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Abstract

Artificial intelligence methods may be used to 
model human intelligence or to build intelligent 
(expert) computer systems. AI has already reached 
the stage of human simulation where it can model 
such "ineffable" phenomena as intuition, insight 
and inspiration. This paper reviews the empirical 
evidence for these capabilities.

1 Introduction

I am deeply honored to receive this mark of esteem and 
friendship from my colleagues in artificial intelligence. It is 
now just forty years since Al Newell, Cliff Shaw and I took 
the plunge into the exhiliarating waters of AI. We called it 
"complex information processing," but that label had no 
chance of survival in competition with John McCarthy's 
more vivid "artificial intelligence," a term that he introduced 
at about the same time.

Whatever the label, research in AI has provided as 
exciting and satisfying a lifetime adventure as any scientist 
could desire. For me, the stored-program computers that 
first came to my attention about 1950 brought an end to 
many years of frustration, during which I had been searching 
for a formal language capable of expressing theories of 
human thinking, problem solving and decision making. 
Beginning in the middle 1950s, Al Newell, Cliff Shaw and
1 undertook to use computer languages for this purpose.

2 Computer Programs as Theories

During the 1930s and '40s, and into the early '50s, I had 
carried my Diogenes' lantern through many fields of 
mathematics seeking the right tools for studying human 
thought, but neither analysis nor finite math seemed to fill 
the bill. To use these mathematical tools, one had to force 
the phenomena into the Procrustean bed of real numbers or 
algebraic and topological abstractions that seemed to leave 
much of the content behind. Computer languages, with 
their ability to handle symbols of any kind, changed all that 
by permitting one to implement a very literal representation 
of human symbol processing in the machine's memories and 
processes.

Computer programs written in these languages are, at the 
most abstract level, simply systems of difference equations, 
with all of the power of such equations to describe the states 
and temporal paths of complex symbol systems. To be 
sure, these equation systems can almost never be solved in 
closed form; but the computer itself, in providing the 
powerful tool of simulation, offers a solution to that 
problem too. 1

As you are well aware, the requirements of simulating 
the behavior of physical symbol systems called for symbol- 
manipulating languages quite different from the algebraic 
languages used in numerical computing, and led to the 
invention of list processing languages like the IPL's and 
LISP, and later to production-system languages like OPS-5 
and logic-programming languages like PROLOG. With 
these languages the computer simulation can produce 
symbolic outputs that can be compared directly, and with 
very little translation, with human outputs, especially verbal 
protocols.

3 Artificial Intelligence 
and Cognitive Psychology

My interest in AI has been, from the beginning, primarily 
an interest in its application to psychology. Equally 
exciting opportunities emerged at the same time for 
designing computer programs that, without necessarily 
imitating human methods, could perform difficult tasks at 
expert professional levels. As the construction of expert 
systems has played second fiddle to human simulation in my 
own research program, I shall have little to say about it 
today. My focus will not be on computer achievement of 
humanoid skills, but on computer imitation of the processes 
people use to manifest such skills.

In this research, the computer program is not a 
"metaphor" but a precise language of theory for cognitive 
psychology in the same sense that differential equations are a 
language of theory for physics. Theories written in AI 
list processing languagesare tested in exactly the same way

1 Simulation is increasingly employed within traditional 
mathematics as well, for the increasingly complex systems 
under study there also defy closed solution.



as theories written in differential equations. We use the 
theories to make predictions, which are then tested against 
behavior captured in the laboratory or observed in the field.2

Psychology is an empirical science. It is the study of 
how human beings behave and of the processes occurring in 
their minds (that is, their brains) that bring this behavior 
about The science of psychology proceeds by observing 
the phenomena of thinking, by building theories to describe 
and explain the phenomena, and by laying phenomena and 
theory side by side to see how closely they match. The 
proceeding three sentences would be no more and no less true 
if for "psychology" we substituted "physics" or "geology" or 
"biology," with corresponding changes in the names of the 
phenomena studied.

The fact that psychology is studied by scientists who 
themselves are human beings is of no more account than the 
fact that physics is studied by scientists who consist of 
atoms or that biology is studied by scientists who eat, 
breathe and procreate. What we are interested in, in all of 
these cases, are not the scientists but the phenomena and the 
theories that describe and explain the phenomena. At the 
general level, good methodology in physics or chemistry is 
good methodology in psychology. At more specific levels, 
each field has to invent methods and instruments for 
observing and theorizing that are appropriate to the 
phenomena of interest. The methods are to be judged by the 
same standards in every case.

Some of you may have heard me express these last 
sentiments before or have read them in my published papers 
(Newell and Simon, 1972). I feel obliged to repeat them 
here because books, written in armchair comfort, continue to 
be published from time to time that try to evaluate by 
philosophical means psychological theories written in 
computer languages. I must confess that I have not in 
recent years read any books of this kind, but I have seen 
reviews of them. Before you convict me of bigotry for 
ignoring them, let me explain why I do so.

3.1 Cognition's Empirical Base

As psychology is an empirical science, we can only judge 
whether and to what extent particular theoretical proposals 
are valid by comparing them with data. In the face of such 
comparisons, philosophical speculation is superfluous; in 
the absence of such comparisons, it is helpless.3 
Therefore, if we wish to evaluate the claims of theories of 
thinking (whether these theories take the form of computer

2The theories of physics consist not only of the differential 
equations, but also deducible properties of these equations 
(e.g., the principle of conservation of energy in mechanics). 
Theories defined by difference equations (programs) may also 
possess deducible properties, which then become part of the 
theory. For example, in EPAM, the short-term memory 
capacity can be deduced from the structure and parameters of the 
program.
3I should perhaps explain that I selected the topic and title of 
my talk for this occasion before learning that there would be a 
session at this meeting on AI and philosophy ~ news that I 
obviously greeted without enthusiasm.

programs or some other form), and especially if we wish to 
broadcast the results of our evaluations, we would do well to 
spend most of our time studying the empirical evidence and 
making the explicit comparisons with the computer traces.

By now, such evidence is voluminous. This is not the 
place to review it, but I'll cite just one very specialized 
example. In the book, Protocol Analysis (1993), that 
Anders Ericsson and I have written, treating the 
methodology for testing cognitive theories by comparing 
human think-aloud protocols with computer traces, there are 
42 pages of references. It is not unreasonable to ask anyone 
who proposes to evaluate the validity of verbal reports as 
data either to become acquainted with a substantial portion 
of this literature or to announce clearly his or her amateur 
status. Similarly, it is not unreasonable to ask anyone 
proposing to pronounce on memory capacity or the 
acquisition and response speeds of human memory to 
become acquainted with that large literature.

There are, of course, comparably large literatures on 
problem solving, reasoning, perceiving, and many other 
topics. Any serious assessment of our knowledge of 
human thought processes or of the veridicality of theories 
that purport to describe or explain these processes must rest 
on the data reported in this literature. (Notice that I am not 
asking anyone to read it, but just to refrain from public 
comment if they haven't read it.)

What theories are available for testing, and what kinds of 
phenomena do they address? Again, I can only cite a few 
examples, some from my own work and some from the 
work of others. An early example is the General Problem 
Solver (GPS), whose central mechanism, means-ends 
analysis, has been shown empirically, in numerous studies, 
to be a much-used heuristic in human problem solving. (A 
small fraction of these empirical tests are discussed in 
Newell and Simon, 1972; you will find others in the two 
volumes of my Models of Thought, 1979, 1989). 
Contemporary with GPS is EPAM, a model of human 
perceptual and memory processes due originally to 
Feigenbaum, which has been tested successful against 
empirical data from experiments on verbal learning, expert 
memory performances in several domains of expertise 
(including expertise in mnemonics), and concept attainment 
(For some of the empirical tests see Feigenbaum and 
Simon, 1984; and Richman, et a/., 1995).

A somewhat later system is John Anderson's ACT* 
(1983), which focuses especially on semantic memory and 
the explanation of contextual effects through spreading 
activation. A very different and still newer theory, or set of 
theories, are "neural" networks of the connectionist variety 
that have shown capacities to learn in a variety of tasks 
(McClelland and Rumelhart, 1986). Quite recently, Alien 
Newell, in collaboration with John Laird, Paul Rosenbloom 
and others, has produced Soar, a vigorous push from GPS 
into a far more general and unified architecture, which 
demonstrates the relevance of multiple problem spaces and 
learning by chunking (Newell, 1990).

Still closer to the topics I shall address in the remainder 
of this talk is the BACON system (see Langley, et al., 
1987) and its close relatives, GLAUBER, STAHL, 
KEKADA (Kulkami and Simon, 1988), LIVE (Shen, 1994) 
and others that simulate many of the discovery processes



that are discemable in the activities of scientists. Some of 
the models I have mentioned are complementary, some are 
competitive, as theories are in any science.

Again, I must remind you that to understand these 
systems, not just as interesting examples of artificial 
intelligence but as theories of human thinking, and to 
adjudicate among them when they conflict, you must devote 
just as much attention to the experimental and other 
empirical evidence about the phenomena they model as to 
the structures and behaviors of the programs themselves. 
Errors in the evaluation of these programs as psychological 
theories are caused less often by lack of knowledge or 
inaccurate knowledge about the programs than by lack of 
knowledge or inaccurate knowledge about how human 
subjects behave when they are confronted with the same 
tasks as the programs were tested on.

For one example, the brittleness of computer programs 
when they wander outside the task domain for which they are 
programmed is often mentioned as a defect of these 
programs, viewed as psychological theories, without 
noticing the extraordinary brittleness of human behavior 
when it wanders outside the arena of the actor's experiences. 
(Inexperienced urbanites lost in a wilderness frequently freeze 
or starve to death in circumstances where experienced 
savages survive. Novices playing their first bridge hand bid 
and discard almost randomly.) Theories cannot be compared 
with facts unless the theories are specified precisely and the 
facts known thoroughly.

3.2 Limits of Explanation?

In the remainder of my talk I shall put the information 
processing explanation of thinking to what is usually 
regarded as a severe test. The idea that the processes 
humans use in everyday, relatively routine and well- 
structured tasks can be modeled by computers has gained, 
over the years, a considerable amount of acceptance - more 
among experimental psychologists than among people who 
are more distant from the data. The idea that these models 
can be extended to ill-structured tasks of the kinds that 
require ingenuity, perhaps even creativity, when performed 
by humans is less widely accepted. This is no more a 
philosophical question than the questions that I have 
discussed previously. It is a question about certain kinds of 
human behavior and whether these kinds of behavior can be 
modeled by computers. It is to be settled by comparing the 
records of human behavior with the output of computer 
models.

I shall focus on three terms that appear frequently in the 
literature and in popularized psychology (not always with 
the same meanings) and which have been used to label 
behaviors that are often claimed to be beyond explanation by 
programmable mechanisms. The three terms are "intuition," 
"insight" and "inspiration." In addressing the cognitive 
phenomena associated with each of these terms, I shall first 
define the term so that we can determine when the 
corresponding phenomena are being exhibited. Without 
clear tests that unable us to identify the occasions of 
"intuition," "insight" and "inspiration," there are no 
phenomena to explain.

I cannot claim that the definitions I shall propose 
represent the only ways in which these terms are, or can be, 
used. I will claim that they correspond to the usual 
meanings, and that the operational tests on which they are 
based are the operational tests that are commonly used to 
determine when people are being "intuitive," "insightful," or 
"inspired." These are the properties the definitions should 
possess if they are to be used in theories of intuition, 
insight and inspiration.

Having established operational tests for the phenomena, 
we shall look at the evidence as to whether people and 
computers exhibit the process in question, and if so, under 
what circumstances. What I shall show is, first, that the 
presence or absence of phenomena like these, sometimes 
claimed to be ineffable, can be determined objectively, and 
second, that certain computer programs are mechanisms that 
exhibit these phenomena and thereby provide explanations 
for them.

4 Intuition

Let me start with the process of human thinking that is 
usually called "intuition." Before we can do research on 
intuition, we have to know what it is; in particular, we 
must have some operational definition that tells us when 
intuition is being exhibited by a human being and when it is 
not. It is not too difficult to construct such a definition.

The marks that are usually used to attribute an intelligent 
act (say, a problem solution) to intuition are that: (1) the 
solution was reached rather rapidly after the problem was 
posed, and (2) the problem solver could not give a veridical 
account of the steps that were taken in order to reach it. 
Typically, the problem solver will assert that the solution 
came "suddenly" or "instantly." In the few instances where 
these events have been timed, "suddenly" and "instantly" 
turn out to mean "in a second or two," or even "in a minute 
or two."

That's essentially the way my dictionary defines 
intuition, too: "the power or facility of knowing things 
without conscious reasoning." Let us take the criteria of 
rapid solution and inability to report a sequence of steps 
leading up to the solution as the indications that people are 
using intuition. These are the criteria we actually use to 
judge when intuition is being exhibited. Applying these 
criteria, we now have some clearly designated phenomena to 
be explained; we can try to construct some difference 
equations (computer programs) that behave intuitively.

Intuitive thinking is frequently contrasted with "logical" 
thinking. Logical thinking is recognized by being planful 
and proceeding by steps, each of which (even if it fails to 
reach its goal) has its reasons. Intuitive thinking, as we 
have seen, proceeds by a jump to its conclusions, with no 
conscious deliberateness in the process, but intuitive and 
logical thinking can be intermingled. The expert, faced with 
a difficult problem, may have to search planfully and 
deliberately, but is aided, at each stage of the search, by 
intermediate leaps of intuition of which the novice is 
incapable. Using what appear to be macros, the intermediate 
steps of which are these intuitions, the expert takes long 
strides in search, the novice tiny steps.



4.1 A Theory of Intuition

After specifying how we shall recognize intuition when it 
occurs, the next task in building a theory of it is to design a 
computer program (or find one already built) that will solve 
some problems intuitively - as determined by exactly the 
same criteria as we employ to determine when people are 
using intuition. The program will solve these problems, if 
they are easy, in a (simulated) second or two and will be 
unable to provide a (simulated) verbal report of the solution 
process. Fortunately, at least one such program already 
exists: the EPAM program, which first became operative 
about 1960. It was not designed with intuition in mind, 
but rather to simulate human rote verbal learning, for which 
there already existed at that time a large body of empirical 
data from experiments run over the previous 70 years. 
EPAM accounted for the main phenomena found in these 
data.

The core of EPAM is a tree-like discrimination net that 
grows in response to the stimuli presented to it and among 
which it learns to discriminate, and a short-term memory 
that will hold a few familiar symbols (7±2?), but will retain 
them more than 2 seconds only if it has time to rehearse 
them. EPAM*s discrimination net is somewhat similar to 
the Rete nets that are used to index production systems. 
EPAM learns the correct discriminations by experience, with 
only feedback of "right" or "wrong" to its responses. 
EPAM nets have been taught to discriminate among nearly 
105 different stimuli, and there is nothing final about that 
number.

These learned patterns, once acquired, can now be 
recognized when presented to EPAM because it sorts them 
through its net, the recognition time being logarithmic in 
the total number of stimuli in the net. If the net has a 
branching factor of 4, then recognition of a net 
discriminating among a million stimuli could be achieved 
by performing about ten tests (410 « 1,048,576). The 
EPAM model, its parameters calibrated from data in verbal 
learning experiments, can accomplish such a recognition in 
a tenth to a fifth of a second. If we add additional time for 
utterance of a response, the act of recognition takes a second 
or less.

Now suppose we confront EPAM with a situation that is 
recognizable from its previous experience (a collection of 
medical symptoms, say). It can now access, in less than a 
second, information about a disease that is presumably 
responsible for these symptoms. As EPAM is able to 
report symbols that reach its short-term memory (where the 
result of an act of recognition is stored), it can report the 
name of the disease. As it cannot report the results of the 
individual tests performed on the symptoms along the path, 
it cannot describe how it reached its conclusions. Even if it 
can report the symptoms that were given it (because it stored 
some of them in memory during the presentation), it cannot 
give a veridical account of which of these were actually used 
to make the diagnosis or how they were considered and 
weighed during the recognition process.4 We might add,

4 This does not mean that EPAM cannot be programmed to trace 
its steps, but that the simulation of its verbal processes will 
report only symbols that are stored, at the time of reporting, in

"even as you and I," for these are also the characteristics of 
human diagnosis: the physician can report what disease he or 
she has recognized, but cannot give a veridical report of 
which symptoms were taken into account, or what weights 
were assigned to them.

To simulate the diagnostic process in more complex 
cases, we need a system that contains, in addition to 
EPAM's discrimination net and the long-term memory it 
indexes and accesses, some capabilities for solving problems 
by heuristic search - a combination of EPAM with a sort of 
General Problem Solver (OPS) or Soar. Then we will 
observe this combined system not only recognizing familiar 
symptoms and their causes, but also reasoning to infer what 
additional tests might discriminate among alternative 
diagnoses that have been recognized as possible causes of the 
initial symptoms.

Automatic medical diagnosis systems now exist that 
perform diagnostic tasks far more accurately than EPAM 
alone could, for they take into account alternative diagnoses, 
do some simple reasoning about relations among 
symptoms, and are able to request additional tests on the 
patient to achieve greater discriminatory power and accuracy. 
These systems, of course, are using a combination of 
intuition, as usually defined, and "logical" thought 
(including means-ends analysis in some form). Our current 
interest is not in machine competence in medical diagnosis 
but in models of intuition. EPAM, as described, is 
exhibiting intuition, and modeling at least the first stage of 
thought (the recognition stage) of an experienced physician 
confronted with a set of symptoms.

4.2 Testing the Recognition Model

What grounds do we have for regarding this basic 
recognition mechanism, which lies at the core of EPAM, as 
a valid theory of the process that causes people to have 
intuitions? Simply that it has the same manifestations as 
human intuition: it occurs on the same time scale 
accompanied with the same inability to explain the process. 
Nor was it explicitly "cooked up" to exhibit these 
properties: they are basic to a system that was designed with 
quite other simulation tasks in mind. This is exactly the 
test we apply in validating any theory: we look at the match 
between the theory and the phenomena and at the ratio of 
amount of data explained to number of parameters available 
for fitting.

We can extend the tests of this theory of intuition 
further. It is well known that human intuitions that turn 
out to be valid problem solutions rarely occur to humans 
who are not well informed about the problem domain. For 
example, an expert solving a simple problem in physics 
takes a few computational steps without any pre-planning 
and reports the answer. Hie recorded verbal protocol shows 
the steps, but no evidence of why they were taken (no 
mention of the goals, operators, the algebraic expressions in 
which numbers were substituted).

short-term memory. The trace of non-reportable processes must 
be distinguished from the simulation of processes the theory 
claims to be reportable.



A novice solving the same problem works backwards 
from the variable to be evaluated, explicitly stating goals, 
the equations used and the substitutions in the equations. In 
one experiment, the novice's protocol was approximately 
four times as long as the expert's (Simon and Simon, 1978) 
and exhibited no intuition   only patient search. Novices 
who replace this search by guessing seldom guess correct 
answers. This is exactly what EPAM predicts: that there 
is no recognition without previous knowledge, and no 
intuition without recognition. Notice that intuition can be 
as fallible as the recognition cues on which it is based.

There are a number of experimental paradigms for 
carrying out tests on the theory that intuition is simply a 
form of recognition. The expert/novice paradigm has 
already been mentioned: experts should frequently report 
correct intuitive solutions of problems in their domain, 
while novices should seldom report intuitions, and if they 
report any, a large proportion should be incorrect Experts 
who are able to report intuitions in their domains should be 
unable to do so in domains where they are not expert. By 
making cues more or less obvious, it should be possible to 
increase or decrease the frequency of correct intuitions; 
misleading cues should induce false intuitions. Hints of 
various kinds should draw attention to cues, hence facilitate 
intuition. These are only the most obvious possibilities.

Experiments on intuition are best carried out on tasks 
where the correctness of answers can be verified, at least after 
the fact. We would want to identify "false intuition" to 
explain the cases (probably very frequent but hard to 
pinpoint in domains where objective criteria of correctness 
are lacking) where the presence of certain features in a 
situation leads subjects to announce a sudden solution 
although the connection between the cue and the inferences 
drawn from it is invalid. Determining the circumstances 
that encourage or discourage false intuition would involve 
research on the characteristics of situations that subjects 
attend to, and the beliefs they hold that lead them to the 
erroneous solutions. Some of the research that has been 
done on the psychology of so-called "naive physics" fits this 
general paradigm, as does some of the research on "garden 
paths" (spontaneous but erroneous interpretations) in 
syntactic analysis of sentences.

We see that intuition, far from being a mysterious and 
inexplicable phenomenon, is a well known process: the 
process of recognizing something on the basis of previous 
experience with it, and as a result of that recognition, 
securing access in long-term memory to the things we know 
about it What subjects can report about the origins of their 
intuitions, and what they can't report, are exactly what we 
would predict from a theory that explained the phenomena 
associated with recognition. As a matter of fact, we could 
simplify our vocabulary in psychology if we just abandoned 
the word "intuition," and used the term "recognition" 
instead.

5 Insight

Another process of thought that has sometimes been declared 
to be inexplicable by mechanical means is insight. My 
dictionary, this time, associates insight closely with 
intuition. In fact, its second definition of "intuition" is:

"quick and ready insight," Its explicit definition of "insight" 
is not much more helpful: "the power or act of seeing into 
a situation: understanding, penetration." Again, we gain an 
impression of suddenness, but in this case accompanied by 
depth. Perhaps we shall want to regard any instance of 
insight as also an instance of intuition, in which case our 
work is already done, for we have just proposed a theory of 
intuition. Let's see, however if there is an alternative - 
some other phenomenon that needs explanation and to which 
we can attach the word "insight"

Consider the "aha" phenomenon. Someone is trying to 
solve a problem, without success. At some point, a new 
idea comes suddenly to mind   a new way of viewing the 
problem. With this new idea comes a conviction that the 
problem is solved, or will be solved almost immediately. 
Moreover, the conviction is accompanied by an 
understanding of why the solution works. At this point we 
hear the "aha," soon followed by the solution - or 
occasionally by a disappointed realization that the insight 
was illusory. In some cases, after a problem has been 
worked on for some time without progress, it is put out of 
mind for a while, and the "aha" comes unexpectedly, at a 
moment when the mind was presumably attending to 
something else.

In both scenarios, with and without the interruption, the 
phenomenon shares the characteristics of intuitive solution: 
suddenness of solution (or at least of the reah'zation that the 
solution is on its way), and inability to account for its 
appearance. The process differs from intuition in that: (1) 
the insight is preceded by a period of unsuccessful work, 
often accompanied by frustration, (2) what appears suddenly 
is not necessarily the solution, but the conviction of its 
imminence, (3) the insight involves a new way of looking 
at the problem (the appearance of a new problem 
representation accompanied by a feeling of seeing how the 
problem works) and (4) sometimes (not always), the insight 
is preceded by a period of "incubation," during which the 
problem is not attended to consciously, and occurs at a 
moment when the mind has been otherwise occupied.

The third of these features is the source of the feeling of 
"understanding" and "depth" that accompanies the experience 
of insight. Again, these are the phenomena we use to 
identify instances of insight in human beings (ourselves or 
others). We can take the presence of these four features as 
our operational definition of insight, and using it, we now 
have some definite phenomena that we can study and seek to 
explain.

5.1 A Theory of Insight

Let me now describe a computer program that can 
experience insight, defined in the manner just indicated. I 
shall present this theory a little more tentatively than the 
theory of intuition proposed earlier because, while it 
demonstrates that a computer program can have insights, the 
evidence is a little less solid than for intuition that it 
matches all aspects of the human experience of insight.

Again, a program that combines the capabilities of 
EPAM and the General Problem Solver constitutes the core 
of the theory. (1) We suppose that a GPS-like or Soar-like 
problem solver is conducting, unsuccessfully so far, a



heuristic (selective) search for a problem solution. (2) It 
holds in long-term memory some body of information about 
the problem and knowledge of methods for attacking it (3) 
Unfortunately, it is following a path that will not lead to a 
solution (although of course it is unaware of this). (4) We 
assume that the search is serial, its direction controlled by 
atttentional mechanisms that are represented by the flow of 
control in the program. (5) Much of this control 
information, especially information about the local 
situation, is held in short-term memory, and is continually 
changing. (6) At the same time, some of the more 
permanent features of the problem situation are being 
noticed, learned, and stored in long-term memory, so that the 
information available for problem solution is changing, and 
usually improving. (7) The control structure includes an 
interrupt mechanism which will pause in search after some 
period without success or evidence of progress, and shift 
activity to another problem space where the search is not for 
the problem solution but for a different problem 
representation and/or a different search control structure. (8) 
When search is interrupted, the control information held in 
short-term memory will be lost, so that if search is later 
resumed, the direction of attention will be governed by the 
new representation and control structure, hence may lead the 
search in new directions. (9) As the non-local information 
that has been acquired in long-term memory through the 
previous search will participate in determine the search 
direction, the new direction is likely to be more productive 
than the previous one.

5.2 Empirical Tests of the Theory

Now we have introduced nine assumptions to explain the 
insight that may occur when the search is resumed, which 
hardly looks like a parsimonious theory. But these 
assumptions were not introduced into the composite EPAM- 
GPS to solve this particular problem. All are integral 
properties of these systems, whose presence is revealed by 
many different kinds of evidence obtained in other tasks.

One body of evidence supporting this model of insight 
comes from an experimental investigation of the Mutilated 
Checkerboard problem that Craig Kaplan and I conducted a 
few years ago (Kaplan and Simon, 1990). We begin with a 
chessboard (64 squares) and 32 dominos, each of which can 
cover exactly two squares. Obviously, we can cover the 
chessboard with the dominos, with neither squares nor 
dominos left over. Now, we mutilate the chessboard by 
removing the upper-left and lower-right corner squares, 
leaving a board of 62 squares. We ask subjects to cover it 
with 31 dominos or to prove it can't be done.

This is a difficult problem. Most people fail to solve it 
even after several hours' effort. Their usual approach is to 
attempt various coverings as systematically as possible. As 
there are tens of thousands of ways to try to cover the board, 
after some number of failures they become frustrated, their 
efforts flag and they begin to wonder whether a covering 
exists. Increasingly they feel a need to look at the problem 
in a new way, but people seem not to have systematic 
methods for generating new problem representations. Some 
subjects simplify by replacing the 8¥8 board with a 4¥4 
board, but this does not help.

Hints do help. Although few subjects solve the problem 
without a hint, many do with a hint, usually in a few 
minutes after the hint is provided. For example, the 
experimenter may call attention to the fact that the two 
squares left uncovered after an unsuccessful attempt are 
always the same color, opposite to the color of the excised 
corner squares. Attending to this fact, subjects begin to 
consider the number of squares of each color as relevant, and 
soon note that each domino covers a square of each color. 
This leads quickly to the inference that a set of dominos 
must always cover the same number of squares of each 
color, but that the mutilated board has more squares of the 
one color than of the other: Therefore, a covering is 
impossible.

Subjects who discover this solution, with or without a 
hint, exhibit behaviors that satisfy our definition of insight. 
The solution is preceded by unsuccessful work and 
frustration; it appears suddenly; it involves a new 
representration of the problem that makes the problem 
structure evident. The subjects come to the solution quite 
quickly once they attend to the critical property (equality of 
the numbers of squares of each color that are covered). This 
is also true of the few subjects who solve the problem 
without being given a hint. These subjects have their "aha!" 
when they attend to the fact that the uncovered squares are 
always the same color, and mat the mutilated board has more 
squares of that color than of the other. Aided by cues or 
not, successful subjects often (literally) say "aha!" at the 
moment of recognizing the relevance of the parity of squares 
of the two colors.

Moreover, the mechanisms that bring about the solution 
are those postulated in our computer theory of insight, as 
can be seen by examining the list given above. Steps 6 
through 9 are the critical ones. In the case of hints, 
attention is directed to the crucial information by the hint, 
this information is stored in memory, and the search 
resumes from a new point and with a new direction of 
attention that makes the previous attempts to cover the 
board irrelevant. In the case of subjects who solve without a 
hint, the direction of attention to the invariant color of the 
uncovered squares may derive from a heuristic to attend to 
invariant properties of a situation - the properties that do 
not change, no matter what paths are searched in solution 
attempts.

There are probably several such heuristics (surprise is 
another one) that shift peoples' attention to particular aspects 
of a problem situation, thereby enabling the learning of key 
structural features and redirecting search. The evidence for 
such heuristics is not limited to laboratory situations; the 
role of the surprise heuristic in scientific discovery has been 
frequently noted. I shall return to it later.

The role of attention in insight receives further 
verification from a variant on the experiment. Different 
groups of subjects are provided with different chessboards: 
(1) a standard board, (2) a ruled 8-by-8 matrix without 
colors, and (3) an uncolored matrix with the words "bread" 
and "butter" ("pepper" and "salt" will do as well) printed on 
alternate squares. More subjects find the solution in 
condition 3 than in condition 1; and more in condition 1 
than in condition 2.



The reason for the latter difference is obvious: presence of 
the alternating colors provides a cue to which a subject's 
attention may be directed. What is the reason for the 
superiority of "bread" and "butter" over red and black? 
Subjects are familiar with standard chessboards and have no 
reason to think that the color has any relevance for this 
problem, hence don't attend to it. In the case of "bread" and 
"butter," the subjects' attention is attracted to this unusual 
feature of the situation; they wonder why "those crazy 
psychologists put those labels on the squares." Here we 
obtain direct support for the hypothesis that direction of 
attention to the key features of the situation provides the 
basis for solution. Noticeability of a feature is essential, 
whether it is provided by an explicit clue or some other 
means.

5.3 Incubation

The checkerboard experiments do not say anything about 
incubation, or whether interruption of the solution process 
for a shorter or longer period may contribute to solution. 
Here I can point to another set of experiments carried out by 
Kaplan (1989). He defines incubation as "any positive effect 
of an interruption on problem solving performance," and 
lists seven explanations that have been offered for it: 
"unconscious work, conscious work that is later forgotten, 
recovery from fatigue, forgetting, priming, maturation and 
statistical regression (p. 1)."

Kaplan then carries out experiments to show, or to 
confirm, that (1) interruption of certain kinds of tasks (so- 
called divergent-thinking tasks) improves subsequent 
performance (i.e., incubation can be demonstrated 
experimentally), (2) answers supplied after an interruption 
differ more from the just-previous answers than do 
successive answers supplied without interruption (i.e., 
incubation can break "set"), (3) interruptions combined with 
a hint increase the effects of incubation (the hint shifts 
attention from continuing search to changing the 
representation), (4) hints may work without subjects' 
conscious awareness of their connection with the unsolved 
problem, and (5) subjects underestimate the time they spend 
thinking about the problem during an interruption. Details 
can be found in the original study.

Kaplan proposes a model, which he calls a Generic 
Memory Model, to account for these phenomena. The 
model is compatible with the one we have already proposed, 
with the addition of so-called priming mechanisms of the 
kind that Quillian (1966) and Anderson (1983) incorporate 
in their models of semantic memory.5 The priming 
mechanisms increase the probability that subjects will attend 
to items that have been cued, at the same time rapidly 
decreasing attention to items in STM and slowly decreasing 
attention to items in LTM. The model accounts for the 
fact, as the previous model does not, that the length of the 
interruption is important. Neither model needs to postulate 
unconscious work on the problem during interruption to

account for incubation.6 Forgetting in short-term memory 
of information that holds attention to an unproductive line 
of search, and redirection of attention from search in the 
original problem space to search for a new problem 
representation are the key mechanisms in both models that 
account for the bulk of the empirical findings.

On the basis of the evidence I have described and the 
models that have been offered to explain this evidence, I 
think it fak to claim that there exists a wholly reasonable 
theory of incubation, as it is observed in human discovery, 
that calls only on mechanisms that are already widely 
postulated as components of standard theories of cognition. 
The process of incubating ideas is as readily understandable 
as the process of incubating eggs.

6 Inspiration

The term "inspiration" is surrounded by an aura of the 
miraculous. Interpreted literally, it refers to an idea that is 
not generated by the problem solver, but is breathed in from 
some external, perhaps heavenly, source. To inspire, says 
my faithful dictionary, is to "influence, move, or guide by 
divine or supernatural inspiration." A bit circular, but quite 
explicit about the exogenous, non-material source. A Greek 
phrase for it was more vivid: to be inspired (e.g., at Delphi) 
was to be "seized by the god."

The notion that creativity requires inspiration derives 
from puzzlement about how a mechanism (even a biological 
mechanism like the brain), if it proceeds in its lawful, 
mechanistic way, can ever produce novelty. The problem is 
at the center of Plato's central question in the Me no: how 
can an untutored slave boy be led through a geometric 
argument until he understands the proof? The answer Plato 
provides, which hardly satisfies our modem ears, is that the 
boy knew it all the time; his new understanding was simply 
a recollection of a prior understanding buried deep in his 
memory (a recognition or intuition?). What bothers us 
about the answer is that Plato does not explain where the 
buried knowledge came from.

6.1 Generating Novelty

Let's leave the Meno (I have offered a solution for the 
puzzle elsewhere7, and in any event, we are talking science 
here, not philosophizing), and go directly to the question of 
how a mechanism creates novelty, for novelty is at the core 
of creativity. In fact, we shall define creativity 
operationally, in full accordance with general usage, as 
novelty that is regarded as having interest or value 
(economic, esthetic, moral, scientific or other value).

I shall start with an example. There are about 92 stable 
elements in nature, composed of protons and neutrons (and 
these, in turn, of component particles). There are

order to explain some quite different phenomena, priming 
mechanisms have also been added to the most recent version of 
the EPAM theory.

"No one has offered an explanation of why unconscious work 
during interruption should be more effective for solution than 
the continuation of conscious work. The simplest hypothesis 
consistent with the data is that it isn't more effective.

7Simon (1976).



innumerable molecules, chemical species, almost none of 
which existed just after the Big Bang or just after the 92 
elements first appeared in the universe.

Here is novelty on a mind-boggling scale; how did it 
come about? The answer is "combinatorics." Novelty can 
be created, and is created, by combinations and 
recombinations of existing primitive components. The 26 
letters of the alphabet (or, if you prefer the 70-odd phonemes 
of English) provide the primitives out of which a 
Enumerable infinity of words can be created. New numbers, 
new words, new molecules, new species, new theorems, new 
ideas all can be generated without limit by recursion from 
small finite sets of primitives.

The traditional name in AI for this basic novelty- 
producing mechanism is generate and test. One uses a 
combinatorial process to generate new elements, then tests 
to see if they meet desired criteria. A good example of a 
generate-and-test system that can create novelty valuable for 
science is the BACON program (Langley, Simon, Bradsaw 
and Zytkow, 1987). BACON takes as inputs uninterpreted 
numerical data and, when successful, produces as outpouts 
scientific laws (also uninterpreted) that fit the data .8

6.2 Selective Search as Inspiration

The law-generating process that BACON uses to find laws 
that describe data is not a random search process. The space 
of "possible functions" is not finite, and even if we limited 
search to some finite portion of it, any useful domain would 
be too large to yield often to random search. Basically, 
BACON's law generator embodies three heuristics for 
searching selectively: First, it starts with simple functions, 
then goes on (by combinatorial means) to more complex 
ones. We don't have to pause long to define "simple" or 
"complex." The simple functions are just those primitive 
functions that BACON starts with (in fact, the linear 
function); the compound functions are formed by 
multiplying or dividing pairs of functions by each other. A 
functions is "simple" if it is generated early in the sequence, 
"complex" if generated later.

Second, BACON is guided by the data in choosing the 
next function to try. In particular, it notices if one variable 
increases or decreases monotonically with respect to another, 
testing whether ratios of the variables are invariant in the 
first case, products in the second, and shaping the next 
function it generates accordingly. This simple operation 
generates a wide class of algebraic functions, and by 
enlarging a bit the set of primitive functions (e.g., adding 
the exponential, logarithmic and sine functions), the class of 
generatable functions could be greatly broadened. The main 
point is that BACON's choice of the next function to test

**I hasten to add that BACON has discovered no new scientific 
laws (although other programs built in the same generate-and- 
test principle have); but it has rediscovered, starting with only 
the same data that the original discoverer had, a number of the 
most important laws of 18th and 19th Century physics and 
chemistry.

depends on what kind of fit with the data the previously tried 
functions exhibited.

Third, in problems involving data about more than two 
variables, BACON follows the venerable experimental 
procedure of changing one independent variable at a time. 
Having found conditional dependencies among small sets of 
variables, it explores the effects of altering other variables.

That is essentially all there is to it. With these simple 
means, and provided with the actual data that the original 
discoverers used, BACON rediscovers Kepler's Third Law (It 
finds P * D3/2 on the third or fourth try), Ohm's Law of 
current and resistance, Black's Law of temperature 
equilibrium for mixtures of liquids and a great many others. 
There are many other laws it doesn't discover, which is an 
essential fact if it is to be regarded as a valid theory of 
human performance. Humans also don't discover laws more 
often than they discover them.

To validate BACON as a theory of human discovery, we 
would like to have as detailed historical data as possible on 
how the human discoveries were actually made, but 
sometimes the data are quite scanty. About all we know 
about Kepler's discovery of his Third Law is that he initially 
made a mistake, declaring that the period of revolution of the 
planets varied as the square of their distance from the Sun. 
Some years later, he decided the fit of law to data was poor 
and went on to find the correct law. Interestingly enough, 
BACON first arrives at Kepler's erroneous square law, rejects 
it as not fitting the data well enough, and goes on to the 
correct law almost immediately. With a looser parameter to 
test whether a law fits the data, BACON would make 
Kepler's mistake.

Sometimes the processes of BACON can be tested 
directly against human processes. Yulin Qin and I (1990) 
gave students the data (from the World Almanac) on the 
periods and distances of the planets   labeling the variables 
simply x and y, without interpretation. In less than an 
hour, 4 of 14 students found and fitted the 3/2-power law to 
the data. The students who succeeded used a function 
generator that responded to the nature of the misfits of the 
incorrect functions. The students who failed either were 
unable to generate more than linear functions or generated 
functions whose form was independent of previous fits and 
misfits.

I spell out this example to show that theories of 
inspiration are constructed and tested in exactly the same 
manner as other scientific theories. Once the phenomena 
have been defined, we can look for other phenomena that 
attend them and for mechanisms that exhibit the same 
behavior in the same situations. In historical cases more 
favorable than Kepler's, we may have voluminous data on 
the steps toward discovery. In the case of both Faraday and 
Krebs, for example, laboratory notebooks are available, as 
well as the published articles and autobiographical accounts. 
In these cases, we have many data points for matching the 
scientist's behavior with the model's predictions.

6.3 Discovery of New Concepts

I have now cited a few pieces of evidence   many more exist 
- that scientists do not have to be "seized by the god" to 
discover new laws; such laws, even laws of first magnitude,



can be arrived at by quite understandable and simulatable 
psychological processes. But what about new concepts? 
Where do they come from?

BACON is provided with one heuristic that I have not 
yet mentioned. When it discovers that there is an invariant 
relation in the interaction between two or more elements in 
a situation, it assigns a new property to the elements, 
measuring its magnitude by the relative strength of each 
element's action (one of the elements is assigned a unit 
value, becoming the standard). For example, BACON 
notices that when pairs of bodies collide, the ratio of 
accelerations of any given pair is always the same. BACON 
defines a new property (let's call it "obstinance"), and 
assigns an obstinance of 1 to body A, and an obstinance to 
each other body inversely proportional to the magnitude of 
its acceleration in collisions with A. Of course, we know 
that "obstinance" is what we usually call "inertial mass," 
and that BACON has reinvented that latter concept on the 
basis of this simple experiment.

This procedure turns out to be a quite general heuristic 
for discovering new concepts. BACON has used it to 
reinvent the concepts of specific heat, of refractive index, of 
voltage, of molecular weight and atomic weight (and to 
distinguish mem) and others. Here again, inspiration turns 
out to be a by-product of ordinary heuristic search.

All of these results are available in the psychological and 
cognitive science literature (Langley, Simon, Bradshaw and 
Zytkow, 1987). They will not be improved by 
philosophical debate, but rather, by careful empirical study 
to determine the range of their validity and the goodness 
with which they approximate the observed phenomena. 
Debate, philosophical or otherwise, is pointless without 
familiarity with the evidence.

6.4 Other Dimensions of Discovery

Scientists do many things besides discovering laws and 
concepts. They plan and carry out experiments and interpret 
the findings, invent new instruments, find new problems, 
invent new problem representations. There are other 
dimensions to discovery, but these are perhaps the most 
important. I shall say no more about experiments (see 
Kulkarni and Simon, 1988) or instruments or problem- 
finding here. Some processes for finding new 
representations have already been examined in our discussion 
of insight. There is still plenty of work to be done, but so 
far, no evidence of which I am aware that the explanation of 
the phenomena of intuition, insight and inspiration will 
require the introduction of mechanisms or processes unlike 
those that have been widely employed in simulating human 
thinking. That, of course, is an empirical claim - actually, 
not so much a claim as an invitation to join in the exciting 
task of explaining how machines like people and computers 
can think, and sometimes think creatively.

7 Physiological Foundations

It will not have passed without notice that I have said 
almost nothing today about the brain as a physiological 
organ. My silence should not be interpreted a doubt that the 
mind is in the brain, or a suggestion that processes beyond

the physiological are required for its operation. The reason 
for my omission of the physiology of the brain is quite 
different. As I have pointed out in other contexts, sciences 
generally progress most effectively if they focus upon 
phenomena at particular levels in the scheme of things. 
Hunters of the quark do not, fortunately, need to have 
theories about molecules, or vice versa. The phenomena of 
nature arrange themselves in levels (Simon, 1981) and 
scientists specialize in explaining phenomena at each level 
(high energy physics, nuclear physics, analytic chemistry, 
biochemistry, molecular biology .... neurophysiology, 
symbolic information processing, and so on), and then, in 
snowing (at least in principle) how the phenomena at each 
level can be explained (reduced) to the terms and mechanisms 
of the theory at the next level below.

At the present moment in cognitive science, our 
understanding of thinking at the information processing 
level has progressed far beyond our knowledge of the 
physiological mechanisms that implement the symbolic 
processes of thought. (Fortunately, on the computer side, 
we know full well how the symbolic processes are 
implemented by electronic processes in silicon.) Our 
ignorance of physiology is regrettable but not alarming for 
progress at the information-processing level, for this same 
sky-hook picture of science is visible in every scientific field 
during some period - usually a long period - in the course 
of its development. Nineteenth Century chemistry had little 
or no base in physics, and biology had only a little more in 
chemistry.

There is no reason why research in cognition should not 
continue to develop vigorously at both physiological and 
information processing levels (as it is now doing) watching 
carefully for the indications, of which there already are a few, 
that we can begin to build the links between them ~ starting 
perhaps with explanations of the nature of the physiological 
mechanisms (the "chips" and "integrated circuits") that 
constitute the basic repositories of symbolic memory in the 
brain. While we await this happy event, there is plenty of 
work for all of us, and no lack of knowledge of cognitive 
mechanisms at the symbolic level I have been considering in 
this paper.

8 Conclusion

Artificial intelligence is an empirical science with two major 
branches. One branch is concerned with building computer 
programs (and sometimes robots) to perform tasks that are 
regarded as requiring intelligence when they are performed by 
human beings. The other is concerned with building 
computer programs that simulate, and thereby serve as 
theories of, the thought processes of human beings engaged 
in these same tasks. I have directed my remarks to the outer 
edge of AI research belonging to the latter branch, where it 
is concerned with phenomena that are often regarded as 
ineffable, and not explainable by machine models. I have 
shown that, on the contrary, we have already had substantial 
success in constructing and implementating empirically 
tested information-processing theories that account for the 
phenomena of intuition, insight and inspiration. I have no 
immediate urge to predict how much further we shall go in 
the future or how fast. The continual progress on the



journey over the past forty years has been speedy enough for 
me.

With the privilege that age carries, of being 
curmudgeonly, I have had some harsh things to say about 
philosophers and philosophy (perhaps no harsher than 
philosophers have had to say about AI). Of course I am not 
really attacking a class of people called "philosophers" but 
rather those people who think they can reach an 
understanding of the mind and of the philosophical questions 
surrounding it by methods other than those of empirical 
psychological science. Traditional philosophy has much 
more to learn today from AI than AI has to learn from 
philosophy, for it is the human mind we must understand - 
and understand as a physical symbol system - in order to 
advance our understanding of the classical questions that 
philosophers have labeled "epistemology" and "ontology" 
and the "mind-body problem" (Simon, 1992).

Moreover, it is not really the privilege of age I am 
claiming; rather, it is the privilege that comes from standing 
on a solid body of fact. I have mentioned a considerable 
number of these facts, drawn from papers in refereed journals 
or similarly credible sources. Given the nature of this 
occasion, I may perhaps be pardoned for drawing a large 
portion of the facts I have cited from work in which I have 
been involved directly. I could have made an even stronger 
case if I had broadened the base, but I would have been 
familiar with fewer of the details. So if you want to 
calibrate my base of evidence, you can multiply it by a 
couple of orders of magnitude to take account of the work of 
all the other members of the AI and cognitive science 
communities who have been engaged in simulation of 
human thinking.

In my account, I have tried carefully not to talk about 
"future hopes of understanding or modeling human 
thinking," but to confine myself to documented, easily 
replicable, present realities about our present capabilities for 
modeling and thereby explaining human thinking, even 
thinking of those kinds that require the processes we 
admiringly label "intuitive," "insightful," and "inspired."

If I have been scornful of (some) philosophers, I hope I 
will not be thought scornful of human beings, or of our 
capacity to think. To explain a phenomenon is not to 
demean it. An astrophysical theory of the Big Bang or a 
three-dimensional chemical model of DNA do not lessen the 
fascination of the heavens at night or the beauty of the 
unfolding of a flower. Knowing how we think will not 
make us less admiring of good thinking. It may even make 
us better able to teach it
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