search, 

the search goes on in the space of patterns, and not in the space of 

extfapolated sequences.
To extrapolate the sequence, ABMCDM..., given as an example above, 

the problem solver must induce the pattern underlying that sequence: in each 

period of three letters, the first letter is next (N) in the English alphabet to the 

second letter (2) in the previous period (p); the second letter in each period is 

next (N) to the first letter (1) in the same period (s); the third letter in each 

period is the constant letter 'M', i.e., is the same (S) as the third letter (3) in 

the previous period (p). The pattern might be described as 'N2p Nls S3p'. The 

sequence is initialized by supplying the beginning 'A' and the constant 'M'.

Clearly, the elements of the sequence itself in the extrapolation task are 

the counterparts of the instances in the concept attainment task; while the 

pattern is the counterpart of the concept. What are the flows of information? 

As in the simple concept attainment paradigm, the sequence is provided by 

the experimenter rather than the problem solver. However, in his search for 

pattern, the problem solver can choose which elements of the sequence he 

will test for relations at any given moment. If, in the previous example, he is 

provided with three periods instead of two ABMCDMEFM. . . then, 

having discovered the second 'M' three symbols beyond the first, he can test 

whether an 'M' occurs again three symbols later. To this extent, there can be 

a flow of information (Channel b, Fig. 5.6) from a hypothesized pattern 

component (the repetition of'M') to a choice of which instance (which part of 

the sequence) to examine next.
The flow of information in the opposite direction, from sequence to 

pattern (Channel a), is even more critical for the efficiency of the solution 

method. The problem solver need not generate "all possible hypotheses," but 

can instead detect simple relations ("same" and "next") between pairs of

1 Ernst and Newell (1969) have proposed an ingenious scheme for handling the sequence 

extrapolation task as a GPS problem-solving task, that is, in terms of a single problem space 

that accommodates both the sequences and the patterns. We will not discuss this scheme here, 

since an analysis in terms of a dual problem space seems more natural and simpler. However, 

their proposal shows again the close affinity between problem solving and rule induction, as 

these terms are commonly used.

L_
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symbols in the sequence, and then hypothesize patterns constructed from 
those relations (an example of the matching method). Although obviously 
inductive, the process need not involve any considerable amount of search.

Induction of Grammars

As our final example of a rule induction task, we consider the induction 
of a grammar for a language, from examples of sentences and nonsentences. 
This task has received some attention in the artificial intelligence literature 
(e.g., Biermann & Feldman, 1971; Klein & Kuppin, 1970; Siklossy, 1972; 
Solomonoff, 1959). In the grammar induction task, the subject generates a 
succession of symbol strings that may be sentences in a language possessing a 
formal grammar. He is then told whether or not each string is a sentence. His 
task is to induce the rules of the grammar so that he can predict infallibly 
whether any given string will be classified as a sentence. The commercially 
marketed game QUERIES 'N THEORIES provides a version of this task 
that is readily adapted to the laboratory.

In this problem domain, the examples of sentences and nonsentences 
constitute the space of instances, while the grammar rules correspond to the 
space of concepts. In the most common form of the task, the problem solver 
selects the sentences against which to test his system of rules, hence there is a 
flow of information from the space of rules to the space of instances (Channel 
b, Fig. 5.6), as well as a reverse flow from instances to rules (Channel a).

>

Let us illustrate these information flows more concretely. Consider a 
grammar with two components: a set of base sentences and a set of 
replacement rules that allow the construction of a new sentence by replacing 
certain symbols or sequences of symbols, in any sentence where they occur, 
by a new symbol or sequence. A simple example of such grammar is given by:

Base sentence: Y 
Replacement rule: Y BY

This grammar has a single base sentence, Y, and a single replacement 
rule, Y  *- BY. Applying the replacement rule to the base sentence, then to 
the resulting sentence, and so on, we obtain, as additional sentences of the 
language, BY, BBY, BBBY, and so on.

Suppose that it was already known, by previous tests, that Y and BY 
were sentences. Then, by supplying information from the instances to the 
rule generator, the possible replacement rule Y *- BY could be constructed 
directly. Reversing the flow of information, the rule itself can now be used to 
generate instances of predicted sentences, and the correctness of these can be 
checked by the "native informant" (the experimenter).

To match the various concept attainment paradigms, the task could be 
modified, for example, to supply the set of instances of valid sentences in



PROBLEM SOLVING AND RULE INDUCTION: A UNIFIED VIEW 123

advance. Or the experimenter could supply instances of sentences and 
nonsentences, and require the problem solver to classify them. The two 
classes of tasks are in every way identical with respect to the ways in which 
information can be made available to the problem solver.

Fig. 5.9 shows processes for performing the grammar induction task 
that again operates with the GRI executive of Fig. 5.7. These processes are a 
little more complicated than those of Fig. 5.8, mainly because they must 
generate and test two different kinds of rules: basic sentences and 
replacement rules. The specific generators for the two kinds of rules are not 
defined in the figure. This program, like the one for concept attainment, has 
also been written and debugged in SNOBOL (with specific versions of the 
generators for basic sentences and replacement rules). We have begun to 
gather some data on human behavior in the grammar induction task which, 
on first examination, fit the program of Fig. 5.7 and 5.9 relatively well, but we 
will have to postpone detailed analysis of these data to another paper.

The Tower of Hanoi: A Digression

We digress for a moment to comment on the Tower of Hanoi problem, 
discussed by Greeno and Egan in their paper for this volume, for this task 
illustrates again how tricky is the distinction between problem-solving tasks 
and rule induction tasks. The problem as usually stated to find a sequence 
of moves that will transfer all the disks from one peg to another, subject to 
the usual constraints on moves is clearly a problem-solving task. If 
demonstration of this is needed, it has been provided by Ernst and Newell 
(1969), who programmed GPS to solve the problem by the means-ends 
method.

But the problem can be stated differently: to find a rule for transferring 
the disks from one peg to another. It may also be required that the rule work 
properly for an arbitrary number of disks. Just as clearly, this is a rule 
induction task. To solve it, one or more rule spaces must be formulated and 
searches conducted through these spaces. Knowledge to guide this search 
may be obtained by manipulating the disks that is, by searching through 
the space of arrangements of disks on pegs. Thus this Tower of Hanoi 
problem, as distinguished from the one described in the previous paragraph, 
involves a dual problem space.

Rules for the Tower of Hanoi can be stated in various forms. One 
(incomplete) rule is based on the sequence: 121312141..., where the 
digits refer to the disks Jo be moved. With slight modification, the sequential 
pattern programs discussed earlier could discover this pattern. The recursive 
solution to the problem requires a different kind of rule generator one that 
unde ̂ stands the concept of recursive definition.

Vcfc.——..

at.
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Modify rules (=*• rules): 
if test-result = 'wrong'

delete new-rule from rules; 
if basic-sentence-tally = 'done' go to 1, 

else generate basic-sentence (=> rule)
set new-rule = rule & exit; 

1. if replacement-rule-tally ='done'exit,
else generate replacement-rule (=> rule) & 

set new-rule = rule & exit.

Generate instances (=> instance): 
if new-rule G basic-sentences 

set instance = new-rule & exit, 
else generate item from positive-instance {=> item); 

apply new-rule to item {=> .instance) 
if instance £ positive-instance exit,

else continue generation; 
if positive-instances exhausted 

set signal = 'finished' & exit.

Classify instance (=> instance-class):
generate basic-sentences (=> basic-sentence):

if instance = basic-sentence set instance-class = 'positive' 
& exit from routine, 
else continue generation; 

generate derived-sentences with length = length(instance)
(=> derived-sentence):

if instance = basic-sentence set instance-class = 'positive' 
& exit from routine, 
else continue generation; 

set instance-class = 'negative' & exit.

Test instance-class (=> test-result):
if instance E legitimate-instances add instance

to positive-instances & set correct-class = 'positive',
else set correct-class = 'negative'; 

if instance-class = correct-class
set test-result = 'right',
else set test-result = 'wrong'; 

add instance to tested-instances & exit.

FIG. 5.9. Program for grammar induction task. (Subroutines for executive program of 
Fig. 5.7.)
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Summary: Application of GRI to Specific Task Environments

Table 5.1 shows how we have interpreted the processes of GRI in the 
context of the specific tasks we have discussed: concept attainment, sequence 
extrapolation, and grammar induction. A fourth column in the table shows 
how the cryptarithmetic task can be handled within the same schema when 
viewed as a rule induction task; while the fifth column shows which 
components of the schema have counterparts in a problem-solving task 
where only a single problem space is involved.

We have shown how the specific processes that describe subject behavior 
within the executive program of GRI vary as a function of the characteristics 
of the experimental paradigm and the level of complexity and sophistication 
of the strategy that the subject adopts for handling the task.

In concept attainment experiments, for example, the subject is usually 
instructed specifically as to what concepts are admissible, that is, he is given 
the space of rules. He is also provided with an explicit definition of the space 
of possible instances. In sequence extrapolation tasks much more is usually 
left to the subject. The space of rules and the rule generator are not usually 
discussed explicitly in the instructions, nor a fortiori, the test for the 
adequacy or correctness of the extrapolation. The experimenter provides the 
instances (the incomplete sequence) and an ill-defined goal (that the 
sequence is to be extrapolated). The subject evolves the rest: the space of 
rules and the test for correctness of an extrapolation, as well as the generator 
and test processes that define his strategy.

Variations in subject strategies relate particularly to the use of 
information from each of the problem spaces the rule space and instance 
space to guide the generator for searching the other. In paradigms where 
the experimenter provides one of the generators (e.g., the instance generator 
in the standard concept attainment paradigm) there is less room for variation 
in subject strategy than in paradigms where the subject must devise both 
generators (e.g., in the form of the concept attainment experiment used by 
Bruner et al., 1956).

CONCLUSION

In this paper we have proposed a conceptualization of problem solving 
and of rule induction that allows these two arenas of human thinking to be 
brought within a common framework. We have seen that both problem 
domains can be interpreted in terms of problem spaces and information 
processes for searching such spaces. The generators of elements in a problem 
space may be more or less selective, depending on what use they make of 
information provided by the tests, and varying levels of selectivity can be 
observed in both rule-induction systems and problem-solving systems. What 
chiefly distinguishes rule-induction tasks from problem-solving tasks is that



J

T
A

B
LE

 5
.1

 

A
pp

lic
at

io
n 

of
 G

R
I 

to
 F

ou
r 

Ta
sk

s

Ta
sk

 e
nv

iro
nm

en
ts

R
ul

e
sp

ac
e

In
st

an
ce

sp
ac

e

Te
st

G
R

I

R
ul

es

M
od

ify
 

ru
le

s

In
st

an
ce

s

G
en

er
at

e
in

st
an

ce

C
la

ss
ify

 
in

st
an

ce

Te
st

in
st

an
ce

-c
la

ss

C
on

ce
pt

 
fo

rm
at

io
n

C
ur

re
nt

 
hy

po
th

es
is

G
en

er
at

e 
hy

po
th

es
is

In
st

an
ce

s

/G
en

er
at

e}
^i

ns
ta

nc
e 

J

R
es

po
nd

("
R

ei
nf

or
ce

]
[^

re
sp

on
se

 J

Se
qu

en
ce

 e
x

 
tr

ap
ol

at
io

n

P
ar

tia
l 

pa
tte

rn

M
od

ify
 

pa
tte

rn

Se
qu

en
ce

 
el

em
en

ts

[G
en

er
at

e 
[

|_
se

qu
en

ce
j

P
re

di
ct

 
sy

m
bo

l

M
at

ch
sy

m
bo

ls

G
ra

m
m

ar
 

in
du

ct
io

n

P
ar

tia
l 

gr
am

m
ar

M
od

ify
 

gr
am

m
ar

P
re

di
ct

ed
 

Se
nt

en
ce

s

G
en

er
at

e
Se

nt
en

ce

Q
ue

ry
 e

xp
er

i 
m

en
te

r

(A
cc

ep
t 

J
[s

en
te

nc
ej

C
ry

pt
- 

ar
ith

m
et

ic

Li
st

 o
f a

s
 

si
gn

m
en

ts

M
od

ify
 

lis
t

C
ol

um
n 

of
 

di
sp

la
y

U
pd

at
e

di
sp

la
y

Pr
oc

es
s 

co
lu

m
n

D
et

ec
t c

on


tr
ad

ic
tio

n

P
ro

bl
em

 
so

lv
in

g

N
od

e 
in

 P
ro

b
 

le
m

 s
pa

ce

A
pp

ly
 o

pe
r

 
at

or
 a

t n
od

e

— _

D
es

cr
ib

e 
ne

w
 n

od
e

E
va

lu
at

e
ne

w
 n

od
e

HERBER
T 

A.
 

SIMO
l

^t \ O i 2 n

N
ot

e.
 P

ro
ce

ss
es

 in
 s

qu
ar

e 
br

ac
ke

ts
 a

re
 e

xe
cu

te
d 

by
 e

xp
er

im
en

te
r; 

pr
oc

es
se

s 
in

 p
ar

en
th

es
es

 a
re

 s
om

et
im

es
 e

xe
cu

te
d 

by
 e

xp
er

im
en

te
r.

J



I
.1 
kl PROBLEM SOLVING AND RULE INDUCTION! A UNIFIED VIEW 127

the former call for a pair of problem spaces one for rules and one for 
instances while the latter commonly require only a single-problem space. 
Our analysis of the cryptarithmetic task shows it to lie midway between the 
two main classes, and hence to provide a useful bridge for translating each of 
them in terms of the other.

To test the conceptualization, and to guarantee that it is more than a set 
of analogies, we constructed a formalization, the General Rule Induction 
program, together with subprocesses for concept attainment and grammar 
induction that operate within that program. 2 By means of GRI, each of the 
tasks can be mapped formally on the others. The basic components of these 
programs are generator and test processes organized into generate-test, 
heuristic search, means-ends, and matching methods.

%>>.^iiii iii

Since this was written, Dennis E. Egan and James G. Greeno have written SNOBOL 
routines that operate within GRI for discovering sequential patterns (personal communication). 
Thus the GRI scheme has now been implemented for the three main rule induction tasks 
discussed in this paper.
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