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The explanation of human mental processes that Donald O. Hebb provided 
some 30 years ago in his Organization of Behavior (1949) is now a permanent 
part of the conceptual equipment of psychology. The cell assembly is as 
familiar a construct as the reflex. In rereading the book, one is immediately 
struck again with the insight and imagination of its author in building a 
coherent picture of mind from a mass of complex and confusing evidence. 
What may be less evident unless one has a long memory are the reasons 
why Organization of Behavior produced such a violent shock wave when it 
impacted on the hard shell of a behaviorism reluctant to look inside the 
human head, much less populate it with structures as rich as cell assemblies. 
The courage of the author in rejecting the dominant S-R psychology and 
reintroducing central mental processes is quite as remarkable as his 
psychological insight.

That shock wave continues to reverberate through psychology. We are no 
longer satisfied with external descriptions of regularities that say nothing 
about the mechanisms producing them. We want to formulate and test, 
however indirectly, what is going on inside. I don't know how sympathetic 
Donald Hebb is with the particular form of explanation that today is known 
as information-processing psychology. Whatever his sympathy or lack of it, 
his courage in exploring the mechanisms of mind must bear a large share of 
the responsibility for setting others on this path. Without the example of that 
courage, few would be foolhardy enough to investigate phenomena as 
intricate and cloudy as the phenomena of human understanding.

"Understanding** is one of those global terms referring to processes of the 
human mind whose importance we acknowledge even as its meaning remains
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vague and ambiguous. No one certainly no practicing teacher doubts for a
  moment that there is a fundamental difference between learning through

understanding and learning by rote and that the former is infinitely to be
1 preferred to the latter. There is even a modest body of empirical evidence
; (Katona, 1940) indicating that material learned through understanding is
  retained longer and transferred more readily to new tasks than material 
I learned by rote. If the distinction merits the significance we attach to it, then 
1 we need to provide it with some operational foundations and to explore the 

mechanisms that enable understanding to arise.

SOME MEANINGS OF "UNDERSTANDING"

In a recent survey of artificial intelligence approaches to understanding 
(Simon, 1977), I undertook to provide some definitions of the term, building 
on-an earlier proposal by Moore and Newell (1974). Just as intelligence is 
defined by specifying tasks the intelligent person is able to perform 
("Intelligence is what intelligence tests measure*1), so understanding is defined 
by specifying tasks the understanding person can perform. Let me enumerate 
what I think are some of the relevant tasks.

Understanding, like intelligence, has many facets: We can speak of 
someone understanding knowledge or of someone understanding a task. In 
the first case, following Moore and Newell (1974), we can say that US 
understands knowledge K if S uses K whenever appropriate.**Notice that this 
definition distinguishes clearly between having knowledge and understanding 
it. I may know (i.e., be able to repeat on request) the definition, "the sine of an 
angle is the side opposite over the hypotenuse,** without being able to answer 
the question, "What is the sine of 45 degrees?**. It is precisely this kind of 
difference we are trying to get at when we distinguish between rote learning 
and learning through understanding.

Similarly, we would not say that someone understands the game of chess 
simply because that individual can recite the rules for a legal move. We would 
want to test further to make sure the individual can actually apply the rules in 
a chess situation. We may say that S understands task T if S has the 
knowledge and procedures needed to perform T.

Some important ambiguities remain even in these definitions. One may 
know how (^understand how**) to play chess without knowing how to play it 
well. In fact, we commonly make a rather strong distinction between 
understanding a problem and being able to solve it. There is a celebrated 
mathematical hypothesis, Goldbach's conjecture, that any even number can 
be expressed as a sum of exactly two prime numbers. It is not at all difficult to 
understand Goldbach's conjecture that is, to know what it would mean for 
it to be true or false. However, no one has yet been able, after a century of 
effort, to prove whether the conjecture is true, or false, or undecidable.
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Understanding how to perform a task may or may not entail understanding 
the principles underlying task performance. Most automobile drivers have 
only the vaguest idea of how a clutch operates or how carburetor and spark 
plugs control the injection and ignition of fuel. We presently examine an 
example of alternative solution algorithms for solving a problem that 
correspond to different understandings of the problem structure. There are 
many other nuances to the term "understanding" that I cannot go into here. 1 
My main goal is to illustrate, with concrete examples, how processes that 
mediate understanding, in one or the other application of that term, are 
represented in information-processing models of human thinking. In the next 
section, I sketch out the modeling strategy in general terms. In the two 
succeeding sections I describe in greater detail two examples of information- 
processing systems that simulate human understanding.

MODELING UNDERSTANDING PROCESSES

The basic strategy for modeling understanding processes is identical with the 
general strategy for computer simulation of human thinking. A task is 
selected, successful performance of which is regarded as evidence of some 
particular form of understanding. On the basis of any knowledge we may 
have of how people perform this task, together with our general knowledge of 
human cognitive processes, we construct a computer program capable of 
performing the task we have selected, and of doing so without using any 
computer capabilities rapid arithmetic operations or unlimited short-term 
memory that we know people do not possess. After testing the program's 
performance on the understanding task, we carry out various comparisons 
with data (e.g., latencies, thinking-aloud data, error statistics) obtained from 
human performance of the same task. If we regard the computer program as a 
theory, which it is, this is simply an application of the general procedure for 
testing theories that is used throughout science. Let us look at a few examples. 

One of the earliest understanding programs was described in Robert 
Lindsay's 1961 doctoral dissertation (Lindsay, 1963), which undertook to 
understand Basic English in the context of making inferences about kinship 
relations. Given such sentences as "John is Mary's father**and "Alice is John's 
sister,** Lindsay's system could infer and report that "Alice is Mary's aunt** 
and "Mary is Alice's niece.** This act of understanding required two basic 
abilities: the ability to carry out syntactical analyses of simple English prose, 
and the ability to carry out inferences based on lexical definitions like "a 
parent's sister is an aunt.** The demonstrated success of Lindsay's system in 
performing the language-processing and inference task allows us to hypothe-

'For a more elaborate taxonomy of forms of understanding, see Simon (1977).
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size that it is precisely the possession of these abilities that enables people to 
exhibit understanding in these kinds of tasks. Lindsay's system was, of course, 
only a first step toward the construction of more flexible, general, and 
powerful language-understanding schemes with inference-making capabili 
ties, but it illustrates how computer models can illuminate the nature of the 
human processes.2

Other aspects of understanding are illustrated by Winograd's well-known 
SHRDLU program (Winograd, 1972). Understanding "cat** involves more 
than having a lexical definition for the term. A "real** understanding of what 
the word means requires the ability to recognize a cat when one appears on the 
scene. Any system that understands words having real-world referents must 
have intentional definitions of these words in the form of tests that can be 
applied to real-world objects. - --, :;

SHRDLU has this capability in principle, although the "real world** on 
which it operates is in fact a simulated Block World that exists in a computer 
memory. The Block World contains blocks of various shapes and colors 
resting on a table or on each other. SHRDLU is able both to answer questions 
about the Block World (e.g., "Is there a blue cone standing on a yellow 
cube?*1) and to obey instructions that involve moving blocks (e.g., "Place the 
small cube on the large cylinder.**). Executing such commands requires not 
only an ability to understand what is meant by them, but also a problem- 
solving ability for finding a sequence of actions that will actually carry them 
out. The problem-solving component of SHRDLU uses forms of means-ends 
reasoning very similar to those embodied in the General Problem Solver 
(Newell & Simon, 1972). 3 By storing the reasons for its sequences of actions, 
SHRDLU acquires another kind of understanding: the ability to explain why 
it did certain things. It can carry on a conversation like this: "Why did you 
move the green pyramid?"; "In order to clear the large cylinder?"; "Why did 
you want to clear the large cylinder?"; "In order to place the small cube on it."; 
"And why did you want to do that?"; "Because you told me to.**

A major product of the first two decades* research on systems that 
understand in various task environments, including the systems described 

' briefly above, was to identify a small set of mechanisms that showed up again 
and again as essential components of understanding systems. The first of

2Anderson & Bower (1973) contains an extensive survey of langauge-understanding systems 
that have been constructed in the intervening years. See also Siklossy & Simon (1972).

JIn brief, means-ends reasoning involves comparing the present state of the system with the 
desired goal state, detecting one or more differences between them, recovering from long-term 
memory one or more operators that are relevant to reducing differences of the kinds that were 
detected, and applying one of the operators. The process is then repeated until all differences 
between present state and goals have been eliminated. For a fuller discussion of this and other 
terms from information-processing psychology, see Newell and Simon (1972).
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these are mechanisms for syntactical parsing of natural language. The second 
are mechanisms for mapping input information into canonical rcprescnta- f 
tions that can be stored in semantic memory. (Lindsay's system, for example,   
stored its information in family trees.) The third are mechanisms for inferring 
implied meanings by exploiting the relations among several input sentences, 
including mechanisms for doing means-ends reasoning. The fourth are 
matching mechanisms for assessing schemas of semantic information stored 
in long-term memory and relating these to new information provided 
explicitly in input strings. The fifth are mechanisms that can recognize 
instances of concepts and classify objects in terms of those concepts. The sixth 
are mechanisms for generating objects that satisfy specified relations. The 
seventh are mechanisms for finding reasons for the system's own actions.

This is certainly not a complete inventory of the range of mechanisms that 
will be required to simulate human understanding in all of the task 
environments where it manifests itself. What is shows, however, is that of the 
substantial number of "understanding" programs that have been constructed, 
each one is usually capable of operating in only a very restricted range of task   j 
environments, and all rest on a common base of quite general processes.

I have referred to these programs as simulations of human understanding. j 
Many of them were written, of course, not with the specific goal of simulating   
human processes, but with the aim of exploring and extending the capabilities i 
of computers for intelligent action. In spite of that, I believe that most of the 
mechanisms they use are essential also to human intelligence. In the two 
examples I discuss in the following sections, we have a certain amount of 
empirical evidence that this is so.

THE UNDERSTAND PROGRAM ,

In an earlier section of this chapter, Goldbach's conjecture was used to 
illustrate the distinction between understanding a problem and understand* 
ing how to solve it. This is simply one instance of the vast number of situations 
we encounter where we have to understand a set of instructions expressed in 
natural language before we can carry them out. More homely and practical 
examples are the instructions on a can of soup or medicine bottle, or 
instructions for filling out an income tax form.

In these situations, and others like them, we are engaged in a two-stage 
process: first to extract the meanings of the written instructions, and then to 
use our problem-solving abilities to follow those instructions. There are two 
classes of such situations (really a continuum, but I consider the extreme 
possibilities). On the one hand, the instructions may be entirely self- 
contained, so that, once we understand them, we possess all the knowledge 
that we need in order to solve them. In that case, we may conceive of the
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.-•,-. second stage as being carried out by some kind of general problem-solving 
process that incorporates one or more general procedure for attempting to 
solve problems but no specific knowledge or information about any 
particular problem domain. We call problems that, once understood, can be

.,- ., attempted by a general problem solver, "puzzlelike** problems. Most of the 
problem-solving tasks that have been studied in the psychological laboratory 
fall in this category: e.g., the Tower of Hanoi problem, the Missionaries and 
Cannibals problem, water-jug problems, and so on. -

The second class of problems are those that, even after they are understood, 
require domain-specific knowledge as well as general problem-solving 
capabilities for their solution. For example, solving a textbook problem in

j physics stated in natural language may require the ability to understand 
not only general English-language text, but also the specific meanings of

1 physical terms like "acceleration" and "lever,** and knowledge of some
, physical laws the law of mechanical advantage for levers or the law of falling 

' ": bodies that govern the behavior of physical systems. We call problems that
| require specific knowledge for their solution, "semantically rich** problems.

The UNDERSTAND program (Hayes & Simon, 1974) was designed to
simulate the processes for understanding puzzlelike problems. UNDER-

i STAND takes the written instructions in natural langauge as its input and
' produces as output the information that would be needed, in turn, as input to 

the General Problem Solver (GPS) so that the latter program could go to 
work on the problem (without guarantees, of course, that it would be 
successful in solving it).

The input for GPS that UNDERSTAND produces consist of: (1) a 
representation for problem states,4 which permits a description of the objects 
appearing in the problem instructions and their relations; and (2) routines for 
legal move operators that can transform one problem state into another. We 
claim that the program understands because it uses its knowledge appro 
priately to construct the representation and the routines.

What knowledge does UNDERSTAND call on in its performance? Its only
' , external source is the set of written problem instructions. Its internal sources,

embodied in the program, include: (1) a natural language parser; (2)
. capabilities for transforming the parsed text into an internal list structure

representation of objects and relations; (3) stored programs capable of
modifying list structures in a variety of ways and of making tests on list
structures; (4) capabilities for mapping the legal move descriptions in the
instructions on appropriate moves and tests selected from among these stored
programs; and (5) capabilities for executing the stored programs and tests

'Problem states are situations reachable by applying "legal move" operators from the initial 
problem situation.
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interpretively so thaf they operate correctly on the particular representations 
constructed by the processes that transform the parsed text.

I must digress to explain some of the computer science terminology I have 
used hi this description and to motivate its use hi the context of simulation of 
human thought processes. In particular, what do "list structures** have to do 
with human memory? A list is simply an ordered set of elements which 
could be used, for example, to represent a simple chain of associations. A list 
structure is an assemblage of lists which could be used to represent an 
assemblage of associations (more precisely, of directed associations, in the 
Wuerzburg sense of the term). A more complete explanation of the use of list 
structures to represent an associational memory may be found hi Newell and 
Simon (1972, Chapter 2), or in Anderson and Bower (1973).

To account for storage of new information in such an associational 
memory, for the modification of existing information, or for the accessing of 
information, only a few basic processes need be postulated, and most 
important these processes depend only on the structure of memory, and not 
on its content. They include, for example, processes for adding an item to a 
list, for deleting an item from a list, for copying an item from one list to 
another, for comparing two items for identity, and the like. Once represented 
as list structures, all problems look alike to such a system that is to say, they 
all can be attacked with processes that are indifferent to real-world content, 
and responsive only to the organization of the abstracted list structures. The 
"stored programs** referred to are simple combinations of these basic. 
processes.

Consider the familiar puzzle of moving three missionaries and three 
cannibals across a river, with the conditions that they must be rowed across in 
a boat holding at most two persons and that missionaries must never be left 
alone with a larger number of cannibals. The list-structure description of this 
problem might consist of a list of missionaries and cannibals on the left side of 
the river, a list of those on the right side of the river, and a list of those hi the ' 
boat. A "move** operator would transfer members of these lists from one 
location (list) to another, as the boat is loaded, moved across the river, and 
unloaded. Another simple operator would compare the relative number of 
missionaries and cannibals on each list. Of course, the system would need no 
knowledge of the meanings of "missonary" and "cannibal" they could as 
well be labeled "hobbits" and "ores.** Nor would "boat** and "river" have any 
but abstract properties, unrelated to real-world knowledge about boats and 
rivers.

UNDERSTAND parses the natural-language text of the problem instruc 
tions and discovers in the parsed text the classes of objects that are being 
talked about ("missionaries,** "cannibals**) and the properties and relations of 
those objects (location, number). By examining the formal properties of the 
legal moves described in the instructions (the number and types of argu-



44 SIMON

ments), it assembles from the basic operators stored in its memory a legal 

move operator (in this case, an operator for transferring objects from one list 

to another, and checking that the legal move conditions are satisfied). This is 

essentially all the information that GPS needs in order to conduct a heuristic 

search for a problem solution. ''

The UNDERSTAND program is demonstrably capable of understanding 

the instructions for simple, puzzlelike problems. J. R. Hayes and 1 (Hayes & 

Simon, 1974; Hayes & Simon, 1977; Simon & Hayes, 1976) have carried out 

several empirical studies to compare the program's behavior with that of 

human subjects faced with the same task. Human thinking-aloud protocols 

show generally good correspondence with the processes postulated by the 

program. Moreover, the program predicts correctly the alterations that can ' 

be induced in human subjects* problem representations by manipulating the 

text of the problem instructions. 1 think it fair to say that, on the basis of the 

available evidence, UNDERSTAND provides a good first-order theory of 

human understanding processes in abstract problem environments.

Some progress has been made, also in simulating the understanding 

process for semantically rich domains, but much remains to be done. The 

central difficulty, of course, is that in understanding such problems, people 

make use of the knowledge of the domain they already possess, and therefore 

that knowledge must be represented in the memory of the problem-solving 

system. This means that we must make a reasonably complete inventory of 

such knowledge for a particular domain before we can build an understand 

ing system for that domain.

Such knowledge bases have now been constructed, for example, for some 

restricted domains of chemistry (Buchanan & Lederberg, 1971) and for broad 

areas of medical diagnosis (Pople, Meyers, & Miller, 197S; Shortliffe, 1976), 

but, in these cases, for the purpose of constructing artificial intelligence 

systems, and without concern for detailed simulation of human processes. 

However, several knowledge bases have also been constructed for limited 

domains of physics that simulate in various ways the organization of human 

knowledge in these same domains. I mention just one of them.

Novak (1976) has constructed an ISAAC system that can understand and 

solve physics word problems in elementary statics, relating to levers and the 

equilibrium of weights. The system's domain-specific knowledge is stored in 

schemas that describe common components of such systems: schemas for 

pivots, for levers, for surfaces with and without friction, for weights, and so 

on. Concrete objects (ladders, walls, men standing on ladders) are abstracted 

to the corresponding appropriate schemas. A ladder is a lever, a wall is a 

surface, and so on. When a problem is presented to ISAAC, it is analyzed in 

terms of the elementary schemas represented in it and their relations. A new 

complex schema is built up in memory to represent the whole physical 

situation of the problem. This schema is used in turn to specify the equations
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that govern the behavior of the system, and, finally, the equations are 
solved. -  - .,-/----'Y   ~ .:.-.  ..         - -.- ;.;  - • •. -.-:.... ..-* .-.  -.  ...

Similar systems have been built for simple problems in kinematics (Simon 
& Simon, 1978), dynamics (de Kleer, 1977), and chemical engineering 
thermodynamics (Bhaskar & Simon, 1977). They have been compared with 
human behavior to a limited extent only but show considerable initial 
promise of casting light on the human processes.

UNDERSTANDING PROBLEM SOLUTIONS ^-% •&•

Space does not permit a survey of all the meanings of "understanding** the \ 
range of tasks to which knowledge can be applied. Consider, for example, the . 
HEARSAY speech recognition system (Reddy & Newell, 1974). Its task is to \ 
produce a translation of a sound stream into written language, a task that 
would not appear to require understanding of the meaning of the sound 
stream at all. Attempts to build speech-understanding systems have taught us, 
however, that it is very difficult to decode a sound stream without bringing to 
bear on it all the syntactic and semantic information we can marshal. No one 
has been able to show how simple phonemic encoding and word recognition 
can be made to work without the use of rich syntactic and semantic 
information. As a consequence, although understanding meanings is not one 
of the direct goals of HEARSAY, the program makes extensive use of 
semantics and indeed requires virtually all the kinds of mechanisms I have 
described as constituting an understanding system. ......

Chess-playing programs illustrate a rather different point. Here, depth of. 
understanding might be measured by quality of play. Yet existing programs 
achieve a given quality of play by a whole continuum of methods ranging 
from large-scale brute-force search of all legal moves to some depth, to highly 
selective search making use of feature recognition and other knowledge- 
interpreting devices. Looking at these programs, we might decide that 
strength of play does not capture what we usually mean by "understanding** 
and that the programs that play more selectively somehow understand more 
deeply the situations in which they find themselves than do the programs that 
rely on brute-force search.

Every experienced teacher makes a similar distinction between a student's 
depth of understanding and a student's ability to perform on particular tests. 
The teacher knows that some students learn by rote whereas others learn 
through understanding and that this is an important difference even if it does 
not show up in the grades on the Friday quiz. How can we characterize the 
distinction, and what is its significance? -

Returning from humans to computers for a moment, there is a temptation 
to say that everything a computer knows it knows by rote, for "it can only do
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what it is programmed to do.** The vast differences among chess programs 
noted previously should warn us, however, against equating "doing what the 
program says** with "doing by rote.** In any event, the question deserves a 
deeper examination.

In order to have a simpler environment than chess in which to explore the 
issue, let us consider the Tower of Hanoi puzzle (Simon, 1975). This puzzle 
consists of three vertical pegs and a number of dough nut like disks of different 
sizes, which are initially stacked in a pyramid on one of the pegs, say A. The 
task is to move all the disks to another peg, say C, under the constraints that 
(a) only one disk may be moved at a time, and (b) a disk may never be placed 
on top of another smaller than itself. The minimum number of moves for a 
solution of the n-disk problem is 2"-l.

Three examples illustrate the wide variety of relatively simple programs 
that solve the Tower of Hanoi problem. Moreover, these different programs 
exhibit quite different kinds of understanding of the problems. I think these 
programs are simple enough that I can describe their fundamental character 
istics in English, without getting into programming formalisms.

The first possibility is simply a rote solution. The correct sequence of moves 
is stored in a list in memory. A simple interpreter retrieves the moves from 
memory in the order of storage and executes each in turn. When the list is 
exhausted, it halts, with the problem solved.

To execute the rote strategy, only a single place-keeping symbol need be 
retained in short-term memory, and no perceptual tests need be made in order 
to determine what move to make next. The reasons for regarding this as a rote 
strategy are obvious: No analysis is involved, but simply recall of a list of 
items in order; the solution only works for a specified number of disks; and it 
only works for a specified initial problem situation and a particular goal 
situation. Hence, the program has no capability for transfering what it knows 
about the problem to variants involving a different number of disks, or even 
trivially different starting and goal points.

In sharp contrast to the rote program is a program incorporating the usual 
recursive solution for the Tower of Hanoi problem. This solution rests on the 
observation that in order to move a pyramid of n disks from Peg S to Peg G, 
one need only: (1) move a pyramid of (n-1) disks from S to Peg O;(2) move 
the largest remaining disk from S to G; and (3) move the pyramid of (n-1) 
disks from O to G. To execute this solution, however, the program must be 
able to store in short-term memory, in a sequence corresponding to their 
order in the goal hierarchy, all the goals that at the given time have not yet 
been completely executed. The maximum number of goals that have to be 
held simultaneously in short-term memory is (2ra-l) for an /i-disk problem. 
Hence, it is unlikely that a human subject would be able to carry out this 
strategy unmodified form with more than three or four disks.
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From the standpoint of understanding, however, the important difference between the rote and recursive solutions of the problem is that the latter, but not the former, possesses and makes use of implicit knowledge of important aspects of the problem structure. This additional knowledge is knowledge that the problem is recursive that the n-disk problem can be dissected into problems of exactly the same form, but with fewer disks. Notice that "possession** of knowledge here means that it is built into the program, hence available for solving the problem, not that it is available in explicit declarative form. A subject having and using such a program may, or may not, be able to state the recursive rule.
  The recursive strategy is knowledgeable about the Tower of Hanoi problem and can solve problems of any number of disks, and with any starting point and number of goal pegs. It must start from the beginning, however, and if it loses its place (loses the stack of subgoals), it cannot recover. It is very introverted, paying no attention to the current arrangement of disks on pegs but deciding what to do next solely on the basis of which goal lies uppermost in its goal stack in STM. It can easily be fooled by an outside intervention that changes the disk arrangement between two of its moves and is then not able to continue.

There is a very different strategy, the perceptual strategy, that makes considerable use of its knowledge of the current problem situation in order to decide on its next move. The perceptual strategy first notices the largest disk that has not yet reached the goal peg. It determines whether this disk can be moved legally to the goal. If not, it notices the largest disk that is blocking the move and determines the peg to which this latter disk must be moved to get it out of the way. Taking the move of the blocking disk as its new subgoal, the strategy now repeats the same cycle: checking the legality of the move, noticing the largest blocking disk if it is not legal, and setting up the goal of moving that disk. Eventually, the strategy finds a move that can be made and makes it. Now it starts at the beginning again and repeats.
The perceptual strategy solves not only the problem of moving an n-disk pyramid from one peg to another, but it does this starting from any arbitrary (legal) arrangement of the disks. Moreover, it need retain in short-term memory a maximum of only two symbols, no matter how large n is, instead of the entire goals stack required by the recursive strategy.
This difference in performance capabilities derives from differences among the means the various strategies have available for conceptualizing the problem. In the recursive method, the successive moves are governed by the goal structure in short-term memory; in the perceptual method, they are governed by the current state of the stimulus. The rote strategy knows only of individual legal moves. The recursive strategy employs the concept of a macromove: moving a subpyramid of disks. The perceptual strategy lacks this



48 SIMON

latter concept, but it has the notion of **the largest disk blocking the move of 

disk X," is able to determine perceptually which disk this is, and can use this 

knowledge to progress toward its goal.

Even this simple puzzle environment reveals additional dimensions to the 

meaning of understanding. The understanding that different subjects, who 

have learned to use different strategies to solve the Tower of Hanoi problem, 

have acquired is quite different hi each case. Each has touched a different part 

of the elephant   ... -

UNDERSTANDING AND AWARENESS " - n

Let us return again from computer programs to human behavior. In order to 

. test a student's understanding of the Tower of Hanoi problem: ; -

1. We could test the speed with which the student learned a solution 

strategy, how well the student retained it over time, and to what range of 

similar tasks the student could transfer it. Research by Katona (1940) has 

shown that "meaningful" solutions of problems are learned faster, retained 

better, and transferred more effectively than rote solutions.

2. We could infer the nature of the strategy the student used to solve the 

problem and evaluate it with respect to its parsimony and generality, just as 

we have been evaluating the computer programs.

3. We could measure the student's ability to evoke the strategy when it was 

appropriate for solving a problem. (This is the criterion that comes closest to 

fitting our initial definition of understanding.)

4. We could test the student's ability to paraphrase or describe the strategy 

in alternative expressions.
5. We could test the student's ability to explain or prove how or why the 

' strategy works.

The final two tests in this list raise entirely new issues beyond those 

discussed up to this point issues of what might be called "awareness." But 

why are we interested in a student's ability to paraphrase, explain, or prove? 

And how can we give an information-processing explanation of being aware 

in these latter senses? We take up the second question first.

Because the three strategies have not been described in formal detail but 

have already been paraphrased in the text, we can take those paraphrases as 

examples. Note that they are expressed in natural language; they omit much 

of the detail of the formal strategies; and they are in a form that a program 

having the general characteristics of UNDERSTAND might use as input for 

generating the programs themselves. Stated otherwise, a paraphrase of a 

program corresponds closely to an informal description of the top levels of 

that program. Hence, it might serve as input to an understanding program. A
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system that could paraphrase programs and create programs from para 
phrases would have ways of understanding its knowledge that go beyond 
those previously described. It is not hard to think of contexts in which people 
appear to use this kind of understanding (e.g., in learning to perform tasks 
from brief English-language descriptions).

Explaining a program or proving its efficacy (the fifth of the tests listed 
earlier) is similar to paraphrasing but goes a step further in paying attention to 
the performability of each step and to the effectiveness of the procedure in 
attaining its goal. Knowledge in the form of paraphrase, explanation, or 
proof of strategies is knowledge about knowledge, which is how I define 
awareness. To the extent that a system can examine its own programs, 
analyze them, and modify them, it has additional forms of knowledge that 
have their own appropriate uses. It appears plausible that these uses are 
especially closely related to the system's capacity for learning, and for 
acquiring new forms of understanding.

CONCLUSION ; - • -,

There appears to be no end of "understanding" problems. Research in 
artificial intelligence and information-processing psychology has identified 
and attacked at least a half-dozen such problems during the past decade. 
Understanding was initially viewed in this research as the ability to extract 
meanings from natural language inputs and to make explicit by inference 
information contained implicitly in those inputs. At a later stage, emphasis 
shifted to capabilities for combining information derived from multiple 
sources (two or more input sources, or input information with information 
already available in semantic memory). Just appearing on the horizon, and 
likely candidates for the next decade's research, are questions about the forms 
of understanding called "awareness."

In surveying a considerable range of tasks calling for understanding, we 
have found a much smaller variety of basic mechanisms for performing these 
tasks. This is encouraging and comforting if we have, as most of us do, a taste 
for parsimony in explanation. However, it should not make us complacent in 
thinking that we have already discovered the main mechanisms required for 
all forms and types of understanding of which people are capable. The 
understanding of the process of understanding continues to be an important, 
even central, research target in cognitive psychology today.
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