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Polyhedral Cone-Ratio Data Envelopment Analysis Models generalizing the CCR Ratio Model 
are developed for situations with a finite number of DMUs and employing polyhedral cones of 
virtual multipliers. They provide improved definitions of efficiency over CCR models whose 
input-output data and/or numbers of DMUs are inadequate to capture aspects or restrictions 
which should be involved. The focus here is on the sum form for cones which easily provides for 
capturing exogenous expert opinion as well as mathematical reduction to the old form with its 
very powerful software. Transformation from the usual intersection form to it and vice versa is 
explicitly given. Thereby the advantages of either or both are available. The theory is illustrated 
with two-dimensional examples and by real banking examples for motivation.

1. Introduction

Data Envelopment Analysis (DEA) as brought forward in this journal by 
Charnes, Cooper, Golany, Seiford, and Stutz (1985) encompasses develop
ment of empirical economic production functions on the one hand, and 
managerial performance evaluation (efficiency analysis) on the other hand 
from selected or available input and output observed (or sampled) data. As 
shown in this 1985 ‘Foundation’ paper, all the different DEA models 
correspond mathematically to the Charnes-Cooper test in the Charnes- 
Cooper monograph (1961) for vector (here Pareto-Koopmans) optimality (or 
‘dominance’ in current mathematical terminology) in goal (or multi-objective) 
programming. In DEA the selections of inputs and outputs, in contrast to 
usual microeconomic or operations research normative individual firm devel
opments, are in terms of more aggregative quantities such as, for example, 
may be available from summarized accounting. Thus, the construction of a 
good approximate empirical production function may be flawed by the 
absence of important input or output variables or by the presence of 
unsuitable ones. Also, depending on the DEA model chosen, the production
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possibility set may be a bad description of what is actually possible [see 
Seiford and Thrall (this issue)]. Further, there may be sufficient observations 
to construct an adequate production possibility set with any model or to 
robustly determine a good empirical economic production function. Re 
classical econometrics, see Charnes, Cooper, Seiford, and Stutz (1983).

Because of the mathematical duality relationships between the production 
function side and the managerial performance or efficiency ‘valuational’ side, 
additional relevant information may be brought to bear on construction of a 
more adequate analysis, e.g., DEA model, either by direct modification of the 
production possibility set or by restricting the ranges of relative valuation of 
inputs or outputs on the performance valuational side. Of course, combina
tions of both can be done. A DEA analysis is not achieved until the final 
selection of inputs, outputs and model and its application, via perhaps 
including window analysis, envelopment maps, etc., are performed.

In this paper, we restrict ourselves to valuational side modifications. In 
Charnes, Cooper, Huang, and Wei (C2HW) (1986, 1989) the CCR model was 
extended to include more general cones than the nonnegative orthants for 
the virtual multipliers and also obtained were their corresponding dual 
‘envelopment’ problems. Here we consider only the situations of a finite 
number of DMUs and polyhedral cones, i.e., cones which may be represented 
equivalently either as intersection of a finite number of half spaces or as cones 
spanned by a finite number of vectors.

The Supercollider location case of Thompson and Thrall (1986) which 
involved six DMUs (possible locations) rated five of the six as efficient with 
the CCR model. Additional conditions on relative valuation of inputs and 
outputs which required ratios of pairs of multipliers to lie within certain 
ranges called ‘assurance regions’ were developed. These conditions were 
equivalent to special cases of intersections of additional half-spaces restrict
ing the virtual multipliers to cones smaller than the nonnegative orthants. 
Desired here was not an empirical production function but a choice of one of 
the DMUs. With these additional conditions on the multipliers, i.e., with this 
special cone-ratio model, as desired, only one DMU, Waxahachie, was 
efficient. The corresponding empirical economic production function, which 
was not a desired objective, consists simply of all positive multiples of the 
Waxahachie input-output vector.

In contrast, as developed in the Ph.D. thesis of D.B. Sun (1987), a DEA  
model to objectively assess managerial performance of bank managers was 
desired, responding to Professor Joseph Ewers’ unhappiness with the Federal 
Reserve’s firing of certain bank managers whose managerial performance 
Ewers assessed as being excellent. (Ewers is a nationally recognized expert on 
Savings and Loan Institutions who was for twenty years President of the 
Federal Home Loan Board.) Inputs and outputs were chosen from the FDIC 
Call Reports. Yet with four inputs, four outputs, and 47 DMUs (banks) the 
CCR model recognized a few notoriously inefficient banks as efficient.
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Evidently the model with Call Reports data inputs and outputs was not 
adequate to represent the valuational processes of bank experts. Further, no 
obvious translations of the implicit expert to explicit relative valuations of 
inputs and outputs was apparent. A new method of bringing such expert 
overall valuational knowledge to bear through developing a better DEA  
model was generated.

This method generated the cone of a cone-ratio model as the cone 
spanned by the optimal virtual multipliers in the CCR model of three banks 
unanimously recognized by bank experts as being preeminently efficient. 
Thus, here, the sum form for the cones in the cone-ratio model, which has 
other important computational advantages, was natural, was immediately 
available, and was used as shown in a later section of this paper.

Why only three expert efficient choices? The DMU sample was that of the 
largest U.S. banks whose operations were not geographically restricted nor 
were there substantial differences in the range of banking operations (loans, 
etc.) performed. Three, unanimously agreed to be efficient, were sufficient to 
provide for a reasonable range of flexibility in relative valuations of inputs 
and outputs.

We next develop the models or relations of the two types in restricted 
mathematical generality but suitable enough for many applications. More 
general theory and models are to be found in C2WH (1986,1989). We 
illustrate the results by means of small examples.

2. The cone-ratio DEA model

In order to generalize to infinitely many DMUs and more general condi
tions that may impose restrictions on the dual evaluators of outputs and 
inputs, the CCR model as in Charnes, Cooper, and Rhodes (1978), was 
generalized by Charnes, Cooper, Wei, and Huang (1986) to the ‘Cone-Ratio 
CCR Model’, here presented only for the finite number of DMUs case. 
These problems are typically:

Kp = M axMr F0, (1)

s.t. (oTX  + iiTŸ <  0,

« r* 0 = l ,
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Fig. 1

and its dual (in the DEA form) [see Ben-Israel, Charnes, and Kortanek 
(1969)]

VD = Min 0 , (2)

s.t. xx  + e x 0<E-v*,

ŸX - F 0 e  - £ / * ,

A > 0 ,

where X  is the m X n input matrix for the n DMUs to be considered and Y  
is the s Xn  matrix of their outputs. V ç :E ™ ,U ç:E+ are closed convex cones 
and V* and U* are the negative polar cones of U and K, respectively. As 
shown in fig. 1, the spanning vectors of a polar V* are the directions normal 
to the hyperplanes bounding V when V is polyhedral.

We use Xj and Yj9 respectively, to reposent the input vector and output 
vector of the /th DMU and assume that X } e  In t(- V*), Yj e  In t(-  U*) for 
any j. Int ( -K*)  = {l?: v 'v > 0 ,  for all v ' e V  and z/=£0}. Int( —1/*) = 
{u: u'u > 0, for all u’ e  U and uf #  0). Int(K*) and Int(U*) are not empty 
since V and U are ‘acute’ cones as defined via K ç £  + , U q E s+ . See Yu 
(1974). Acute cones are those properly contained in a half-space.

Both (1) and (2) have optimal solutions. With suitable regularity condi
tions, the optimal solution values are equal, VD = VP = ¡JY0 < <oTX 0 = 1.
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Definition 1. DMU0 is said to be efficient if there exists an optimal solution 
(/2, w) of (1) such that

/2r y 0 = 1  and / i s  Int U , w e  Int V.

The cone-ratio CCR model thus extends the CCR model by employing 
closed convex cones U and V which need not be nonnegative orthants. If we 
set K = £  + , U = E S+ , then the two models coincide. See Charnes, Cooper, 
Wei, and Huang (1986,1989) for further discussion.

Polyhedral cones V and U and the cone-ratio CCR model

As mentioned, with only a finite number of inputs, outputs, and DMUs, it 
may suffice to employ only polyhedral cones V and U to achieve desirable 
variants of past DEA efficiency evaluations. Polyhedral convex cones V and 
U may be expressed in the sum form as

V* = {v: A v <  0} and U* = {u: Bu < 0}.

Construction of a polyhedral convex cone V may be illustrated by the 
following example. Suppose the DMUs have two inputs. In the CCR model, 
the ratio of their marginal substitution rate is 0 < a)l/co 2< where 
means optimal. Now suppose market information sets the range of this ratio 
as c l < a)2/ ( o l < c2, with c2 > c 1 > 0. This can be rewritten as

— a)2 + c2oji > 0, o)2 —cx(jl>x> 0. (4)

Thereby, a> e  V =  {ay: Coj > 0 ,c o >  0}, where

C 2 - 1 ' 0 ) {

1
, (Ú =

- ~ C 1 CO 2

V may also be defined equivalently as w e  V =  {A Ta : a > 0}, where

V =  {A Ta : a > 0}, a  e  E l+ , A T = ( a 1, a2, . . . ,  a1),

a1 e  E ™, i = l , . . . , / ,  

U = { B Ty . y >  0}, y e E k+ , B r  = ( b l , b 2, . . . ,  bk),

b r e E s+ , r =

(3)

and

Then — V* =  {l?; A v > 0}.
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More generally, an ‘assurance’ region given by (without loss of generality) 

au < Wi/Wj < bij, i < j , i j  = 1 , . . . ,  n, 

satisfying bij > atj > 0 with at least one bik > aik and > 0 can be written as

-  Wi + buWj > 0 , Wi -  auWj > 0 ,

with i < j  and /, j  = 1, . . . ,  n.
The corresponding constraint cone with matrix C from this can be written 

in intersection form as {w: Cw > 0,w > 0}. Here C is full column rank. This 
can be rewritten in sum form as {w: w = A Ta, a  > 0} where A T = 
{C TC ) - lC T}  Conversely, if we have the constraint cone in sum form with 
A > 0, {h>: w  = A Ta , a > 0} where A T is of full column rank, an intersection 
form of {w: Cw > 0, w > 0} can be had from C = A T(A A T)~ l.

In general, going from intersection to sum form, the columns of an A T can 
be the extreme points of {w: Cw > 0, eTw = 1, w > 0}, which may involve large 
numbers of extreme point determinations for simple C matrices. But if C is 
of full row rank, 0 < A  = C T(CCT)~ l is available.

Without intersection to sum transfer, the cone defining inequalities beyond 
nonnegativity corresponds to modifying (extending) the production possibility 
set of the dual linear programming problem (the DEA side).

As will later be seen, polyhedral cones can tighten efficiency criteria in 
DEA tests. Before giving examples, we further expose some theoretical 
underpinnings as follows.

With U and V as polyhedral convex cones represented in the sum form, 
using eq. (3), problems (1) and (2) can be transformed into

VPi = Max y T(BY0), (5)

s.t. a T( A X )  + y T(B Y )  < 0 ,

a T(AX0) =  1,

a  > 0, y  > 0, a e £ ’/, y e £ * ,

J/Di = Min0,  (6)

s.t. ( A X ) \  + 6 (A X 0) > 0 ,

( 2 J F ) A  — (BY0) > 0 ,

A > 0 .

xSee the publicly available 1989 Charnes, Cooper, Huang, and Sun CCS 636 report ‘Relations
Between Half-Space and Finitely Generated Cones in Polyhedral Cone-Ratio DÈA Models’.
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Letting X ' = A X , Y' = BY, the cone-ratio CCR model then coincides with 
a CCR model evaluating the same DMUs but with the transformed data X  
and Y\ Note that X ' and Y' are strictly positive, since alT e  V, b rT e  £/, and 
X jtz  In t(-K *), ^ e I n t ( - £ / * ) ,  ; = 1, . . . ,  n, / = 1, . . . , / ;  r = 1, . . . ,  ¿.

The following theorem establishes the existence of efficient DMUs for the 
cone-ratio CCR DEA model [see C 2WH (1986) for proof].

Theorem 1. There exists at least one efficient DMU with the cone-ratio CCR
model provided that U and V are polyhedral cones.

Since problem (6) and problem (2) are equivalent, an optimal solution 
(A*,0*) to (6) is also an optimal solution to problem (2). Furthermore, since 
U c E s+ , VQE™9 then E s+ c  - U *  and E + c  —V*.  Although the conditions 
for optimal solutions of problem (6) are more restrictive than those of the 
corresponding CCR model, if DMU0 is efficient according to problem (6), it 
must be efficient for the corresponding CCR model.

Now let T = { ( X , - Y ) :  (X,  -  Y)  e  (XX,  -  YA) + ( - V*, -  U * \  A > 0} be 
the production possibility set. Then:

Definition 2. (X o9 — Y0) e  T is said to be a nondominated point of T 
associated with V* X U*, if there exists no (X ,  - Y ) e T  such that

( X ,  -  Y )  e  ( X Q, -  Ya) + { V* , U* ) ,  { X ,  -  Y)  #  ( X a, -  Ya).

Given this definition Theorem 2 follows:

Theorem 2. Let ( X 0, —Y0) be a nondominated point of T associated with
K* X U*. Then DMU0 is efficient [see proof in C 2WH (1986)].

Facets, i.e., portions of the frontier which correspond to linear parts of the 
DEA derived efficient production function, are usually developed from the 
optimal basic LP solutions information for /«efficient DMUs. Here the LP 
problem solved is that on the DEA side, e.g., that corresponding to (2) in the 
CCR case. We obtain a dual optimal solution from the basic optimal solution 
(e.g., that stemming from the determined optimal basis). Those correspond
ing to solution for efficient CCR DMUs we shall call ‘ebd’ (efficient basic 
duals) and we shall characterize DMUs as efficient on their being or not 
being in the new constraint cone. To repeat, an ‘ebd’ is the optimal dual 
vector pointing out from an optimal extreme point of the constraint set and 
provided in the optimal basic solution data of the LP problem solved with an 
extreme point method such as the simplex method.
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Assume that we have chosen M  ebcTs from efficiency evaluations using the 
CCR model. Let these be a1 = j = 1, They have
corresponding halfspaces A t = {Z: alTZ  >  0}, with boundary hyperplanes 

= {Z: alTZ  = 0}, i = 1, . . . ,  M. Clearly every observed vector of inputs and 
negative outputs (x , - y ) T is a Z which is contained in at least one A t.

Suppose we use a subset of the ebd’s as spanning vectors for a constraint 
cone W. Then by renumbering if necessary,

Note that such a W is an acute cone, i.e., is properly contained in a 
half-space, and thereby Int(PK*) is not empty.

Lemma 1 below (to be proven in the appendix) shows that if an ebd is not 
in W, then its associated efficient DMU is no longer efficient under the 
cone-ratio model associated with W. In other words, these DMUs are 
dominated in the negative polar W*.

Lemma 1. If aJ is not in W, and Z Q D Int(^4;), then Z Q is not a 
nondominated point of A associated with W*. I.e., there exists Z  ^ A ,  such that 
Z e Z 0 + W* / { 0}, where W* / { 0} is W* omitting {0}.

From ajT( Z0 -  p Z )  = 0 (see appendix) we know Z Q is in fact dominated 
by another DMU that is an extreme point located on the same facet. Note 
that Z 0 is not an extreme point of A J since Z Q e  Int(^4y). Hence, from 
Lemma 1, we immediately conclude:

Theorem 3. A DMU which is evaluated as efficient by the CCR model is 
inefficient within the cone-ratio CCR model if its ebd is not in the constraint cone 
employed.

Theorem 4. A DMU evaluated as efficient by the CCR model is still efficient 
under a cone-ratio CCR model with W constructed from ebd’s if (/x,o>), an 
optimal dual solution ebd to the CCR model, is in the constraint cone (¿7, V) of 
the cone-ratio CCR model.

Let

M M

a  = p m ,, r v .
i=i /=i 

i*j

W =  Á¿al; A¿> 0 ,  i = 1 < k < M .
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These theoretical conclusions are of practical importance. They make it 
possible for us to employ expert knowledge for improving a DEA analysis 
and to do so without unduly straining that knowledge. For example, we can 
use the ebd’s of economically viable efficient DMUs as spanning vectors for 
the constraint cone and thereby determine which other efficient DMUs are 
economically viable according to our relevant information which is not in the 
input and output measures. This approach is illustrated in the evaluation of 
managerial performance in two bank examples here.

Which and how many ebd’s, i.e., DMUs, should be employed in a cone-ratio 
sharpening of the CCR evaluations? Clearly the evaluations will depend on 
the efficient DMUs selected and also they can vary with the number em
ployed. Generally, outside experts will agree unanimously on a few DMUs as 
being ‘certainly’ efficient. Thus for the ‘sum’ generation of a constraint cone, 
the top three DMU ebd’s were employed. See Sun (1987).

3. Selection of cones for various purposes

We now illustrate use of polyhedral cones U and V in the sum form to 
tighten the criteria for efficiency evaluations of DMUs. These cones may be 
classified further into (a) those which emphasize individual inputs and/or 
outputs and (b) those which favor individual DMUs.

Classification (a): Cones emphasizing inputs and outputs 

Example 1

We are to evaluate four DMUs which use two inputs to produce one 
output. The observed data are:

DMU
l 2 3 4

X l 4 1.5 4
*2 5 1 1.5 2

Y y 1 1 1 1

The CCR model will identify DMU1, DMU2, and DMU3 as efficient. Let 
us examine their efficiency again with a polyhedral cone-ratio model. For 
simplicity, we constrain only cone V and set U = E \ ,  the nonnegative real 
numbers.
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Let V = {A Ta: a  > 0}, then — V* = {co: Aco > 0}. Set

so we have -  K* = {a>: cu1 + a lw2 > 0, a2(ol + w2 > 0}. See fig. 1.
This is equivalent to using the CCR model to determine efficiency with the 

transformed inputs X' = A X  and the original output Y  as represented in the 
following arrangement:

DMU
1 2 3 4

X ’ x\ 1 + 5a1 4 + a 1 1.5 + 1.5a1 4 + 2 a 1
*2 a 2 + 5 4a2 + 1 1.5a2 + 1.5 4a2 + 2

Y y 1 1 1 1

To simplify the formulae for geometric interpretation, if a1 is sufficiently 
small and a2 sufficiently large, and transformed data are equivalent for 
efficiency evaluation to the approximations:

DMU
1 2 3 4

X ’ *i l 4 1.5 4
*2 a 2 4a2 1.5a2 4a2

Y y 1 1 1 1

since a 1 is dominated by the observed value of x[ and a 2 dominates the 
observed value of x 2. Only DMU1, which originally used the least x [9 can 
survive the efficiency test under the constrained cone.

Conversely, if a 2 is sufficiently small and a 1 sufficiently large, only DMU2 
which originally used the least x 2 will remain efficient. For the same reason, 
the transformed data are equivalent for efficiency evaluation to:

DMU
1 2 3 4

X f

Y

x[ 5 a 1 a1 1.5a1 2 a 1
xi 5 1 1.5 2
y 1 1 1  1
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In the first case, V is heavily tilted toward input x[. This shows that more 
emphasis is now put upon x[. As a result, conserving x{ becomes of key 
concern. It is not strange that only DMU1, which consumed the least x[, can 
survive this condition seriously favoring x[. On the other hand, in the second 
case, emphasis is directed to x 2 and it makes conservation of x 2 much more 
desirable. Hence only DMU2 remains efficient. If graphed, cone V is tilted 
toward axis x 2 in case two.

A convenient way to interpret the implication of these cones is to link 
them to the nondominated solution in the multi-objective programming 
problem. DMU2 and DMU3 are dominated in the polar cone —V* by 
DMU1 in case one; DMU1 and DMU3 are dominated by DMU2 in -  F* in 
case two.

We see from the above examples that a constraint cone tilted toward any 
objective (input and/or output) emphasizes that objective. This provides us 
with the possibility of taking account of different concerns for objectives 
which may not be explicitly rendered in the observed quantities themselves.

Classification (b): Cones favoring DMUs

First, let us look at a special case that excludes ‘weak efficient’ DMUs, i.e., 
a case that ensures strict positivity of (/2,<S) in problem (1). Then, DMU0 is 
efficient if jlTY0 = 1. We need to construct a constraint cone to exclude the 
hyperplanes (0, a 2, . . . ,  an\  ( a l, 0 , . . . , a n\ . . . , ( a l, a 2, . . . , 0 \  but to include 
(0,0, . . . ,  0). So we may set

where e is a positive number. BsXs for output transformation is of the same 
matrix form. Example 2 illustrates how to detect the weak efficient DMUs 
using this approach.

Example 2

Consider the following seventeen DMUs. Each DMU uses two inputs to 
produce one output. The observed data are in the table 1.

Consider DMU3 and DMU10. They are scale- but not technically-efficient, 
i.e., 0* = 1 but the slacks of inputs are not all zero. Specifically, the slack of 
input 1 is 5 for DMU3 and the slack of input 2 is 10 for DMU10. While they 
may be termed ‘weak efficient’, they are not really efficient at all. But DMU3 
and DMU10 seem to be fully efficient. (The 0* of both are 1.0000.) We can 
use the polyhedral constraint cone described above with e = 0.01 to uncover

1 1 
1 1

1 £
e 1

e 1 1 1



84 A. Chames et aL, Polyhedral cone-ratio DE A models

Table 1

DMU ÿ x \ *2 DMU ÿ *i *2

DMU1 2 10 10 DMU 10 2 4 30
DMU2 2 20 5 DMU 11 2 6 15
DMU3 2 30 4 DMU12 2 25 4
DMU4 2 27 9 DMU 13 2 7 13
DMU5 2 14 8 DMU 14 2 40 5
DMU6 2 5 20 DMU15 2 20.5 4.9
DMU7 2 4 20 DMU 16 2 4.1 19.5
DMU8 2 12 18 DMU 17 2 5 15
DMU9 2 8 12

the ‘true’ inefficiency of these DMJJs as follows. Take

A J [o 0.01 1

With the transformed data (BY, A X),  we get 0* of DMU3 and DMU10 as
0.9884 and 0.9767, respectively.

The next example exhibits use of a polyhedral cone to identify the 
economically efficient DMUs.

Example 3

We use the same data as in Example 2. From the optimal solutions to the 
CCR model, we obtain ebd’s. Now assume that market information indicates 
that the price ratio of inputs x x and x 2 are in the range k x to k 2, so that 
DMU managers should want to adjust their input consumption accordingly. 
If k x = \  and k 2 = 1, only the efficient DMUs whose (o2/ ( o l are in the range 
(}, 1 ) are economically efficient.

We see that we can use the w of DMU16 and DMU9 to establish the cone. 
Thus we take

" 1 0 0
B O' 1 0 0
0 A . 0 0.125 0.025

0 0.05 0.05

Evaluating with the transformed data (BY, AX),  we obtain the new efficiency 
scores as in table 2 .

For a two-input case, as in this example, we may relate the constraint cone 
to the nondominated solutions associated with the negative polar of the
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Table 2

DMU Score DMU Score

DMU1
DMU2
DMU3
DMU4
DMU5
DMU6
DMU7
DMU8
DMU9

1.0000
0.8000
0.1923
0.5556
0.9091
0.8889
1.0000
0.6667
1.0000

DMU10
DMU11
DMU12
DMU13
DMU14
DMU15
DMU16
DMU17

0.3333
0.9524
0.6897
1.0000
0.4444
0.7874
1.0000
1.0000

constraint cone. Here, we see that DMU2, DMU5, and DMU15 are no 
longer efficient, since their ebd’s fall outside the range But DMU1 is
still efficient. As a matter of fact, its & could be any value between the ebd’s 
of DMU9 and DMU5. With the constraint condition, DMU1 has the ebd of 
DMU9 ebd. To see this, note that DMU1 is an extreme point. Recall that 
from Lemma 1 contrarily, Z 0 = ( x 1, - y 1)r eJ5 1 but it is not in Inti^l1).

We have thus illustrated how a constraint cone can be selected to favor 
desired patterns of input usage and output production in efficiency evalua
tion. Further, as shown in Charnes, Cooper, Wei, and Huang (1986) as well 
as in Sun (1987), these cone ratio approaches can be adapted for use with 
other models, such as the ‘additive’ model, which embody the DEA concepts 
and methods of computation and analysis.

4. Applications to commercial banks

We turn finally to a realistic application to large commercial banks. As 
reported in Sun (1987), the data involved were drawn from the call reports 
(1980-1985) to the FDIC2 for 48 U.S. commercial banks drawn from the top 
300 banks headquartered in America which are also members of FDIC.

Using expert advice from a banking specialist the following outputs and 
inputs were used in this study:

Outputs Inputs

1. Total operating income
2. Total interest income
3. Total noninterest income
4. Total net loans

1. Total operating expense
2. Total noninterest expense
3. Provision for loan losses
4. Actual loan losses

2The supplemental data and expert opinions used are described in Sun (1987).
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To be noted is that the provision for loan losses and actual loan losses 
treated as inputs are indicators of risks in banking operations. Total net loans 
is a measure of the size of services that a bank produces while the other 
inputs and outputs are mainly profit-related measures.

The results obtained from the CCR ratio model as applied to the data for 
these inputs and outputs were not satisfactory so recourse was made to a 
polyhedral cone-ratio DEA model with results that passed muster in subse
quent reviews with wide experience in banking.

We use (6) to make the re-evaluation. The associated tranformational 
matrix °] in 1983 is illustrated in table 3. It consists of optimal virtual 
multiplier vectors of three model banks: Morgan Guaranty, First Wachovia 
National Bank, and First Interstate of Nevada. It is a 6 X 8 matrix, where B 
and A  are 3 x 4  matrices (A  stands for the virtual multipliers of inputs and 
B the virtual multipliers of outputs), since we use three model banks and 
performance is measured in four inputs and four outputs.

We provide only a pair of examples to show what occurred and how the 
CCR model and its cone ratio extensions were used. For the first example, 
we use Citibank which, for 1983, showed the results listed under the column 
headed Value Observed. The column headed CCR model in table 4 shows 
the values for efficient performance as estimated by this model. The values 
exhibited under the column designated as cone-ratio CCR show the values 
which efficient performance would have exhibited as estimated with the 
cone-ratio CCR model.

As can be seen, the values in the latter two columns differ. The CCR 
model rated Citibank performance as efficient but the cone-ratio CCR model 
did not. The value of 6* =  0.9693 obtained from the latter model applied to 
all of the observed input values produces the values shown for these same 
inputs in the last column with the result that these inputs are all reduced by 
about 3%.

Turning to the output values, we obtain the adjustments needed for 
efficiency attainment by means of the formula

7 = 1

where the Yj are the vectors of observed values which correspond to the 
efficient DMUs used in the evaluation of DMU0 and the XJ are the optimal 
solution values. is the value corresponding to the point on the efficient 
facet from which the outputs observed in Y0 are evaluated.

In the case of Citibank’s 1983 performance, the banks appearing in the 
optimal basis -  and thus the banks used in evaluating the efficiency of 
Citibank’s performance -  are the Republic National Bank of New York and
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Table 3

0.1221E -  6 0.5440E -  7 
0.1275E -  5 0.9091E -  11 
0.3699E -  5 0.9091E -  11 
0.0 0.0 
0.0 0.0 
0.0 0.0

0.1727E -  9
0.1727E -  9
0.1727E -  9
0.0
0.0
0.0

0.3625E -  8 0.0 
0.1253E -  7 0.0 
0.3635E -  7 0.0 
0.0 0.1582E -  9 
0.0 0.1582E -  9 
0.0 0.1582E -  9

0.0
0.0
0.0
0.1542E -  6 
0.1473E -  5 
0.4273E -  5

0.0 0.0 
0.0 0.0 
0.0 0.0 
0.1402E -  6 0.1006E -  5 
0.2393E -  6 0.3441 E -  6 
0.6940E -  6 0.9979E -  6

Table 4

Citibank (1983).

Value if efficient

Value observed CCR model Cone-ratio CCR

Output

Total income 13572000 13572000 13443860
Interest income 10615000 10615000 10020451
Noninterest income 553000 553000 271151
Net loans 69286000 69286000 82397984

Input

Provisions 320000 320000 310176
Total expense 12171000 12171000 11797350
Noninterest expense 3061000 3061000 2967027
Loan losses 263000 263000 254926

Texas Commerce Bank, with XJ values of 2.85 and 12.22, respectively. 
Applying these values to the 1983 data for these two banks produced the 
results for the output values shown in the upper part of the last column in 
table 4. Comparison with the observed values for Citibank showed that this 
would have resulted in a decrease of total income by some 1 %, a decrease in 
interest income of 6%, and a decrease in noninterest income by 50% whereas 
net loans would have increased by 19%. To be noted, therefore, is the fact 
that the reduction of inputs (by some 3%) may then be accompanied by a 
decrease in some outputs and an increase in others.

For another example, we turn to Continental Illinois for 1984, which is 
known to have been a disastrous year for this bank. The data for this case 
and the corresponding CCR model and cone-ratio CCR model estimated 
efficiency adjusted values are shown in table 5 which has the same arrange
ment as table 4.

In this case, the CCR model gave a value of 9* = 0.919 which was reduced 
to 0.2351 by our cone-ratio extension of this model. Evidently a needed 
drastic reorientation of this bank’s activities is signaled by the latter value, as
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Table 5

Continental Illinois nb & te (1984).

Value if efficient

Value observed CCR model Cone-ratio CCR

Output

Total income 3998187 3998187 4209945
Interest income 3334291 3334291 3380729
Noninterest income 70064 96783 172986
Net loans 23693936 24791577 22922308

Input

Provisions 1171878 143749 275509
Total expense 3703887 3405380 870784
Noninterest expense 779890 717036 183352
Loan losses 1165487 96907 274006

was subsequently confirmed by the complete overhaul initiated with the 
FDIC bail-out attempt for Continental Illinois.

Turning from the inputs to the outputs for Continental Illinois in 1984, we 
observe that Wachovia National Bank and Trust Co. is the only DMU 
appearing in the basis from which Continental Illinois was evaluated. Thus 
applying the value of XJ = 4.74 to the data for Wachovia in 1984, we obtain 
the new Y0* output values for Continental Illinois which are shown in the last 
column of table 5. Associated with this nearly 77% reduction in its inputs, as 
shown in table 5, Continental Illinois might also have increased its total 
income by 5% and its interest income by some 14% and 147%, respectively, 
while decreasing its total loans by nearly 4%.

Fig. 2 provides a geometric portrayal which can illustrate what is happen
ing in the above cases. As is evident from these examples, output adjustments 
to attain efficiency in the case of the cone-ratio model need not be limited to 
movement in the ‘northeast’ direction, as is true for the CCR model. Thus, in 
the case shown in fig. 2, the output adjustment for DMU5 is restricted to 
projections on A A .  In the cone-ratio CCR model, however, the projections 
can be to BBf.

5. Summary and conclusions

This extract from a more extended study should help to show some of the 
differences that may be expected as opportunities and vistas for research and 
use are opened by the new cone-ratio DEA models. Evidently a good deal of 
flexibility is added and ways are opened for the use of either expert opinion 
without strain or a knowledge of only ranges of values with associated
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inequalities can be employed. Needless to say, these uses can also provide 
guidance and act as a control on such opinions.3

These cone-ratio developments open other possibilities as well. For in
stance, the deficiencies exhibited by the ordinary CCR ratio model may 
reflect rather the fact that FDIC call report data are insufficient to provide 
all of the indicators needed to distinguish between efficient and inefficient 
performance.4 Indeed, as shown in Charnes, Cooper, Golany, Halek, Schmitz, 
and Thomas (1986), uses of DEA admit of extensions that include ‘goals’ 
which might be specified for attainment as well as laws or regulations, risk 
factors, and/or economic ‘climate’. Finally, cone-ratio extensions can be 
applied to the elimination of activities and/or merger schemes along the 
lines of what was done in Bessent, Bessent, Charnes, Cooper, and Thorogood 
(1983).

These generalize the old ratio models by allowing additional relative 
valuational considerations on inputs, outputs, and Pareto-optimality to ap
pear in the form of cones which may differ from the nonnegative orthants 
appearing in the older models.

In this paper attention is focused on the ‘sum’ form for the cones and a 
means of eliciting these cones when direct relative valuation of inputs and

3See, e.g., the discussion in Thomas (1986) of the way DEA was used to guide and evaluate 
the performance of the auditors of the Texas Public Utility Commission in their managerial 
audits.

4See the similar comments in Divine (1986) on the use of DEA for effecting bond-rating 
evaluations for electric utilities which are more comprehensive than the ratings provided in 
Standard and Poor’s or other bond rating services.
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outputs is not available. This means uses expert opinion to select a few most 
efficient DMUs based on their experiential perceptions and generates from 
their optimal dual evaluators valuational cones in sum form.

The sum form for the cones has the important advantage that by a simple 
initial matrix calculation the problem is reduced to the old form with its 
powerful software vital for performing DEA analyses with the usual large 
numbers of DMUs to be evaluated and/or an empirical production function 
to be determined. The intersection form which has occurred in some so-called 
assurance region considerations can be transformed via a related matrix into 
the sum form and thereby can reap also the sum form advantages. Combina
tions of both types can also be made.

As noted, the sum form in equivalent intersection form is generally more 
complicated than the simple trade-off bounds utilized in assurance regions 
considerations. It would be of great interest to build up a set of typical 
applications equivalences as a means of better economic perception, and 
hopefully understanding, of the relevant trade-off ranges of input, output 
values arising in expert efficiency opinion.

Lemma 1. If aJ is not in W, and Z Q e  B}:n ln t(A J), then Z Q is not a 
nondominated point of A associated with W*. I.e., there exists Z  e  A, such that 
Z ^ Z 0 + W * /{ 0}, where W * /{0} is IV* omitting {0}.

Proof. Suppose, on the contrary, that there is no Z e  A  such that Z g Z c +  
W * /{0}. Let S = {s: s e  W * /{0} -  Z + Z Q, for some Z &A}. It is easy to 
show that S is a convex set and 0 is not in S. By the separating hyperplane 
theorem for convex sets, there exists nonzero p  e  E m+S such that p Ts < 0 for 
all s zeS.

For any Z &A, A > 0, and w e  W * /{0}, let Sz  A „ = - Z  + Z Q + kw. Then 
p TZ 0 + Ap Tw < p TZ  for all Z ElA, A > 0, and w e  W*/{0}. Hence

(a) p TZ 0 < p TZ  for all Z<e A ,

(b) p Tw <  0 for all w <e W * / { 0}.

From (b), since W is an acute cone, p  e  (H/ */{0})* = W.
Now consider the system

There must exist a solution Z to (c). Otherwise, for all Z satisfying ajTZ  = 0, 
we would have p TZ  = 0. In that event, there must exist a scalar /^such that 
ajT = hp with h >  0 since aj > 0, and p > 0. This leads to aJZW, which 
contradicts our assumption.

Appendix
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Now let Z be a solution to (c) and consider the point (Z Q -  (3Z). Z 0 e  
Int(^4;) and alTZ 0 > 0 for There exists a <  0 such that for ;,
aiT(Z 0 - p Z )  = aiTZ 0 - p a iTZ >  0 for all /3 e ( a ,  0) and ajT(Z 0 - p Z )  =  
ajTZ 0 -  $ a f Z  = aiTZ 0 = 0. That means (Z Q -  bZ ) e  A  But, p r(Z 0 -  6Z) = 
PTZ 0 — p TZ  < p TZ 0 for all /3 e  (a,0), that contradicts (a). Hence, there exists 
Z e A  such that Z e Z 0 + W*/{0}.  Q.E.D.
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