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It is shown how a causal ordering can be defined in a complete structure, and how 
it is equivalent to identifying the mechanisms of a system. Several techniques are 
shown that may be useful in actually accomplishing such identification. Finally, it is 
shown how this explication of causal ordering can be used to analyse causal counter- 
factual conditionals. First the counterfactual proposition at issue is articulated through 
the device of a belief-contravening supposition. Then the causal ordering is used to 
provide modal categories for the factual propositions, and the logical contradiction 
in the system is resolved by ordering the factual propositions according to these 
causal categories.

1* Introduction. The problem of the causal counterfactual conditional continues 
to loom large despite determined efforts to put it to rest. It is the thesis of this paper 
that the judicious combination of a formulation of the concept of a causal ordering, 
already available, with a notion of modal categories, also available, provide the clearest 
means for treating the causal counterfactual conditional.

2. Cause.1 The causal relation is often described as a relation between events or 
conditions; e.g.:

The rain caused the wheat to grow.
This mode of expression commonly leads to the misconception that the asymmetry 

of the causal relation (i.e., the fact that cause and effect cannot be commuted) has 
something to do with the non-symmetry of implication that the above statement 
has something to do with:

If it rains, the wheat grows.
The fatal difficulty in this view is that implication contraposes, so that we are 

tempted to continue:
If the wheat does not grow, it does not rain, 

and thence:
The wheat's not growing causes it not to rain.
Attempts to introduce a modal relation meaning "implies causally" (e.g., Burks's, 

Angell's)2 have uniformly foundered on this rock of contraposition. The lack of 
congruence between causality and implication is forceably indicated by the fact 
that (1) "If X then F" is compatible with "If Y then X," whereas "X causes F" is 
incompatible with "F causes X," and (2) "If X then F" entails "If not-F then not-JT*

* Received August, 1966.
1 Technical details underlying the following explication of "cause" will be found in [5]. 

The account here has been generalized, however, to encompass nonlinear as well as linear 
structures.

'See [3] and [2].
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whereas "X causes Yn not merely fails to entail "not-F causes not-X" but is actually 

incompatible with it. We establish as a regulative guidepost the principle:

Principle 1 : The asymmetry of the causal relation is unrelated to the asymmetry 

of any mode of implication that contraposes.

If we are not bound to relate causality to implication, then we may reconsider, 

at the outset, what is being related by causal statements. It is usually suggested that 

the wheat's growing is related to the rain. Let us propose as an alternative that it is 

rather the size of the wheat crop that is causally related to the weather. That is to 

say, the following three statements are all part of a single causal relation:

The absence of rain prevents the wheat's growing. 
With moderate rain, the wheat crop is good. 
With heavy rain, there is a large wheat crop.

or generalizing:

The amount of wheat is a function of the amount of rain. 
We draw a second pragmatic conclusion from the example:

Principle 2: A causal relation is not a relation between values of variables, but a 

function of one variable (the cause) on to another (the effect).

Regarding causality as functional relation eliminates the unwanted asymmetry 

produced by contraposition, for contraposition does not interchange an independent 

with a dependent variable. On the other hand, it is not immediately obvious that the 

asymmetry of functional relation provides a suitable interpretation of the wanted 

asymmetry between cause and effect; for many, if not most, of the functions that 

enter in causal discussions possess inverses; and by inverting them, we can inter­ 

change a dependent with an independent variable. Thus if <f> possesses an inverse, 

<frl, then, from
y = #*)

we obtain

Therefore the distinction between independent and dependent variables does not 

explicate, by itself, the asymmetry between cause and effect. Surely we wish to invest 

the latter distinction with more significance than is accorded by the arbitrary choice 

of which variable to measure on the abcissa, and which on the ordinate.

3* Complete Structures* We turn now to the positive task of showing that, given 

a system of equations   functional relations   and a set of variables appearing in these 

equations, we can introduce an asymmetric relation among individual equations 

and variables which corresponds to our commonsense notion of a causal ordering. 

(When we have occasion to write out functional relations explicitly, we shall generally 

write them in the canonical form fi(x1 , x2f ,...) = 0, where ft is a name for the 

function, and the ff's are the variables that appear in it.)

Definition 1 : A structure is a set of m functions involving « variables (« ^ m), 

such that:
(a) In any subset of k functions of the structure, at least k different variables 

appear.
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(b) In any subset of k functions in which r (r ^ k) variables appear, if the values 
of any (r   K) variables are chosen arbitrarily, then the values of the remaining 
k variables are determined uniquely. (Finding these unique values is a matter 
of solving the equations for them.)

For illustration, we will sometimes consider linear structures — i.e., structures in 
which the functions are linear and non-homogeneous. A linear structure is a set of 
independent and consistent linear non-homogeneous equations.

Definition 2: A structure is self-contained if it has exactly as many functions as 
variables.

A self-contained structure can be solved for a unique set of values of its variables.
A structure can be represented simply by a matrix of 1's and O's, the various columns 

of the matrix being associated with the variables of the structure, and the rows with 
the functions. Then a 1 in the yth column of the z th row means that the yth variable 
appears in the ith function, while a zero in that position means that the yth variable 
does not appear in the zth function.

Consider the following structure matrix:

/! 1 0 0 0 0 0 0 
/2 0 1 0 0 0 0 0
/3

/4

/5

/6

/7

0
1
1
0
0

0
1
0
0
0

1
1
i
0
0

0
1
1
1
0

0
1
1
0
1

0
0
0
1
0

0
0
0
0
1

By definition 2, this matrix represents a self-contained structure. Since /i ,/2 , 
and /3 each contain only one variable (x± , x2 , and x3 , respectively) each is also a 
self-contained structure (and obviously a minimal self-contained structure), and each 
can be solved, by Definition 1, for the value of its variable.

If we now substitute these values of xl , x2 , and x3 in /4 through /7 , we obtain a 
new derived structure of first order with the following matrix (which is simply the lower 
right-hand 4x4 component of the original structure):

#4 Xft XQ X-j

1
1
1
0

1
1
0
1

0
0
1
0

0
0
0
1

A 
A

In this derived structure the set consisting of/'4 and/'5 is a minimal self-contained 
structure, which can be solved for the values of #4 and x5 , Substituting these values 
in/'6 and/'7 , we obtain the derived structure of second order:

f\ 1 0 
/% 0 1

This structure consists of the two minimal self-contained structures, f"9 and /*7 , 
which can be solved for #6 and x7 , respectively.
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We see that there was a certain asymmetry in the equations and variables of our 
original structure, such that subsets of equations could be solved for certain variables 
without solving for others, but not vice versa. We may depict this ordering:

(f..' rfc
or, alternatively, in terms of variables:

*i\

It is clear that variables belonging to derived structures of higher order are dependent 
on variables belonging only to the lower-order structures, while the latter variables 
are exogenous to the structures determining the former. We shall interpret the ordering 
as a causal ordering, so that a variable at the head of an arrow is directly caused by the 
variable or variables at the origin of the arrow. Thus #4 and x5 are directly caused 
by x1 (and jointly by x2 and xs also), #6 by x± and x7 by x5 .

By recursion, we can then define the transitive relation, caused, so that #7 , for 
example, is caused by x1 (jointly with xz and x3 , and via x5).

Let us see to what extent these definitions lead to results that conform to English 
usage. Consider our example:

The rain causes the wheat to grow.

Add the following statements, which we wish to interpret as simultaneously valid:

Fertilizer causes larger wheat yields.
A large wheat crop causes the wheat price to fall.
An increase in population causes the wheat price to rise.

We define the following variables: R is the rainfall in the given year; W, the size 
of the wheat crop; F, the amount of fertilizer used; P, the price of wheat; N, the size 
of the population. We next represent our first two causal sentences by the following 
functional relation:

f1(R,W,F)=0 

Then we represent the last two causal sentences by another functional relation:

The two functions together do not define a self-contained structure, since they 
contain five variables. Let us suppose the structure completed by adding three addi­ 
tional functional relations describing (a) a theory of the weather, (b) a theory of how 
fertilizer applications are decided upon, and (c) a theory of population growth. The 
function (a) should contain R but none of the other four variables in our system, (b) 
should contain, of these variables, only F, and (c) should contain only N:

(a) f,(R) = 0, (b)F4(F) = 0, (c)/5(JV) = 0

1L
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We now have a complete structure, with matrix:

R W F
h 
/ 
/3 

/4 

/I

1

0
1
0
0

1
1
0
0
0

1
0
0
1
0

p
0
1
0
0
0

N 
0
1
0
0
1

It is easily seen that this structure determines the causal ordering:

/ <l v R v

N

Reading off the relations in the diagram, we find: The amount of rain (R) and the 
amount of fertilizer (F) are the causal determinants of the size of the wheat crop (W), 
while the size of the wheat crop ( W) and the population (N) are the causal determinants 
of the price of wheat (P).

Thus the formalization translates accurately the causal assertions in the original 
English-language sentences. We are not nqw asserting that these causal statements 
are empirically correct (nor have we explained what might be meant by such an 
assertion); we are merely showing that the formalization captures the common meaning 
of "cause."

Note that /j and /2 , by themselves, are entirely symmetrical in the variables they 
contain. It is only when they are imbedded in a complete structure, containing /3 , 
/4 , and/g » tnat asymmetry appears. We do not need to designate which is the depend­ 
ent variable in each of these relations taken singly. Hence the formalization does not 
rest on the essentially arbitrary distinction between independent and dependent 
variables.

On the other hand, it is essential that the structure we consider be complete, and 
if we complete a structure in a different way, we will generally find that we have 
altered the causal ordering. In the previous example, suppose we replace f6(N) = 0 
by /8(P) = 0 ("the wheat price is fixed by the government," say). The reader can 
easily verify that the causal ordering in this modified structure is:

R, 

F' N

This system now asserts that the population is determined by the price of wheat 
and the size of the wheat crop (that is, the population will reach the size that will just 
consume the wheat crop at the given price). Now, by common sense, we might 
suppose that given any particular amount of wheat, the price would be higher the 
larger the population. From this assumption and the new causal ordering we reach
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the curious conclusion that, by raising the price of wheat, the government can increase 
the population (and without increasing the amount of wheat raised!).

For this and other reasons, we would intuitively regard the original structure as 
the empirically valid one, and the modified one as invalid. Again we postpone the 
discussion of what is meant by "valid" here and observe simply that different causal 
orderings obtain when a partial structure is completed in different ways.

4. In variance. Suppose that we have a complete structure of n functions and n 
variables. In general, we can replace any one of the functions of the structure by a 
linear combination of it with one or more of the others, without altering the values 
of the variables satisfying the entire set of functions. Thus, if we have a complete 
structure in three variables consisting of /x = 0, /2 == 0, fs — 0, the structure con­
sisting of /j = 0, /2 = k, /j + &2/2 + £3/3 = 0, /  = 0 (&j , k2 , k3 are non-zero 
constants) will also (in general) be complete, and will have the same solution as the 
original structure. However, the two structures will not generally have the same 
ordering. For example, suppose the matrix of the first structure was:

A 
/»
/3

1
0
1

x2
0
1
1

0
0
1

The ordering would be

But the second structure would have (in general) the matrix:

A 
A
/3

with an ordering:

x-.

xz
0
1
1

0
1
1

It might be thought that the effect of replacing individual functions by linear 
combinations of several would always be to introduce new variables in the modified 
function, as in the above example. But this is not so, for the linear combination may 
turn out to be an identity in one (or more) of the variables, which then can be cancelled 
out. Take k± = —\,kz = — 1, and k3 = 1 in the last example, and suppose/! = x-^ , 
/2 = x2 and /  = % + x2 + ax3 . Then f't = kj-^ + kjz + &3/3 = ax3 , yielding 
the ordering:

A \
or

X,

In algebra, operations of replacing rows (columns, respectively) in a matrix by 
linear combinations of rows (columns, respectively) are called elementary row (column,
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respectively) operations. The application of elementary row operations to a system 
of equations does not change the set of solutions to the equations. Indeed, a standard 
technique for solving simultaneous linear equations is to apply elementary row 
operations to obtain a diagonal matrix   with one variable in each equation.

But if solutions to equations are invariant under elementary row operations, the 
causal orderings of variables in complete structures are not   as our example has 
shown. If causal ordering is to have more than conventional or notational significance, 
we must have some basis for singling out from among a whole class of matrices that 
are equivalent under the group of row transformations the particular matrix that 
represents the empirically valid causal ordering. We turn now to this problem.

Perhaps we can get a clue to the answer by considering the analogy of the elementary 
column operations, which are not admissible algebraic operations. Each column 
of the matrix of a structure corresponds to a variable. A column operation would 
replace some single variable of the system by a linear combination of variables. In 
the earlier example, it might replace "price of wheat" by "twice the price of wheat 
minus four times the population." This operation is inadmissible because it destroys 
the identity of the variables in terms of which the problem is stated   variables 
that presumably correspond to empirical observations on the system. Hence, among 
all matrices equivalent under elementary column transformations, that one alone is 
uniquely admissible which puts columns and variables in one-to-one correspondence.

Now let us return to row transformations, and assign a label to each function, the 
label to denote the mechanism (a term here introduced informally) which that particular 
function represents. In the wheat example, /j represents the biochemical mechanism 
involved in the growth of wheat, /2 represents the economic mechanism relating to 
wheat buying, /3 is the meteorological mechanism that determines the weather, /4 
is the producers' decision mechanism with respect to fertilizer, and/5 is the mechanism 
of population growth.

An elementary row transformation would replace one of these mechanisms with 
a linear combination of several of them. For example, replacing/3 by a combination 
of/j and/g would introduce a composite biological-meteorological mechanism per­ 
taining to wheat growth and the weather. Hence, among all matrices equivalent 
under elementary row transformations, that one alone is uniquely admissible that 
puts rows and mechanisms in one-to-one correspondence.

It is intuitively clear how we identify the variables of the system (and distinguish 
them from linear combinations of variables). Our intuitions seem less clear about 
identifying mechanisms. Unless we regard this identification as intuitively obvious, 
we have simply substituted a new problem for the original one. The new problem   
how to identify mechanisms   may well, however, turn out to be more tractable 
than the old one.

5. Identifiability of Mechanisms. First, we shall show that no amount of observa­ 
tion of the values of the variables in a complete structure can identify the mechanisms  
can distinguish a particular matrix from all those equivalent to it under elementary 
row transformations. The proof is immediate. Suppose we have a set of k consistent 
equations in n variables (n ^ k), and suppose that (xt , x2 ,...,xn is an empirically 
observed set of values for the n variables that satisfies the equations. Then these 
observed values will also satisfy any set of equations equivalent to the original set 
under elementary row transformations   all such sets of equations having the same 
solutions. Thus no number of simultaneous observations of rainfall, fertilizer, wheat
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crop, wheat price, and population will verify the causal ordering in our example.
Notice that the causal ordering depends on which variables do not appear in which 

mechanisms. Thus, in the wheat example, to introduce the mechanism fa(R) = 0 
is equivalent to asserting that a meteorological theory can be constructed that predicts 
rainfall independently of fertilizer practices, wheat crop, price of wheat, or size of 
population. With respect to this set of variables, weather is an unmoved mover   an 
exogenous variable. Similarly, in this structure, population and fertilizer are asserted 
to be exogenous variables. These assumptions are crucial to the causal ordering.

Cosmology might provide one basis for such assumptions. It might be assumed, 
for example, that the behavior of any system involving very large quantities of energy 
(e.g., the atmosphere), is practically autonomous of the behavior of variables involving 
very much less energy (e.g., wheat growing). We may call this principle the Postulate 
of Prepotence.

Or, it might be assumed that most variables in the world are not directly connected 
with most other variables, and that such connections as exist involve a very small 
number of different kinds of mechanisms. Then, one would include a particular 
variable in a subsystem only if one could select a mechanism from the list of admitted 
mechanisms through which that variable could possibly act on that subsystem. We 
might call this assumption the Postulate of Independence, or, more vividly, the 
Empty World Postulate.

To see that these cosmological assumptions really correspond to the way we reason 
about causality, consider the objections that might be raised against the proposed 
causal ordering of the wheat example. First, it might be argued that the wheat crop 
influences the weather, since the acreage planted to wheat affects the rate of evapora­ 
tion of ground moisture. Notice the objection conforms to the Empty World Postulate, 
since it does not simply urge that anything may influence anything else, but proposes 
a specific mechanism of a kind known to be efficacious in other situations. If the 
proposal to include the wheat crop as a variable affecting the weather were rejected, 
the Postulate of Prepotence could provide a plausible basis for the rejection.

A similar discourse could examine the plausibility of assuming that the amount 
of fertilizer applied is independent of the price of wheat, or the population of the size 
of the wheat crop. To carry out this discussion in detail would call for the static 
structure considered so far to be expanded into a dynamic model. (We shall postpone 
questions of dynamics to a later point.)

Having offered the Postulate of Prepotence and the Empty World Postulate as 
possible sources for the identifying assumptions underlying a causal ordering, we 
leave this foray into cosmology to consider other possible bases for identification.

6. Intervention* In many, though not all, contexts where causal language is used, 
the structure under examination can be altered by intervention. The specific possibil­ 
ities for intervention then become bases for causal attribution. "Intervention," as 
the term is used here, has nothing to do with change through time, hence we can 
illustrate its significance with a wholly static example.

Consider the physical situation depicted in Figure I. A quantity of gas is confined 
in a chamber by a moveable piston (having unit area of cross-section) on which rests 
a weight. Assuming the Gas Laws hold in this situation, we have, in equilibrium:

(1) PV = kT 

where P is pressure per unit area (equal to W, the weight resting on the piston),
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V is the volume of the chamber, T is the absolute temperature of the confined gas, 
and k is a constant that depends on the amount of gas confined. We assume that, 
under conditions to be specified presently, heat may pass in or out through the walls 
of the chamber.

THE GAS LAWS 
Figure I

Since we have only a single equation, with three variables, we must impose addi­ 
tional constraints to obtain a complete structure and define a causal ordering. We 
will impose these constraints by assumptions about the possibility of intervention. 
Case I. We assume that the possibility of heat passing in and out of the chamber 
can be altered. In the first case (constant temperature), we assume that the heat flows 
so readily that, at equilibrium, the temperature inside the chamber must always equal 
the temperature outside. Representing the latter by T, a constant, we obtain:

(2) T = T
Next, we assume that the weight on the piston is also determined exogenously: 

the "experimenter" may impose any weight, W, he wishes, just as he may maintain 
any outside temperature, T, he wishes. From this new assumption, we get:

(3) P=W 
Now, equations (1) through (3) define the complete structure

P T V
(1) 1 1 1
(2) 0 1 0
(3) 1 0 0
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with causal ordering

T'
Thus, we might make the following kind of statement about the system: "In order 

to decrease the volume of the chamber, increase the weight on the piston, or decrease 
the temperature of the environment."

Note that we have kept our promise of avoiding dynamics, for these statements 
do not refer to temporal change, but are statements in comparative statics. They 
can be put more formally:

"If, in two situations, Wl > Wz , then V1 < Vz , ceteris paribus, and if T± > T2 , 
then Fj > F2 , ceteris paribus"

Case II. We assume (adiabatic case) that the walls of the chamber have been per­ 
fectly insulated so that no energy can pass through. The adiabatic assumption imposes 
on the system a constraint that was absent in Case I   that the total energy of the 
system must be conserved. This total energy E, is the sum of the potential energy PF, 
(since V is equal to the height of the chamber), of the weighted piston, and the heat 
energy, Q = qT, of the gas in the chamber. Hence, the constraint may be written:

(2)' E = PV + qT

Next, we assume again that the weight on the piston is determined exogenously. 
From mechanisms (1), (2)', and (3), we get the new structure:

(1)(2)'
(3)

P
1
1
1

T
1
1
0

V
1
1
0

with quite different causal ordering:

If we regard the interventions themselves, i.e., T, W, and E as "variables," then the 
causal diagrams for the two cases can be expanded to:

V and respectively.

In the adiabatic case, it is not immediately obvious in what sense the experimenter 
can intervene to fix E. This can be explained as follows. Let the system be in equilib­ 
rium for EI , W^ , and let P± , Tlt VL be the equilibrium values of the endogenous 
variables. Now suppose the weight W± is suddenly replaced by a new weight Wz . 
The system, now not in equilibrium, has had its energy increased by the amount 
vi(W* — ^i) to the total: fPsFi + kTi = EZ - This is the quantity, Ez , of equation 
(2)', and, it can be seen that the experimenter fixes it by setting Vv , T± and W2 .
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In the two different piston cases, how can we specify operationally what 
variables are being measured and what mechanisms are operating? With respect 
to the former, the instrumentation required is a thermometer and pressure gauge 
on the interior of the chamber to measure T and P, respectively, and a scale against 
which to mark the position of the piston, hence to measure V. Equation (3) derives 
from the fact that the observed value of P changes if and only if we change W. The 
change in the value of the variable is associated, then, with a change in one specific 
part of the structure, separated, physically and visually, from other parts.

In Case I, Equation (2) derives from the fact that T changes if and only if we change 
the temperature of the surrounding bath. Both T and W are observable in the same 
sense that P, T, and V are observable. Hence, if we can forbid column transformations 
because they would merge and confuse the operationally distinct measures, P, T, V, 
we can forbid row transformations because they would merge and confuse the 
operationally distinct interventions, T and W. Case II is slightly more complicated 
because of the less transparent status of E as an operationally distinct intervention, 
but its analysis is the same in principle.

In both Cases I and II, Equation (2) also depends on the mechanisms of the bound­ 
ary between the chamber and its environment. In Case I, the equation implies a law 
of heat flow that does not admit temperature differentials in equilibrium. In Case II, 
it implies perfect thermal insulation across the boundary. In a full dynamic treatment 
of the situation, distinct mechanisms would appear to describe these phenomena 
across the boundary. Again, particular mechanisms refer to distinct parts   often 
but not always visually distinct parts  'of the total system.

7. A Dynamic Example. Having seen how interventions can be used to define 
complete structures, and hence causal orderings, we turn next to nonexperimental 
situations where intervention is not possible. Does the notion of causal ordering 
apply at all to such situations, and can we identify mechanisms in them ?

Let us take a simple example from classical (pre-relativity and pre-Sputnik) celestial 
mechanics, considering motions in a single dimension to minimize the mathematical 
complexities. Combining Newton's Second Law with the Inverse Square Law of 
gravitational attraction, we describe the motion of a set of n mass points by the n 
equations:

where a^t) is the acceleration of the iih mass point, g the gravitational constant, nti 
the (constant) mass of the *th mass point, and xf(t) the position of the **& mass point. 
Integration of these equations twice gives the time path of the system. Now, to see 
more clearly what would be the significance of elementary row operations on this 
system, we consider the discrete approximation; ^-(2) ^ Xf(t + 2)   2Xi(t + 1) -\-Xf(t), 
and we rewrite the system

(2) /«[*# + 2), xt(t + 1), Xi(t\ {*XOta<; {«*>**< , *] = 0, (i = 1,..., «) 

Consider now only those terms of the functions that refer to times other than t. 
In the z'th function, these terms involve only positions of the Ith mass point. The 
form in which the structure is defined by (2) may be regarded as canonical in the sense 
that elementary row transformations will destroy the property just mentioned. That
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is, after non-trivial transformations, there will be functions in the structure that 
refer to the positions at times other than t of more than one mass point.

We may restate the matter differently: Any system of differential equations can be 
reduced, by introducing additional variables to eliminate higher-order derivatives, 
to a system of the first order. Let us consider a system of first order, and let us introduce 
a concept of self-contained dynamic structure in analogy to our earlier definition of 
self-contained structure.

Definition 3: A self-contained dynamic structure is a set of n first-order differential 
equations involving n variables such that:

(a) In any subset of k functions of the structure the first derivatives of at least k 
different variables appear.

(b) In any subset of k functions in which r(r ^ k) first derivatives appear, if the 
values of any (r — K) first derivatives are chosen arbitrarily, then the remaining 
k are determined uniquely as functions of the n variables.

By performing elementary row operations on a self-contained dynamic structure, 
we can solve for the n first derivatives   i.e., replace the structure by an equivalent 
structure possessing the canonical form described above. Our proposal, then, is that 
the functions of the structure in this form be interpreted as the mechanisms of the 
system. The *th function (the function containing dx^dt) is then the mechanism 
determining the time path of x^. Elementary row operations will be inadmissible 
since they intermingle first derivatives of variables, just as elementary column opera­ 
tions are inadmissible in intermingling variables.

Notice that a complete dynamic structure is not analogous to a complete structure 
in the static case. To complete the dynamic structure in the latter sense, we must 
specify a set of initial conditions, e.g., x£t0) (i = 1,..., n), the values of the n variables 
for some particular time, t. With this addition a causal ordering is defined: for t0 < t 
it will be the normal causal ordering, acting forward in time, but for t0 > t the 
directions of the causal arrows will all be reversed. Therefore, we may say that a 
complete dynamic structure defines a causal ordering up to reversal of directionality. 
Thus, most features of the ordering (i.e., the forms of the functions) are independent 
of time precedence.

In particular, note that time reversal is not equivalent to the countraposition of 
implication. For if the sense of time is inverted in Equation (1), the accelerations 
will still be causally dependent on the gravitational constant and the masses (which 
are exogenous), and on the instantaneous positions of the mass points, and not vice 
versa. What is reversed is just that, in the originally-stated system accelerations and 
the present state of the system are the causes of subsequent states, in the reversed 
system, they are causes of prior states. In both cases, states cause accelerations, by 
the gravitational mechanism, while accelerations, by definition, are second derivatives 
of positions.

8» Equilibrium of Dynamic Systems* Suppose that we observe the behavior of a 
dynamic system, described in canonical form, over some period of time. We can 
divide the variables, by rough criteria, in three classes:

1. Variables that have changed so slowly that they can be replaced by constants 
for the period under observation, deleting the corresponding mechanisms from the 
system.
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I

2. Variables that have adjusted so promptly that they are always close to (partial) 
equilibrium, hence their first derivatives always close to zero. We can replace the 
first derivatives of these variables by zero in their equations   substituting static 
equilibrium mechanisms for the original dynamic mechanisms. We will continue 
to regard variables whose first derivatives have been set equal to zero as the dependent 
variables in the corresponding equations.

3. All other variables. We will retain their equations in canonical form.
Returning to the wheat crop example, let us complicate the system, first, by assum­ 

ing that all processes take time, but that the processes determining W and P are 
relatively rapid, and second, by introducing additional feedbacks:

The amount of fertilizer used will adjust (slowly) to previous levels of the wheat
price;

the population will gradually adjust to the amount of wheat available; and 
the weather will be slowly changed by the amount of wheat acreage and the size

of population.
We might write the full dynamic system schematically in some such form as:

dPldt=fP(W,P,N)
dF
dt
dN 
dt

, =fF(P,F)

The matrix of coefficients on the right-hand sides is given by:

R
W
F 
P

R
1
1
0
0
0

W
€ 

1

0
1
6

F
0
1
1
0
0

P
0
0
€

1
0

N
€

0
0
1
1

where we have introduced c's instead of 1's as the off-diagonal elements in those 
processes assumed to be "slow" relative to the others. That is to say, we assume R, F, 
and N can be replaced (approximately) by constants over a period of, say, one year. 
If we let the e's approach zero, we are back to the same matrix as in the static case. 
Moreover, if we then assume that W and P adjust rapidly, we can set their derivatives 
equal to zero in the dynamic system, obtaining precisely our original static structure. 

The notion of "nearly ordered" dynamic system illustrated by this example can be 
appropriately formalized as has been shown by Ando, Fisher, and Simon.3 Matrices 
that can be block-triangularized by letting certain elements go to zero at the limit 
are called nearly decomposable. Systems described by nearly decomposable matrices

8 See [1]. The formal development of the theory is given in Chapters 4 and 5, and a number 
of illustrative examples in Chapter 6.
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have a number of important special dynamic properties, on one of which the present 
discussion rests.

We see that the causal ordering in the static case can be interpreted as a set of 
implicit consequences of assumptions about the relative speeds of various processes 
in an associated dynamic model. Given these assumptions, the static model represents 
an approximate short-run equilibrium of the dynamic system.

In moving from the static to the dynamic interpretation of the causal ordering, the 
exogenous variables, or interventions, in the static system become the "unmoved 
movers" of the dynamic system   i.e., variables that act strongly on other variables 
of the system but are only weakly acted upon by other variables. The definite asymmetry 
in the matrix of the static system corresponds to relative asymmetry in the matrix 
of the associated dynamic system.

9. Discrete Variables. Our final task is to apply the causal ordering notions to 
the kinds of standard examples that involve discrete variables:

Striking a dry match in the presence of oxygen, tinder, and fuel will cause a con­ 
flagration.

We define the following dichotomous variables: (1), (S) struck or unstruck; (2), 
(D) dry or damp; (3), (O) oxygen or no oxygen; (4), (/) ignited or unignited; (5), (T) 
tinder or no tinder; (6), (F) fuel or no fuel; and (7), (C) conflagration or no con­ 
flagration. The mechanism for lighting matches is specified by the Boolean function.

The conflagration mechanism is specified by:

(2) C = /&O&T& JP 

The exogenous variables are St D, O, T and .F, yielding the obvious causal ordering:

F 
O-
\ D-+

The analysis goes through exactly as in the case of continuous variables, and countra- 
position creates no problems. The same difficulties as before   but only these 
difficulties   surround the identification of the individual mechanisms.

10* Transition* We now conclude our analysis of causal ordering. It has been 
shown how such an ordering can be defined formally in a complete structure, and 
how it is equivalent to identifying the mechanisms of a system. We have explored 
several ways in which such identification might be accomplished: through prior 
assumptions about exogenous variables or interventions in the static case, or by 
employing a standard canonical form of the equations in the dynamic case. Finally, 
we showed how a causal ordering in a static structure can be identified by deriving 
the static structure as the short-run equilibrium of an associated dynamic structure. 
The next task is to show how this explication of causal ordering can be used to provide 
a basis for the analysis of causal counterfactual conditionals.

11. The Approach to Counterfactuals Through Modal Categorization.
The problem of causal counterfactual conditionals can most effectively be formulated
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in the framework provided by the concept of belief-contravening hypotheses, that is, 
suppositions or assumptions which stand in logical conflict with accepted beliefs or 
known facts.4 Consider, for the sake of illustration, one of the standard examples 
from the literature of the subject: "If the match had been struck, it would have 
ignited." The example takes us back to the case discussed in the previous section on 
"Discrete Variables." The case is as follows:

Accepted Facts: (~ S0) The match is (in fact) not struck 
(D0) The match is dry 
(O0) Oxygen is present 
(~ 70) The match does not (in fact) ignite

Accepted Law: (L) Ignition occurs (in the relevant circumstances) if and only 
if a dry match is struck in an oxygen-containing medium:

The counterfactual conditional in question elicits the ostensible consequences of the 
belief-contravening supposition:

Assume: (S0) The match is struck
From the standpoint of the abstract logic of the situation, order (i.e., consistency) 
can be restored in this situation in various ways. We must of course give up the first 
of the accepted facts, i.e., (~ S0). But even then inconsistency remains. We might 
of course give up the law (L), but this course is obviously undesirable. Retaining (L), 
three alternatives remain if we wish to Maintain the maximum of the accepted facts.

Alternative 1 Alternative 2 Alternative 3
Retain Reject Retain Reject Retain Reject

D0 ~/0 A> 00 00 D0
O0 ~IQ ~/0

The choice, in other words, is between three candidates for rejection, namely ~I0, 
O0, and Z)0. A criterion for selecting one of these for rejection is thus needed to 
vindicate the plausible counterfactual "If the match had been struck, it would have 
ignited" over against its implausible competitors

"If the match had been struck it would not have been dry" 
and

"If the match had been struck, oxygen would not have been present" 
The development of such a principle of rejection and acceptance in the face of a belief- 
contravening hypothesis lies at the heart of the problem of counterfactual conditionals. 
Note that we have already in effect set up a partial criterion of this kind in our afore­ 
mentioned determination not to regard the law at issue as candidate for rejection in 
cases such as that now at issue. In general terms, the procedure to be followed is to 
sort the various propositions in question into modal categories M0 , M1 , M2 ,..., Mn , 
devised subject to the conception that the lower the characteristic modal category 
of the proposition, the less its susceptibility to rejection, and correspondingly the 
greater the modal index, the greater its susceptibility to rejection.5

4 This approach to counterf actuals is developed in considerable detail in [4].
5 In the present context this summary presentation of the matter will prove sufficient. For a 

more detailed development of the ideas see [4].
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The leading idea of the line of approach to counterfactuals we are concerned to 
develop here can now be codified in the following:

Procedure: To use the causal ordering of parameters through laws as a basis for 
allocating the propositions about the facts at issue to modal categories. And 
specifically to adhere to the: Rule — The further down a parameter is in the 
causal ordering (in terms of its distance from the exogenous variables) the higher 
the modal category of the proposition about the value of this parameter.

Let us illustrate this procedure in the context of our example.

The Match Ignition Example

Here, the causal ordering of the three parameters is, it will be remembered, 
as follows:

s'
Using the causal ordering as a basis for modal categorization, we see that O and 
D will dominate over /, so that, forced to a choice between our three alternatives, 
we retain D0 and O0 and reject ~/0, thus vindicating the plausible counter- 
factual "If the match had been struck, it would have ignited" over against its 
implausible competitors. V

The Gas Law Example

Let us begin with Case I of our piston example, where the experimenter can 
(directly) adjust the temperature and the pressure, with the result that the causal 
ordering is

Assuming that in the case under consideration the actual values are P0, T0, and F0. 
We thus have the following information-base:

L(law): (1) PV = kT 
Facts: (2) P = P0

(3) T = T0
(4) V=V0

We are now asked to indicate the counterfactual consequences of the (false) 
hypothesis: Suppose that the temperature is doubled

Obviously (1) is to be retained and (3) must be rejected: The question is one 
of a choice between (2) and (4), viz.

(A) If the temperature were doubled, then the pressure would be doubled.

(B) If the temperature were doubled, then the volume would be doubled.



CAUSE AND COUNTERFACTUAL 339

Now given the causal ordering at issue, with V as the structurally dependent 
variable, relatively more vulnerable to rejection because of its higher modal 
categorization, we would reject (4), with the result of leading to an endorsement 
of the conditional (B).

As before, the adiabatic case is more complex. We recall that in this case, 
we must include the law of conservation of energy:

(2') E = PV + qT
Combining this relation with the gas law, we have: 

(4) E = (k + q)T,
from which we see that "If the temperature were doubled..." implies "If the 
initital total energy were doubled...." The causal ordering, previously derived 
was:

Here also in the comparison between P and V, V as the structurally dependent 
variable is relatively more vulnerable because of its higher modal categorization. 
And thus again, we are led to an endorsement of (B): "If the temperature were 
doubled, then the volume would be doubled." However, a careful writer might 
think it more precise and idiomatic to say: "If the energy were increased so as 
to double the temperature, the volume would also be doubled."

This example suggests that, in careful English usage, the counterfactual is 
meant to imply that its conditional stands in a relation of causal precedence 
to its consequence. As a final example, we shall return to the wheat growing 
relations to see whether this generalization is warranted.

The Wheat Growing Example

We follow exactly the same procedure as with the previous examples to see 
what counterfactual assertions can be made about the wheat-growing relations 
described earlier. The causal ordering among fertilizer (F), rain (R), wheat crop 
(W), population (AT), and wheat price (P), was:

*\

Supplementing the two laws from which this ordering derives, we have the 
facts   the actual amount of fertilizer, rain, wheat crop, population, and wheat 
price last year, say. What follows from the counterfactual premise: "If the wheat 
crop had been smaller last year..."?

Retaining the laws, and using the causal ordering to determine which factual 
premises have modal precedence, we obtain readily:

If the wheat crop had been smaller last year, the price would have been 
higher.
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However, this counterfactual does not resolve all the contradictions, for the 
hypothesis of the smaller wheat crop is not consistent with the conjunction of 
the law determining the wheat crop as a function of rain and fertilizer, and the 
actual amounts of rain and fertilizer. In the usual treatment of the counterfactual, 
one or the other of the latter facts the amount of rain or the amount of fertilizer  
would have to yield. But both of these have smaller modal indices than the size 
of the wheat crop. It is reassuring, under these circumstances, that neither of the 
corresponding counterfactuals is idiomatic:

If the wheat crop had been smaller last year, less fertilizer would have been
applied to it.
If the wheat crop had been smaller last year, there would have been less rain.

Instead, we would regard it as perfectly idiomatic to say:

If the wheat crop had been smaller last year, there would have been either 
less rain or less fertilizer applied.

Even more idiomatic would be:

(In order) for the wheat crop to have been smaller last year, there would 
have to have been less rain or less fertilizer.

Thus we see that distinctions are made in English that call attention to the 
causal ordering among the variables in a counterfactual statement. The ordinary 
counterfactual corresponds to the case where the cause is the antecedent, and 
the effect the consequent. Where the causal ordering is reversed, more elaborate 
locutions, with the modals "must" or "have to," are used.

12. Conclusion. These examples of the preceding section illustrate the proposed 
line of attack on causal counterfactual conditionals. First the counterfactual proposition 
at issue is articulated through the device of a belief-contravening supposition. Then 
the principle of rejection and retention for the resolution of the resultant conflict 
of logical contradiction is determined through the mechanism of a system of modal 
categories. Finally, resort is made to the concept of a causal ordering to serve as a 
guide for the modal categorization of the factual (non-law) propositions at issue. 

It is among the merits of this approach that it yields perfectly "natural" results 
in underwriting as plausible, in all of the standard examples treated in the literature  
just those counterfactuals that are consonant with our informal, presystematic in­ 
tuitions on the matter. Moreover, reliance on causal orderings also solves in a natural 
way the problem of the otherwise unnatural consequences of the contraposition of 
laws.
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