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Chapter 13 

Satisficing DEA models under chance constraints 

W.W. Cooper 
Graduate School of Business, The University of Texas at Austin, 

Austin, TX 78712-1174, USA 

Zhimin Huang and Susan X. Li 
Schools of Business and Banking, Adelphi University, 

Garden City, Long Island, NY 11530, USA 

DEA (Data Envelopment Analysis) models and concepts are formulated here in terms of 
the "P-Models" of Chance Constrained Programming, which are then modified to con-
tact the "satisficing concepts" of H.A. Simon. Satisficing is thereby added as a third 
category to the efficiency/inefficiency dichotomies that have heretofore prevailed in 
DEA. Formulations include cases in which inputs and outputs are stochastic, as well as 
cases in which only the outputs are stochastic. Attention is also devoted to situations in 
which variations in inputs and outputs are related through a common random variable. 
Extensions include new developments in goal programming with deterministic equiva-
lents for the corresponding satisficing models under chance constraints. 

Keywords: Efficiency, satisficing, data envelopment analysis, stochastic efficiency. 

1 Introduction 

DEA (Data Envelopment Analysis), as initiated and developed by Charnes et al. 
(1978), is a nonparametric method for identifying efficient production frontiers and 
evaluating the relative efficiency of decision making units <DMUs), each of which is 
an entity responsible for converting multiple inputs into multiple outputs. Extensions 
with accompanying egunples of uses of DEA can be found in references like Banker 
et al. (1984), Banker " a l . (1989), Charnes and Cooper (1985) and Seiford and Thrall 
(1990). All of these DEA models are deterministic, but recent extensions have been 
.directed to incorporating statistical or probabilistic considerations into one or more of 
the basic DEA models that have now been developed. 

Banker (1986, 1993) incorporated statistical elements into DEA and developed a 
non-parametric approach with maximum likelihood methods used to effect inferences 
in the presence of statistical noise (see also Banker and Cooper (1994) for further 
extensions). Proceeding in a different direction, Sengupta (1982, 1987, 1988 and 
1989) and Desai and Schinnar (1987) introduced chance constrained programming 

© J.C. Baltzer AG, Science Publishers 



280 W.W. Cooper et al. /Satisficing DEA models 

formulations of DEA, while Land et al. (1992,1993,1994) utilized chance constrained 
programming with accompanying developments that enabled them (1) to analyze new 
problems such as evaluating the relative efficiency of communist and capitalist 
systems as well as (2) to re-evaluate earlier deterministic applications of DEA such as 
the Charnes-Cooper-Rhodes (1981) study of the Program Follow Through experi-
ment in U.S. public school education. 

All of these chance constrained programming formulations utilize expected value 
optimizations and hence fall in the class that Charnes and Cooper (1963) refer to as 
"E-Models". Here we turn to the more general class that Charnes and Cooper refer to 
as "P-Models" and develop them in a manner that enables us to make contact with 
theories of behavior such as are described by the "satisficing concepts" of Simon 
(1957). In this way, we expand potential uses of DEA domains in social psychology 
while also maintaining contact with the capabilities for use in operations research and 
economics which have characterized preceding work in DEA. 

The developments in this paper proceed as follows. In the next section, we intro-
duce chance constrained programming models that enable us to define concepts of 
"stochastic efficiency", which we then interpret in terms of managerial "policies" and 
"rules". Next, we extend these efficiency formulations in a manner that enables us to 
include "satisficing" as well as "optimizing" (efficient) behavior which we distinguish 
from the inefficiencies that may be encountered in either case. These conceptual 
formulation are followed by mathematical developments with accompanying theorems 
and proofs that provide access to "deterministic equivalents" which can be used to 
obtain solutions to our chance constrained models when zero-order decision rules and 
normal distributions are appropriate. A concluding section discusses extensions and 
additional research that will be needed when other, more general, situations need to 
be dealt with. 

2 Stochastic efficiency 

We start by introducing the following version of a P-Model, which we use to adapt 
the usual definitions of "DEA efficiency" to a Chance Constrained Programming 
context, 

ur, vt-. > 0 Vr, /. 

Here, P means "Probability" and the symbol is used to identify the inputs 
and outputs as random variables with a known joint probability distribution. The ur, 

maximize P < 

subject to P > 1 > 1 - a}, j = 1,..., n, 
(1) 
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Vj > 0 are the virtual multipliers (= weights) to be determined by solving the above 
problem. This model evidently builds upon the CCR model of DEA, with the ratio 
in the objective representing output and input values for DMU0, the DMU to be 
evaluated, which is also included in the j = l,...,/z DMUs with output-to-input ratios 
represented as chance constraints. 

Evidently, the constraints in (1) are satisfied by choosing ur = 0, and t>, > 0 for all 
r and /. Hence, for continuous distributions like the ones considered in this paper, it 
is not vacuous to write 

Pr Zr = 1 Uryr0 

I ™ ! 
< 1 + Pr X s * ~ 

r = l uryro 
> 1 = 1 

or (2) 

Pr 
Xr = lUryro 

X; = l vi 
< 1 = 1 - a* > l - a 0 , 

ur9Vt > 0 Vr, / . 

Here, * refers to an optimal value, so a* is the probability of achieving a value of at 
least unity with this choice of weights and 1 - a* is therefore the probability of fail-
ing to achieve this value. 

To see how these formulations may be used, we note that we must have a0 > a*9 
since 1 - a0 is prescribed in the constraint for j = o as the chance allowed for charac-
terizing the y r o , xw values as inefficient. More formally, we introduce the following 
stochasticized definition of efficiency: 

Definition 
DMUC is "stochastic efficient" if and only if a* = aQ. 

This opens a variety of new directions for research and potential uses of DEA. 
Before indicating some of these possibilities, however, we replace (1) with the 
following: 

maximize Pr 

subject to Pr 

£ 1 

< 1 

??r=luryro 

X/Ll vi*io 

I?r=\Uryrj 

u r ,Vi > 0 Vr, i . 

+ Pr Xr=l W r o 

X/= 1 vi*io 
> 1 

(3) 
>1, 7 = 1 n, 

This simpler model makes it easier to see what is involved in uses of these CCP/DEA 
formulations. It also enables us to examine potential uses in a simplified manner. 



282 W.W. Cooper et al. /Satisficing DEA models 

First, as is customary in CCP, it is assumed that the behavior of the random 
variables are governed by a known multivariate distribution. Hence we can examine 
the value of a* even before the data are generated. If this value is too small, then 
one can signal central management, say, that the situation for DMU„ needs to be 
examined in advance because there is a probability of at least 1 - a* > 1 - a 0 that it 
will not perform efficiently. 

Some additional uses of these concepts can be brought into view from the origi-
nal work in CCP. For instance, the article by Charnes et al. (1958) which introduced 
CCP was concerned with policies and programs involved in scheduling heating oil 
production for EXXON (then known as Standard Oil of New Jersey). This led to the 
formation of a risk evaluation committee (the first in the Company's history) to deter-
mine suitable choices of a*. It was decided that a "policy" to supply all customers on 
demand would require a* > 1/2 since the alternate choice of a* <1 /2 was likely 
to be interpreted by customers, and others, to mean that the company was either 
indifferent or unlikely to be willing to supply all customers on demand.1* 

If we define a "rule" as "a chance constraint which is to hold with probability 
one", then we can regard a "policy" as "a chance constraint which is to hold with 
probability 0.5 < a* < 1". Implementation of a "policy" allows for deviations which 
can require managerial attention whereas a "rule" may be administered in clerical 
fashion since no exceptions are to be permitted. Notice, too, that a policy may be 
identified and evaluated by reference to ex-post data, as in an accounting or perform-
ance audit, in order to see whether the corresponding actions had been taken 
sufficiently frequently, or whether some "policy" other than the intended one had 
prevailed. See the definitions and discussions of the term "audit" in Cooper and Ijiri 
(1983). 

We can now bring the above discussion into focus for its possible use in efficiency 
evaluations because the constraint for j = o in (3) contains complementary possibili-
ties. Hence, accepting a value of a* > 1/2 means acceptance of a policy that favors 
efficient performance, whereas a value of a* < 1/2 means that indifferent or ineffi-
cient performance is favored. This does not end the matter. The already calculated 
u*9 v* remain available for use and may also be applied to the data that materialize 
after operations are undertaken by DMUC. Applying the previously determined 
weights to the thus generated data allows us to calculate the probability that the 
values realized by DMU0 will occur. Using these weights, we may then determine 
whether the observed inputs and outputs yield a ratio that is within the allowable range 
of probabilities or whether a shift in the initially assumed multivariate distribution 
has occurred. 

1)rThis characterization and usage of the term "policy" was important because the company was espe-
cially concerned with heating oil as a "commodity charged with a public interest" since failure to supply 
it to customers on demand (in cold weather) could have severe consequences. See the discussion of 
this "policy" in Charnes et al. (1958). 
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Further pursuit of this topic would lead into discussions of the higher-order 
decision rules in CCP and/or the use of Bayesian procedures to modify the initially 
assumed probability distributions. See, e.g., Jaganathan (1985). We do not follow this 
route but prefer, instead, to move toward extensions of (1) that will enable us to make 
contact with the "satisficing" concepts of Simon (1957) that were promised in our 
opening section. 

3 Optimizing and satisficing 

The following model represents an evident generalization of (1): 

• • D J maximize Pr s - m — ^ Po 

subject to Pr 

Pr 

xr=i vi*u 
- PJ 

x r - i M « 

u r , i> j>0 Vr,/. 

> 1 -GCj ; = l , . . . ,n, 

> 1 - ( X j j = n + 1 + k , 

(4) 

Here we interpret p0 as an "aspiration level" either imposed by an outside authority, 
as in the budgeting model of Stedry (1960), or adopted by an individual for some 
activity as in the satisficing concept of Simon (1957). We may then think of the first 

7 = 1,-.., n constraints as representing various conditions such as physical possibilities 
or the endurance limits of this individual. The added constraints j = n+ l , . . . ,n + k 
may represent further refinements of the aspiration levels. This could even include a 
constraint fy - P0 with a prescribed level of probability for achieving this aspired level 
that might exceed the maximum possible value. The problem would then have no 
solution, and this would activate psychological mechanisms, as described by Simon 
(1957), in which an individual must revise his or her aspirations and/or willingness 
to accept risks of not achieving them. 

Uses of these ideas in actual applications are yet to be made. However, we think 
that potential uses include possibilities for using DEA to extend the kinds of behavior 
that are represented in the approaches used in both economics and psychology. For 
instance, it is now common to contrast "satisficing" and "optimizing behavior" as 
though the two are mutually exclusive. Reformulation and use of DEA along lines 
like we have just described, however, may enable us to discover situations in which 
both types of behavior might be present. Indeed, it is possible that behaviors which 
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are now characterized as inefficient (with deterministic formulations) might better 
be interpreted as examples of satisficing behavior with associated probabilities of 
occurrence. This kind of characterization may, in turn, lead to further distinctions in 
which satisficing gives way to inefficiencies when probabilities are too low even for 
satisficing behavior and this, we think, provides access to sharper and better possi-
bilities than those offered in the economics literature by Stigler's (1976) critique of 
Leibenstein's (1976) concept of "X-Efficiency". 

The preceding interpretations were pointed toward individual behaviors that 
accord with the satisficing characterizations provided in Simon (1957). Turning now 
to managerial uses, we can simplify matters by eliminating the last k constraints in 
(4) from consideration. Then we can interpret the above problem in a manner that 
differs from (1) because we have estimates (or are otherwise willing to assume) that 
values of f3j< 1 are applicable for each of the j = l,...,n DMUs to be considered. 
One of the DMUs of interest is then singled out for evaluating the probability that its 
performance will exceed the jij = fi0 value assigned to (or assumed for) this entity in 
the constraints. Proceeding as we did in our discussion of (1), we can then interpret 
our results as being applicable in either an ex ante or ex post manner according to 
whether our interest is in planning or control. In a planning mode, for instance, we 
can determine a maximum probability of inefficient or satisficing (tolerably ineffi-
cient) behavior that we may want to anticipate or forestall when a* < a0 occurs. For 
control purpose, we may similarly want to determine whether the observed behavior, 
as recorded, is too far out for us to regard it as having conformed to what should have 
occurred. 

Choi 
restrictiv 
bringing 
Charnes 
highly si 
new pro( 
rules by 
appropri 
these (in 
involved 
scale tre, 
allows u 
are enco 
treatmen 

We 
are pred< 
ponents 
vector o 

4 Deterministic equivalents 

The above models are very general and intended mainly for conceptual interpretation. 
They can also provide guidance for the more specialized developments that we now 
undertake to achieve "deterministic equivalents" for computation and implementation 
in applicable circumstances. 

Following Land et al. (1992,1993,1994), we assume that input values are deter-
ministic so that only the outputs are to be represented as random variables with a 
multivariate normal distribution and known parameters. Again like Land et al., we 
restrict attention to the class of zero-order decision rules. 

The class of zero-order decision rules for use in chance constrained programming 
can be most easily explained by returning to the example of scheduling heating oil 
production at EXXON, where the objective was to secure a best schedule for this 
seasonal (weather-dependent) product as required to anticipate the probabilistic 
demands. Decisions rules were developed that allowed for changing schedules, in con-
ditional stochastic fashion, as sales materialized. A zero-order rule, however, would 
have set the schedules for the entire season and use of this rule means that the vectors 
u and v of multipliers in (1) are to be treated as deterministic variables. 

where I 
variance 

Nea 

so that! 
unit vaii 

for each 
Sine 

of inver 
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Choices of multivariate normal distributions and zero-order decision rules are less 
restrictive than might at first appear to be the case. Transformations are available for 
bringing other types of distributions into approximately normal form - as is done in 
Charnes et al. (1968), for instance, when it was found necessary to treat the case of 
highly skewed (log-normal) distributions which were encountered when developing 
new product marketing strategies. We can also adapt our use of zero-order decision 
rules by interpreting them as a series of one-period-at-a-time applications with 
appropriate models, to allow for changing realizations and probabilities, and regard 
these (in many situations) as approximations to the more complex solution procedures 
involved in developing higher order "conditional" decision rules to deal with full-
scale treatment of the dynamics. Proceeding in this one-period-at-a-time manner also 
allows us to bypass additional problems such as the sample size considerations which 
are encountered in dealing with multiple observations. See Charnes et al. (1986) for 
treatments of sample sizes in CCP. 

We start by replacing x} as defined in (1) with xj which means that the inputs 
are predetermined, and hence are no longer random, and we also suppose that all com-
ponents of each xj vector are positive. Then, using yj,j = l,...,n, to represent the 
vector of means for yy, we can obtain 

where = (Cov(yijfykj)) is positive, with the symbol "Cov" referring to the co-
variance operator. 

Next we introduce new variables zp defined by 

so that Zj follows the standard normal probability distribution (with zero mean and 
unit variance). Direct substitution in (5) then gives 

(5) 

(7) 

for each of the first j = 1 ,...,n constraints we are treating in (4). 
Since Zj follows the standard normal probability distribution we use its property 

of invertibility to rewrite (7) as 
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uTyj - PjVTXj 

V h " 
Z<t>-l(l-CCj), (8) 

where O is the standard normal distribution function and O -1, its inverse, is the so-
called "fractile function". 

Proceeding as in Charnes and Cooper (1963), we introduce nonnegative "spacer 
variables", fy, and replace (8) with the following two inequalities: 

where 

uTyj - pjVTxj - <t>-\ccj)rij < 0, 

Or, [vij — UTJLjU] > 0, 
(9) 

1 if 0Cj < 0.5, 
0 if a ; = 0.5, 

- 1 if a , > 0.5. 

Considering only the first n constraints in (4) and replacing xj with xJf we then have 

Maximize p J > j30l 
I u *o J 

subjectto uTyj - ¡3jVTXj - <&-\aj)Tij < 0 , j = 1 , . . . , / i , (10) 

Caj [rij ~ u%u] > 0, 7 = 1 n, 

u > 0, v > 0, rj > 0. 

The constraints in (10) are all deterministic but the functional still involves the 
vector y0 random variables, so this problem is not yet deterministic. It is easy to 
see, however, that (10) is equivalent to 

Maximize y 

subject to P 
T~ »yo 
T | 

uTyj - pjVTXj - O " 1 (0Cj) l i j < 0, j = 1 , . . . , n, 

C a j [ i j j - « % « J > 0 , j = l,...,n, . 

u > 0, v > 0, T] > 0. 

( I D 

We can achieve a deterministic equivalent for the first constraint in (11) by proceed-
ing as follows: 
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pi ^>P0)=P{-uTy0<-l}0vTx0} 
I v J 

= p i -m r yp < _ PQVtXQ - UTY0 1 
( <sjuTI.0u ^]uTyL0u J 

= p\zo< uTyo ~ PovTxo 1 , (12) 
[ V» % » J 

For the first constraint in (11), we therefore have 

This is equivalent to 
sj.-P.''*» ( 1 4 ) 

Utilizing these results, we then find that (11) is equivalent to 

Maximize y 

subjectto uTy° -h»T*o > o - ' ( y ) , 

u T y j - p j V T X j - < r ! ( a y ) 1]j ^ 0 , j = l , . . . ,n, 

w > 0, t; £ 0, 7/ > 0. 

This problem is deterministic but is awkward to work with because the denomi-
nator in the first constraint makes this a non-convex programming problem. Our next 
objective is to remove this difficulty and we begin by considering the following 
problem, 

Maximize £ 

subjectto » r y o - / W * o ^ 
4UTY.QU 

T n T , <16) 

uTyj - pjVTXj - O"1 {aj )7]j <0, j = 1,..., n, 

C a j [ r j j - u T I . j u \ > 0 , j = 1 , . . . , n , 

u > 0, u > 0, 77 >0. 

(15) 
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Since $ (y), as represented in (14), is a strictly increasing function of % (15) and 
(16) have the same solution structure and, at any pair of optimal solutions for these 
two problems, we have 

= ® ~ V ) . (17) 
where * refers to an optimal value. It is now easy to see that (16) is equivalent to the 
following problem: 

uTyo - PqvtX0 Maximize 
S]UTTL0U 

subject to uTyj - PjVTxj < 0 , j = 1 (18) 

w > 0, > 0, 77 > 0. 

Since (uTy0 - PoVTx0)/^uTI.0u is bounded by O^^Oq), it is easy to show that, by 
introducing a positively valued variable, 0), (18) is equivalent to 

Maximize " ^ 
io 

subject to u r £ 0 u - <o2 > 0, 

u T y j - P j V T X j - < i > - l ( a j ) t i j < 0 , j = 1 n, (19) 

j = 1,..., n, 

« £ 0, t> > 0, 7J £ 0, ft) £ 0. 

This problem involves a fractional functional in the objective. Hence, we can 
utilize the Charnes-Cooper transformation of linear fractional programming (see 
Charnes and Cooper (1962)) for which we let t =s 1 f a , fi:=tu, v:=tv, and (:= tf\. 
We can then replace (19) by the following quadratic programming problem: 

Maximize jxTy0 - P0vTx0 

subject to uTI.0fi > 1, 

f i T y j - P j V T X j -<t>-\oCj)Cj < 0 , y = 1 , . . . ,n , (20) 

C a . [ C ? - « % « J > 0 , j = 1,..., n, 

H> 0, v > 0, £ > 0. 

PC 

T1 
U 

Fi 

P, 
Fi 
P« 

ai 

V 
ai 
ai 
•f 

. i 

f< 
f< 
ai 
d 

a 
E 
s< 
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5) and 
- these 

(17) 

to the 

(18) 

We now conclude these developments by relating the solutions of (20) to the 
portion of (4) which we are dealing with via the following 

Theorem 1 
Let (fi*, v*, £*) and (w\ v*) be optimal solutions of (20) and (4), respectively; then 

« W 7 * ) - PoV*Tx0) = P\ ^ ^ > & 1 
I t> *o J 

Furthermore, DMU0 is stochastically efficient if and only if ®(fi*Ty0 - PoV*Tx0) 
= a0. 

that, by 

(19) 

we can 

(20) 

Proof 
From (17), we have 0(/**ryo - Pov*Txo) = Y*> where y* is the optimal value of 
problem (15). Since problem (15) is equivalent to problem (4), 

and 
H 3 H 

<WT% - PoV*Txo) = ^ ^ ^o1 

• 
5 Dualities under a single stochastic index factor 

We now further specialize our analysis and assume that components of the outputs 
are related only through some basic underlying factor.2^ All components of any output 
are determined solely by this single factor. More explicitly, 

yrj =yrj +brjÇ (21) 
for r = 1 and / = where the level of some index (such as GNP), 
follows a normal distribution with £(£) = 0 and standard deviation <r(£), while y r j 
and brj, which are positive parameters, represent the expected values and standard 
deviations, respectively, for y r j . 

Without loss of generality, we now assume that cr(£) = 1 and consider how to 
achieve a deterministic equivalent for (4) under this single random index assumption. 
Employing algebraic reductions and analyses that are analogous to those given in 
section 4, we achieve 

2)The use of a single underlying factor assumption has been recognized and applied for a long time in 
finance and economics. See, for example, Sharpe (1963) and Kahane (1977). 
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i 

(22) 

Maximize jnTy0 - PoVTx0 

subject to vTb0 = 1, 

P j V T X j - f l T y j > O~ !0 - ( X j ) f l T b j y j = 1, ...,n, 

fi > 0, v > 0. 

The dual of (22) is as follows: 

Minimize - 6 

n 
subject to £ Xj [yj + O"1 (1 - a} )bj) > yQ + 6b0, 

j=i 
n 

"Ll jP jXj ^ A>*0. 

y=i 

X > 0. 
By duality theory, for any optimal solution (X*9 6*) of (23), we have -0* = fi*Ty0 
- p0v*Tx0 and therefore <I>(-0*) = ®(H*Tyo - PQV*tx0) < a0> with this last result 
following from the constraint for j = o in (22). Hence, we have 

(23) 

d* ><I>-l(l-a0). (24) 

With these results in hand, we are now able to draw some conclusions about the 
solutions. First we observe that the first and the last constraints in (23) together imply 
that only nonnegative combinations of deviations above or below the means of y j by 
amounts equal to <E>_1(1 - aj)bj are considered, where - aj) are fractiles corre-
sponding to a J? ) This means that output production must equal or exceed the mean of 
yQ by an amount equal to 6b0. The second and the third constraints in (23) together 
imply that only nonnegative combinations of observed input levels are considered, 
and such a weighted sum must reflect input consumption not exceeding the observed 
level for DMU0 all multiplied by their fy, fi0 values. 

The standard normal deviate yo + dbQ above or below4) mean y 0 can be used in 
the following manner to obtain an efficiency score for DMU0: "DMU0 is inefficient 
if Q* > O 'H l - ckq), while DMU0 is efficient if 0* = O ' ^ l - Oq)". 

W< 
i ^ 
Th 
all* 
vai 

tril 
an< 

M 

su 

wh 

-

foil 

Th 
Let 

3) Whether it is below or above depends on the value of ar If ay >0.5, then ŷ  + O'^l - aj)bj is 
- 0 _ 1 ( 1 - aj) times the standard deviation below yj. Otherwise, -y. + 0" l(l - aj)bj is -^"'( l - aj) 

times the standard deviation above . 
4) If 0 is positive, y0 + BbQ is 9 times the value of bQ above mean yQ. Otherwise, y0 + 6b0 is - 6 times 

b0 below yQ. 

Fui 
= c 

the 
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6 Deterministic equivalents under the assumption that outputs and inputs are 
both stochastic 

We now reverse direction and point our analyses to the case where outputs as well as 
inputs follow multivariate normal distributions with finite means and covariances. 
This means that we allow variations to occur in the production process and we also 
allow data measurement and specification errors to occur so the efficient frontier can 
vary stochastically across DMUs. 

We first assume that the output-input data set follows a multivariate normal dis-
tribution. Let y j and xJ be expected values of yj and xp respectively, with > 0 
and x j > 0. Using analyses similar to those employed in section 4, we obtain 

Maximize fiTyo - j30v rjc0 

subject to - 2fi0/iTI,Qlv + > 1, 

tiTyj-pjVTXj-<Z>-l(aj)Zj<0, j = 1,. . . ,*, (25) 

Ca. [ j ^ E f V - 2PjfiTI.?v + ^ v r E » v - < 0, j = 1,. . . ,ai, 

fi > 0, v > 0, £ > 0, 

where, for j = 

Z9° =(Co v(yij,ykj))sxs, (26) 

= (Cov(y y ,%) ) J x m = ( E f ) r , (27) 

Z ? =(Cov(jc ihxkj))mxm. (28) 

We now extend our previous theorems and definitions of stochastic efficiency as 
follows. 

Theorem 2 
Let (fi*9 v \ £*) and (w*, u*) be optimal solutions of (25) and (4), respectively; then 

*(n*Tyo - A)V*r*0) = p \ > /J0|. I v x o J 

Furthermore, DMU0 is stochastically efficient if and only if - PQV*tXQ) 
= 06. 

Now we proceed in a manner analogous to the preceding section and assume that 
the components of the inputs and outputs are related only through a basic underlying 
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factor. More explicitly, the component of any input and output is determined solely ] 
by a single factor: prob 

Xij = Xij + Oijt, (29) 

yrj=yrj+brJS, (30) 

for i = 1 ,...,m, j = 1 and r = where £ follows a normal distribution 
with mean E(£) and standard deviation <r(£) = 1 and xy, yrj, aiy and brj are positive 
constants. It is easy to see that x{¡j and yrj are the expected values for x/y and yrj, 
respectively, and aV) and brj are standard deviations for x/y and yrj, respectively. 

Employing analyses similar to those used in section 4, we have 

Maximize FITY0 - PQVtX0 

subject to | P0vTa0 - fiTb0\ > 1, 

p j V T x j - f i T y j ><J>-l(l-aj)\PjVTaj - f i T b j \ , j = l , . . . , n , 1 

direc 
fi > 0, v > 0. abili 

There are absolute values in the constraints, so problem (31) is not an ordinary linear 
programming problem. However, we can use the goal programming theory developed ^{ 

by Charnes and Cooper (1961, 1977) to transform problem (31) into an ordinary 
quadratic programming problem. 7 { 

Consider the expression | PjVTcij - fiTbj\. If PjVTaj - fiTbj > 0, let 7]f = pjVTaj 
- i i T b j , o the rwise 7}j = -(/JyV7^ - fiTbj). Hence, | P j V T a j - fiTbj\ can be ex- W e j 
pressed by 7]f + 77/, where r j / and T]j satisfy PjVTaj - jiTbj = rjt - rjJ, Tjy t)J = 0 class 
and rij £ 0, t]j ^ 0, as required for goal programming. The inequalities must be sat- beha 
isfied for any solution. Then we can use This 

t ia l | 
prob T1++1JÏZI, 

p 0 v T O 0 - l i T b 0 = 7 7 j - 7 J ô , th^f 

rioVÔ = 0, 
77J > 0, 77Ô > 0 fonr 

one 
to replace the first constraint in (31), and use type 

poss 
acco 
rese« 
usin 

PoVT<*o --M>Tb0 = 

PjVTaj - tiTbj = r j t - t j J , 

= °> anal; 
> 0, TfJ > 0 

to replace the second constraint in (31) for each j. 
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Hence, problem (31) is equivalent to the following quadratic programming 
problem: 

Maximize fiTyo ~ A>vr Jo 

subject to t/Q + TJo — h 

Problem (32) is referred to as in efficiency analysis form with the maximization 
directed to the choices of fi and v which yield the largest value of a satisfactory prob-
ability of achieving an aspiration ratio level of weighted outputs to weighted inputs 
allowed by the constraints. In this way, we retain contact with the earlier discussion 
of both "satificing" concepts and DEA frontiers. 

7 Concluding remarks 

We previously described a variety of uses for these developments, which range from 
classification and control of policies and performances and extend to studies of 
behavior ranging from "satisfying" to "optimizing" possibilities in various situations. 
This can include even cases in which one wants to characterize the behavior of poten-
tial competitiors by assigning them potential Pj efficiency values with corresponding 
probabilities of occurrence - which can then be tested by positioning each DMUy in 
the functional in order to determine whether its probability of exceeding the specified 
Po is sufficiently high to warrant revisions of the value that was initially hypothesized. 

There is more research to be undertaken, of course, and this can take a variety of 
forms. Extensions to more general classes of distributions and decision rules represent 
one set of possible research avenues. Another set would extend the analyses to other 
types of DEA models and CCP programming characterizations. Nor does this end the 
possibilities. As a case in point, we might note that the above models all have been 
accorded what might be called the "intersection form" of CCP. Another direction of 
research could proceed from what might be called the "union form" of CCP which, 
using the notation in Wagner (1969, p. 670ff.), can be adjusted to our type of DEA 
analysis by writing 

pjVTxj - fiTyj > <Tl(l - ajHtij + i f j ) , j = 1,...fn, 

pjVTaj - fiTbj = f j t - 7 7 7 , 7 = 1, . . . , / ! , pjVTaj - fiTbj = rjt - 777, 

rijVj = 0, 

/¿ ,V, t j + ,TT > 0 . 

(32) 

j = l,...,n, 
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in place of (4). One needs to be aware of difficulties like those described by Wagner, 
of course, but these lines of research nevertheless offer important possibilities, and a 
start toward exploiting these types of joint chance constraint for probabilistic 
efficiency evaluations to be conducted simulaneously over a collection of DMUs is 
offered along lines like those set forth in Cooper et al. (1996). 
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