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ABSTRACT 

This paper examines different algorithms for calculating the shortest 

path from one node to all other nodes in a network. More specifically, we seek 

to advance the state-of-the-art of computer implementation technology for such 

algorithms and the problems they solve by examining the effect of innovative 

computer science list structures and labeling techniques on algorithmic 

performance. 

The study shows that the procedures examined indeed exert a powerful 

influence on solution efficiency, with the identity of the best dependent upon 

the topology of the network and the range of the arc distance coefficients. 

The study further discloses that the shortest path algorithm previously docu-

mented as the most efficient is dominated for all problem structures by the 

new methods, which are sometimes an order of magnitude faster. 



1.0 INTRODUCTION 

Shortest and/or longest path analysis is a major analytical component of 

numerous quantitative transportation and communication models [4,9,13,15,16,20, 

23]. These mathematical models seek to improve efficiency and service by 

increasing capacity, reducing travel time, minimizing congestion, reducing the 

cost of transportation service, improving vehicle routing, or reducing energy 

utilization. Such models usually utilize a network to represent the trans-

portation system (which may consist of road segments, railroad tracks, and 

other common carrier transportation routes) where one desires to find a numerical 

value of the minimum time, cost, distance, energy usage, etc., or maximum 

capacity between several pairs of points in the network. The former problems 

are often called shortest path problems while the latter are called longest 

path problems. 

Finding these values in many applications often requires finding the 

shortest or longest path from one point (called a root node) to all other points 

(nodes) in the network, where nodes can be road intersections, railroad junction 

points, airplane terminals, and so forth. Further, such information is often 

successively required for several different root nodes and for a large number 

of different criterion functions (time, distance, cost, etc.). Additionally, 

applications often involve iterative determination of the shortest or longest 

paths for several different values of each criterion function's coefficients 

during sensitivity analysis. For many applications the networks are very large, 

containing several.thousand nodes and arcs (segments or links). 

The longest path problem is often applied to schedule major projects such 

as: phased network capacity improvement programs; maintenance, overhaul, and 
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leasing of large-scale transportation equipment; resource leveling; research 

and development programs; and the market introduction of a new production service. 

The longest path problem is the central component of critical path scheduling, 

often designated by a variety of acronyms such as CPS, CPM, and PERT. Regard-

less of the name used, it is very important to realize that the longest path 

problem is mathematically identical to a shortest path problem. Thus, the 

algorithms in this paper apply to such problems and henceforth we will use the 

term shortest path problem to refer to both problems. 

The above discussion illustrates the remarkable pervasiveness and signifi-

cance of shortest path problems and the importance of algorithms to handle these 

problems efficiently. Because of this, a number of algorithms have been developed 

for finding the shortest paths from one node to all other nodes in large directed 

networks. Dreyfus [8] has written an excellent paper classifying the types of 

algorithms and giving theoretical computational bounds for each class. 

While the literature contains many shortest path algorithms, it is important 

to observe that there are only a handful of general methods for solving shortest 

path problems. Each general algorithm has within it subalgorithms. That is, 

there are special subproblems or sets of operations that must be handled in 

order to execute the general algorithm; e.g., finding the minimum of a set, 

breaking a loop, reconnecting subtrees, carrying out computations over the nodes 

and arcs of subtrees, etc. The literature basically contains descriptions of 

a large number of different ways to handle these subproblems; unfortunately, 

many of these alternatives are referenced in the literature as different algo-

rithms rather than as variants of the small class of general algorithms. 

Historically these "algorithms" were developed and published because 

researchers devised ingenious ways of handling one or more of the subproblems 

in a mathematically efficient manner; i.e., the developer was able to show 
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that his algorithm would require in the worst case fewer addition and/or comparison 

operations than another algorithm. 

The use of digital computers has shown, however, that algorithms which have 

excellent worst case bounds are not necessarily the most efficient (in terms of 

computer time) for solving real-world problems. This is partially due to the 

fact that real-world problems have unique features (e.g., only a fraction of the 

total number of possible arcs, special network or grid structures, small distance 

coefficient values, etc.) which are often not reflected in the worst case bounds. 

More importantly, many of the "good" (polynomially bounded) algorithms assume 

that certain information is available or updated after each iteration at no 

computational expense; however, when using a digital computer to execute the 

algorithm, the maintenance of such information actually requires non-trivial com-

puter storage, retrieval, and comparison operations. Therefore, mathematically 

efficient algorithms do not necessarily result in efficient computer solution 

procedures. 

This has, consequently, spawned an important interface between mathematics 

and computer science, called computer implementation technology [14]. Computer 

implementation technology is an essential and often neglected component of the 

study of classes of algorithms. It is in fact a major practical tool for dealing 

with the ubiquitous issue of computational complexity, since no analysis of 

computational complexity can be truly meaningful without reference to the techno-

logy by which solution systems are implemented. 

Computer implementation technology involves the design of special procedures 

to carry out subalgorithms of a general method efficiently on a digital computer. 

Typically, this requires research to determine: (1) the kinds of information 

to keep on hand for executing certain operations most effectively, (2) the kinds 

of data structures in which to express this information, and (3) the actual 
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methods for processing these data structures to make the desired information 

available when it is needed. Effective use of such research further involves 

design by feedback, iteratively amending and integrating component procedures by 

reference to computational analysis and performance. 

The evolution of efficient methods for network flow and shortest path 

problems [1,2,3,6,9,10,11,12,13,14,22,24] uniquely demonstrates the power of 

computer implementation technology, properly applied, to yield gains that were 

not previously suspected. For example, 2000 node 7000 arc minimum cost network 

flow problems that required several minutes to solve in 1968 can now be solved 

in only 20 seconds, using the same general algorithm, computer, and compiler 

[3]. Similarly, Gilsinn and Witzgall [9] found that improved implementation 

technology caused solution times for shortest path problems to drop from one 

minute to slightly more than one second, using the same general shortest path 

algorithm, computer, and compiler. 

In the past, due to the lack of attention to developing systematized 

principles and concepts, it was common for people to attribute variations in a 

general algorithm to the skill (art) of the computer programmer. Recently, an 

awareness has developed within many of the science disciplines, and particularly 

within operations research, that the design of efficient computer programs for 

solving mathematical problems is subject to the enunciation of key methodological 

and analytical principles, and therefore is primarily a science rather than an art. 

The excellent study by Gilsinn and Witzgall [9] pioneered this awareness 

in application to shortest path algorithms and provides a unified structure for 

describing such algorithms. The purpose of this paper is to extend this work, 

to evaluate procedures not investigated in the Gilsinn and Witzgall study, and 

to further demonstrate the importance of computer implementation technology by 

the exposition of new procedures that are superior to those previously documented. 
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This paper specifically focuses on characterizing and comparing different 

algorithms for calculating the shortest paths from one node to all other nodes 

in a directed network. This study shows that alternative list structures and 

labeling methods indeed exert a remarkably powerful influence on solution 

efficiency, and that the identity of the best of these methods depends upon 

the topology of the network and the range of the arc length coefficients. An 

additional significant result of the study is the disclosure that the new 

implementation methods are sometimes an order of magnitude faster than the 

previously fastest method. 

2.0 NETWORK TERMINOLOGY AND STORAGE 

This section contains formal definitions of the terms used to describe 

shortest path problems and algorithms. In order to unify the literature in 

shortest path methods and their implementation, we will largely use the terminol-

ogy of the Gilsinn and Witzgall study, departing only to make distinctions and 

refinements not anticipated in previous work. 

A directed network or simply a network G(N,A) consists of a finite set N 

of nodes and a finite set A of arcs, where each arc a £ A may be denoted as an 

ordered pair (u,v), referring to the fact that the arc is conceived as beginning 

at a node u £ N and terminating at a different node v £ N. 

A directed path or path is a finite sequence of arcs P = {a-, a 0 , ...a } 
1 I n 

such that for each i = 2, ...n, arc a. begins at the end of arc a. . P is 
l l-l 

called a path from node u to node v if a n starts at node u and arc a terminates 
1 n 

at node v . If a network contains a path from node u to node v , then v is called 

accessible from u. A path P from u to v is called a circuit if u = v . A path 

for which a. f a. for i ^ j is called arc-simple. 
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Let ¿(a) or £(u,v) denote a nonnegative length associated with arc 

a = (u,v) of a network. Then we define the length of path P to be 
n 

d(P) = Z ¿(a.). Path P from one particular node to another node is called 
i=l 1 

a shortest path if d(P) is the minimum length of any path between these nodes. 

A network may be represented in a computer in several ways and the manner 

in which it is represented directly affects the performance of algorithms 

applied to the network. Three basic ways of representing a network with J N j 

nodes and ( a | arcs are: 

1. Use an | N ) x | N | matrix C = 9 where element = £(i,j). This 

value is treated as "infinity" (in practice, some very large number) if the 

arc does not exist. This representation has two shortcomings. First, it 

assumes that the network does not contain multiple arcs for the same node pair. 

Second, if the network is sparse (that is, most = 0 0 or equivalently 

[ a J / | N | 2 is small) then computer storage is not effectively utilized. 

Matrix representation is normally used with matrix methods for solving 

shortest path problems. Such methods [15] are normally used to find the 

shortest path between all pairs of nodes simultaneously. Because of their 

large storage requirements, their application is restricted to relatively 

small networks and will not be considered in this paper. 

2. Another way of representing a network is to list all of the arcs in 

the network by keeping for each arc its beginning node, ending node, and 

length. This requires 3 jA | computer memory locations, which is generally 

superior to the matrix representation, but is not well suited to the imple-

mentation of certain network processing operations. The next representation 

to be described has more attractive memory requirements and is also more 

amenable to processing. 
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3. The most popular way of storing a network is to use a linked list 

structure. In this method, all of the arcs that begin at the same node are 

stored together and eacn is represented by recording only its ending node and 

length. A pointer is then kept for each node (heading) which indicates the 

block of computer memory locations for the arcs beginning at this node. 

The set of arcs emanating from node u is called the forward star of node u 

and denoted by F S(u); i.e., F S(u) = {(u,j) e A } . If the nodes are numbered 

sequentially from 1 to J n J and the arcs are stored consecutively in memory 

such that the arcs in the forward star of node i appear immediately after 

the arcs in the forward star of node i - 1 , then this method, called the 

forward star form, requires only | n | + 2 J a J units of memory. 

Throughout this paper we will assume that the network is represented in 

forward star form. In some cases we will further assume that the arcs of the 

forward star of each node are ordered by ascending length; this will be called 

a sorted forward star form. Figure 1 illustrates the storage of a network in 

a sorted forward star form. The number in the square attached to an arc of 

the network diagram is the arc length. 

The forward star forms are commonly used with special algorithms called 

labeling methods for implementing shortest path and network flow solution 

procedures. In general, labeling methods are the most widely used methods for 

industrial and governmental applications, and constitute the primary focus of 

this paper because such methods are especially effective in application to 

large sparse networks. Next we define some terms commonly used in describing 

labeling algorithms. 

3.0 TREE TERMINOLOGY AND LABELING TECHNIQUES 

In the context of directed networks, a rooted tree, or simply a tree, is 

a network T ( N T , A T ) together with a node r (called the root node), such that 

each node of N^, except r, is accessible from r by a unique arc-simple path 

in T . 
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FIG. 1-SORTED FORWARD STAR FORM 

A rooted tree T is called a minimum tree or shortest path tree of a 

larger network G(N,A) if T contains all nodes of G accessible from r, and if 

for each node v in N , the unique path P from r to v is a shortest path from 

r to v in the network G. 

Labeling algorithms typically start with a tree, T , consisting only of 

the root node r and seek to enlarge and modify T until it becomes a shortest 

path tree of a larger network G. Thus, an important computer implementation 

component of such algorithms involves properly handling T and storing G. 
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A common way of representing a tree in a computer is to think of the root 

node as the highest node in the tree and all the other nodes hanging below the 

root. The tree is then represented by keeping a pointer list which contains 

for each node w ^ r in the tree, the starting node v of the single arc in the 

tree terminating at w . This upward pointer is called the predecessor of node 

w and will be denoted by p(w). Further, node w is called an immediate successor 

of node v . For convenience, we will assume that the predecessor of the root, 

p(r), is zero. Figure 2 illustrates a tree rooted at node 1, the predecessors 

of the nodes, and other functions to be described subsequently. The predecessor 

of a node is identified in the p array. For example, the precedessor of node 

16 is node 5. 

Most labeling algorithms keep another list indexed by the node numbers and 

associated with the tree T. This list contains for each node v a label d(v), 

whose value is the length of the unique path from r to v in T. (In some 

implementations, d(v) is not always the correct length but an overestimate 

that gradually converges to the correct length.) Henceforth d(v) will be 

called the node potential of node v . Nodes not in T may or may not be labeled 

with a node potential value; usually they are given the label 0 0, indicating 

that they are not yet reached by the tree. The root r has a node potential 

of zero. 

In Figure 2 the number in the square on each arc indicates the length of 

the arc. The entries in the d array identify the length of the unique path 

from the root to each node. Figure 2 illustrates additional tree information 

expressed as node functions, which will be used in the computer implementation 

procedures to be discussed subsequently. 

The first of these functions, the thread function [1,12], is denoted by 

t(x). This function is a downward pointer through the tree. As illustrated in 
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Predecessor PM 
Node potential ' d(x) 
Thread • »(x) 
Reverse thread rt(x) 

Depth dh(x) 

Cardinality c(x) 

Last node in subtree f(x) 

ODE P d t rt dh c f 
1 0 0 2 15 0 17 15 
2 1 1 4 1 1 9 6 
3 1 8 10 6 1 7 15 
4 2 4 5 2 2 6 17 
5 4 6 16 4 3 2 16 
6 2 3 3 9 2 1 6 
7 8 8 17 8 4 1 7 
8 4 5 7 16 3 3 17 
9 2 3 6 17 2 1 9 

\ 1 0 
» n 

3 12 13 3 2 3 14 \ 1 0 
» n 3 9 12 14 2 3 15 
' 12 11 11 15 11 3 1 12 

13 10 15 14 10 3 1 13 
14 10 18 11 13 3 1 14 
15 11 18 1 12 3 1 15 
16 5 10 8 5 4 1 16 
17 8 7 9 7 4 1 17 

FIG. 2 - TREE LABELING TECHNIQUES 



Figure 2 by the dotted line, function t may be thought of as a connecting link 

(thread) which passes through each node exactly once in a top to bottom, left 

to right sequence, starting from the root node. For example, in Figure 2, 

t(l) = 2, t(2) = 4, t(4) = 5, t(5) = 16, t(16) = 8, etc. 

Letting n denote the number of nodes in T ( N ^ A ^ ) , the function t satisfies 

the following inductive characteristics: 

a) The set {r, t(r), t 2 ( r ) , — , t n *(r)} is precisely the set of nodes 

2 3 2 
of the rooted tree, where by convention t (r) = t(t(r)), t = t(t (r)), etc. 

k-1 k 
The nodes r, t(r), — , t (r) will be called the antecedents of node t (r). 

b) For each node i other than node t n ^"(r), t(i) is one of the nodes such 

that p(t(i)) = i, if such nodes exist. Otherwise, let x denote the first node 

in the predecessor path of i to the root which has an immediate successor y 

and y is not an antecedent of node i. In this case, t(i) = y . 

c) t n ( r ) = r; that is, the Mlast node" of the tree threads back to the 

root node. 

The reverse thread function, rt(x), is simply a pointer which points in 

the reverse order of the thread. That is, if t(x) = y , then rt(y) = x . Figure 

2 also lists the reverse thread function values. 

The depth function, dh(x), indicates the number of nodes in the predecessor 

path of node x to the root, not counting the root node itself. If one con— 

ceives of the nodes in the tree as arranged in levels where the root is at 

level zero and all nodes "one node away from" the root are at level one, etc., 

then the depth function simply indicates the level of a node in the tree. 

(See Figure 2.) 

The cardinality function, c(x), specifies the number of nodes contained 

in the subtree associated with node x in the tree. By the nodes in the subtree 
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associated with node x , we mean the set of all nodes w £ N T such that the 

predecessor path from w to the root contains x . (See Figure 2.) 

The last node in a subtree function, f(x), specifies that last node in 

the subtree of x that is encountered when traversing the nodes of this subtree 

in Mthread order." More precisely, f(x) = y where y is the unique node in the 

subtree of x such that t(y) is not also a node in the subtree of x . (See 

Figure 2.) 

Note that both the domain and the range of each of the above discrete 

functions consist of the set of nodes and thus are independent of the number 

of arcs. Since | N | is the maximum number of nodes that could be in T , a one 

dimensional array of size | N | , called a node length array, is allocated to 

each function during computer implementation. The procedures for updating 

the values of the functions when the tree is reconfigured will be detailed 

subsequently. 

4.0 SHORTEST PATH PROBLEM AND LABELING METHODS 

By means of the foregoing terminology, the problem of finding the shortest 

paths from a given node r to all other nodes in network G(N,A) may be stated 

as that of finding a minimum tree T(N^,A^) of G rooted at node r. 

Labeling methods for computing such a minimum tree have been divided into 

two general classes, label-setting and label-correcting methods. Both methods 

typically start with a tree T i N ^ A ^ ) such that N^ = {r} and A ^ = 0. A label-

setting method then augments N T and A T respectively, by one node v £ N and one 

arc (u,v) e A at each iteration in such a manner that u £ N ^ , v £ N ^ , and the 

unique path from r to v in T is a shortest path. A label-setting method ter-

minates when all arcs in A which have their starting endpoints in N T also have 

their ending endpoints in N . 
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A label-correcting method, on the other hand, always exchanges, augments, 

or updates arcs in A^ in a manner that replaces or shortens the unique path 

from r to v in T , but does not guarantee that the new path is a shortest path 

(until termination occurs). Using the notation defined in the previous section, 

we now give a precise description of each of these general methods. 

General Label-Setting Method 

1. Initialize a tree T(N^,A^) such that N T = {r} and A ^ = 0. Further, 

set p(t) : = 0, t £ N; d(t): = 0 0 , t £ N - {r}; and d(r): = 0. 

(The notation a: = b sets a equal to b.) 

2. Let S = {(u,v): u £ N T ; v £ N - N ^ , (u,v) £ A}. If S = 0 , go to 

step 4. Otherwise proceed. 

3. Let d(u) + £(u,v) = minimum (d(p) + £(p,q)). Redefine 

(p,q)£S 

N t : = N t U iv} 

A t : = A t U ((u,v)} 

p(v): = u 

d(v): = d(u) + £(u,v) 

and repeat step 2. 

4 . Stop. T i N ^ A ^ ) is a minimum tree and for each node v £ N , d(v) is 

the length of a shortest path from r to v ^ r. 

It is worth noting that a label-setting method only works for nonnegative 

arc lengths. A label-correcting method, however, works for negative arc lengths 

as long as there are no circuits of negative length in the network G(N,A). 

General Label-Correcting Method 

1. Initialize a tree T ( N T , A T ) such that N T = {r} and A ^ = 0. Further, 

set p(t) : = 0, t e N; d(r): = 0; and d(t): = t £ N - {r}. 



2. Go to step 4 if there does not exist an arc (u,v) e A such that 

d(u) + £(u,v) < d(v). Otherwise, for such an arc, redefine 

Nt: = Nt U (v) 
A t : = A t - {(s,v) e At> U {(u,v)} 
p(v) : = u 

d(v) : = d(u) + £(u,v) 

3. Repeat step 2. 

4. Stop. T ( N t , A t > is a minimum tree and for each node v e N , d(v) is 

the length of a shortest path from r to v ^ r. Further, if a 

shortest path from r to v exists (i.e., if p(v) ^ 0), then it may 

be constructed by successively examining the predecessors of v 

until the root node r is encountered. 

5.0 EXPERIMENTAL DESIGN 

Alternative implementation methods are evaluated in this study by solving 

a diverse set of randomly generated shortest path problems using the same 

computer (a CDC 6600), the same compiler (a FORTRAN RUN compiler), and executing 

the codes during time periods when the demand for computer use was comparable. 

Further, all of the codes were implemented by the same systems analyst and no 

attempt was made to exploit any of the unique hardware characteristics of the 

CDC 6600. 

Even with these safeguards, minor differences between the solution times 

of any two codes for a single test run of each must be regarded of questionable 

significance. For this reason, each test problem was solved 100 times (i.e., 

for 100 different roots) and the average solution time reported. Each code 

makes use of a real-time clock routine supplied by CDC. This routine can be 

employed using a FORTRAN subroutine call and is generally accurate to two 

decimal places. The reported times include only the elapsed time after input 
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of the shortest path problem and prior to output of its solution. This includes 

the time required to initialize the function arrays. 

The problem set consists of shortest path problems from two distinct 

topological groups. One set consists of rectangular grid networks. A p x q 

rectangular grid network may be envisioned as having its nodes arranged in p 

parallel rows each containing q nodes. Each node connects by arcs only to the 

four nodes (if present) to its right and left and above and below. Thus a 

p x q grid network has pq nodes and 4 pq - 2p - 2q arcs. It is important to 

note, however, that the arc lengths are randomly generated. Thus, arc lengths 

are not necessarily symmetric and the triangle inequality may not hold. 

The grid network test problems all have 2500 nodes with rectangularities 

of 50 x 50, 25 x 100, 10 x 250, and 5 x 500. These problems were generated 

using a unifrom probability distribution with two unique distance ranges for 

the arc lengths; the first range of arc lengths lies between 1 and 100 and the 

second between 1 and 10000. Table 1 describes all of these grid problems and 

contains solution times on the alternative implementations to be discussed 

subsequently. 

The second topologically distinct set of problems consists of random 

networks. A random network is one in which two nodes are selected randomly 

to form a new arc to add to the network. The nodes are selected using a uniform 

probability distribution, subject to the restrictions that the two nodes are not 

the same and arcs are not allowed to be duplicated. The random network test 

problems all have 1000 nodes and contain either 5000, 10000, 15000, 20000, 

25000, or 30000 arcs. For each of these problem sizes, two problems were 

generated, one with arc lengths between 1 and 200 and the other with arc lengths 

between 1 and 10000. Again the arc lengths were randomly selected using a 
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Table II 

SOLUTION TIMES IN SECONDS ON A CDC 6600 FOR RANDOM NETWORKS 
(SECS/TREE, AVERAGED FOR 100 TREES) 

Arc 
Length 

Nodes Arcs Range CI C2 C3 C4 C5 SI S2 S3 S4 

1000 5000 1-200 .15 .13 .42 .28 .20 .21 .23 DNR .34 

1000 10000 1-200 .31 .28 .63 .42 .35 .33 .32 DNR .50 

1000 15000 1-200 .44 .43 .72 .58 .47 .42 .39 DNR .61 

1000 20000 1-200 .59 .59 .90 .70 .61 .52 .47 DNR .72 

1000 25000 1-200 .80 .80 1.17 .88 .77 .62 .55 DNR .81 

1000 30000 1-200 .91 .91 1.31 1.01 .90 .70 .62 DNR .90 

1000 5000 1-10000 .16 .13 .43 .28 .20 .50 .53 .30 .34 

1000 10000 1-10000 .32 .29 .61 .43 .35 .51 .45 .40 .47 

1000 15000 1-10000 .43 .43 .71 .59 .46 .59 .51 .49 .58 

1000 20000 1-10000 .65 .64 .89 .71 .63 .68 .59 .62 .66 

1000 25000 1-10000 .85 .85 1.21 .90 .79 .76 .61 .69 .70 

1000 30000 1-10000 .97 .96 1.32 1.03 .91 .88 .70 .86 .81 

DNR—Did not run. 
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uniform probability distribution. Table II contains the computational results 

on the random network problems. 

To provide researchers with reproducible benchmarks, the appendix contains 

FORTRAN listings of the problem generators and the two computer codes found to 

be the best in this study. 

6.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL-CORRECTING METHOD 

In this section we discuss a sequence of implementations of the general 

label-correcting algorithm which successively utilize more and more information 

(as embodied in the node functions) to determine the effect of this information 

on the efficiency of the algorithm. The merits of these alternative implementa-

tions are then evaluated by solving the test problems. 

6.1 Implementations Using Only p and d Functions 

Step 2 of the general label-correcting method involves finding any arc a 

which can be added to (or updated in) the tree with a resultant decrease in the 

node potnetial of its ending node. One of the fundamental subalgorithms of 

this general method involves searching for such an arc in an intelligent manner. 

Several observations have been made in the literature regarding this search. 

The most rudimentary observation is that if the arcs are sequentially examined, 

it is not necessary to examine any arc (u,v) e A whose beginning node has an 

infinite node potential since d(u) + £(u,v) < d(v) will never be satisfied for 

nonnegative arc lengths. 

This observation extends quite naturally as follows. If each arc (u,v) £ 

FS(u) has been examined and found to satisfy the condition d(u) + £(u,v) > d(v), 

then it is unnecessary to re-examine these arcs until the node potential of u 

decreases. This observation is one of the primary motivating factors for 

storing the network in a forward star form. As will be seen, the order in which 
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forward stars of nodes are examined plays a major role in the efficiency of the 

algorithm. 

Based on the preceding observation, it is convenient to keep a sequence 

list of nodes whose node potentials have decreased since their forward stars 

were last examined. That is, nodes are added to the sequence list whenever their 

node potentials are decreased and deleted from the list upon examining their 

forward stars. By not allowing a node to appear more than once on this list, 

it is possible to restrict the size of this list to a node length array. One 

simple way to guarantee that a node is not duplicated on the sequence list is 

to complement the forward star pointer of the node when it is added to (or 

deleted from) the list. Using this technique, the sign of a node's forward 

star pointer is checked before adding the node to the sequence list. If its 

sign is positive, the node is added to the list; otherwise, it is already on 

the list. 

The sequence list can be managed in a variety of ways. In particular, if 

the forward stars are examined in the order in which their identifying nodes 

are placed on the sequence list, the list is said to be managed in a FIFO 

(Firs t-in, First-out) manner; if the forward star of the latest node added to 

the list is examined before that of a node placed on the list previously, it is 

said to be managed in a LIFO (Last-in, First-out) manner. Yet another way to 

manage the sequence list is to pick the node at the front of the list to examine 

next as in the FIFO procedure, but to add nodes at either the front or the back 

of the list; that is, to handle the sequence list as a two-way sequence list 

adding to either end but always deleting from the front. As will be seen, the 

way in which the sequence list is managed has major ramifications for the effi-

ciency of the algorithm. We now describe in detail the codes whose solution 

times are indicated for grid networks and random networks in Tables I and II. 
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CL(x) = 

Code CI employs a FIFO sequence list, and the predecessor and node potential 

functions. The list is processed by using two pointers, s and e, where s points 

to the entry whose forward star is to be examined next and e is the position of 

the last node added. 

Code C2 utilizes the predecessor and node potential functions and a two-way 

sequence list. The two-way sequence list is implemented as suggested by Pape [22] 

That is, the sequence list is a node length array, called CL, identified by node 

numbers, such that 

-1 if node x was previously on the list 
but is no longer on the list 

0 if node x has never been on the list 

+y if node x is on the list and y is the 
next node of the list 

+ if node x is on the list and x is the 
last node on the list 

In addition, the start and end pointers, s and e , are kept. (See the listing 

of code C2 in the appendix.) 

The solution times in Table II are very similar for codes CI and C2. Thus 

for random networks, the management of the sequence list does not seem to affect 

solution speed. The results in Table I, on the other hand, show that this is 

not true for grid networks. Code C2 is dramatically superior in this case. 

This surprising difference can be explained as follows. The minimum tree 

and also most of the intermediate trees are very narrow and deep in grid networks, 

due to the fact that only one or two tree arcs emanate from each node. This 

causes the subtree of an arbitrary node v , in general, to exhibit the "narrow 

and deep" property. Moreover, if the node potential of node v is decreased by 

an amount 6 then the node potentials of all nodes in the subtree of v must 

ultimately be decreased by 6 (unless the subtree later becomes restructured, 
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in which case some node potentials will decrease by an even greater amount). 

To illustrate, suppose arc (8,3) of Figure 2 is to be added to the tree and 

d(3) is set to d(8) + ¿(8,3) = 5 4 - 1 = 6 (hence d(3) is decreased by 2). Then 

the length of the unique path from the root to each node in the subtree of node 

3 is reduced. Consequently, the node potentials in this subtree should be 

decreased. 

The FIFO sequence list postpones updating these node potentials since node v 

is added to the back of the list. In contrast, the two-way sequence list adds 

v to the front of the list (if it is not already on the list). Thus, loosely 

speaking, nodes in the subtree of v tend to be updated before other nodes are 

examined. 

This updating sequence helps to eliminate unnecessary node potential 

corrections that are dominated by the 6 correction that should be transmitted 

through the subtree. That is, an arc (p,q) may satisfy the condition 

d(p) + &(p,q) < d(q) only because d(q) has not been reduced by 6. The occurrence 

of such unnecessary corrections can have a cumulatively deleterious effect. 

In particular, each one causes a new node to be added to the sequence list 

which has an "erroneous" (i.e., dominated) node potential value. Each time such 

a node is then selected from the list (if it has not in the meantime received 

a "corrected" node potential value), a correspondingly erroneous value is trans-

mitted to still other nodes. The difficulties of the process are thus perpetuated. 

The effects of generating and transmitting erroneous node potentials, just 

discussed, raise the question of whether a label-correcting method can be imple-

mented by means of more sophisticated list structures and processing techniques 

with a net gain in computational efficiency. We now consider implementations 

designed to respond to this question. 
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6.2 Implementations Using p , d, t, c, and f Functions 

The thread function, as observed earlier, provides an efficient way of 

locating each node in the subtree of any node in N^. Thus, if the node potential 

of node v is decreased by 6, the thread function can be used to update all node 

potentials in node v f s subtree. As shown in [1], the last node and cardinality 

functions can be used efficiently to update t. 

We have designed two codes, C3 and C4, to test the major implementation 

alternatives. Code C3 uses the p , d , t, c , and f functions as follows. The 

code starts with = {r = root}, A^ = 0 and initializes p(v) = 0 , v e N; 

t (r) = r; t(v) = 0 , v e N - {r}; d(r) = 0; d(v) = 0 0 , v e N - {r}; c(r) = 1; 

c(v) = 0, v e N - {r}; f(r) = r; f(v) = 0 , v e N - {r}. Code C3 also uses a 

logical node array eto indicate if a node's forward star requires scanning. In 

particular, for v e N , e(v) = 1 if the node potential of v has changed since v 

was last examined and e(v) = 0 , otherwise. This array is initialized by setting 

e(r) = 1 and e(v) = 0, v e N - {r}. Using e , the algorithm then searches for 

an arc (u,v) £ A such that 6 = -d(u) + d(v) - £(u,v) > 0, whereupon d(v) is 

reset to d(v): = d(v) - 6 and the node potentials of all other nodes in the 

subtree of node v are decremented by 6. The algorithm terminates when e(v) = 0, 

v S N . (Since each element of e has only two states, it is not necessary to 

use a separate computer array for this function.) 

The p , t, c, and f functions are updated by the following set of operations 

where (u,v) denotes the arc to be added to A,^. (The reader may find it helpful 

to perform these operations using Figure 2 and letting (u,v) = (3,3).) 

Step 1: Identify the node y such that t(y) = v . Then set t(y): = t(f(v)). 

(Note that the 'identification of y may be efficiently done by first letting 

y ' = p(v). Second, if t(y T) = v then y = y f and the process stops. Otherwise, 

let y 1 = f(t(y')) and repeat the second step.) 
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Step 2: Identify the first node x (lowest node) common to the predecessor 

paths for u to r and v to r. Then set c(i): = c(i) + c(v) for each node i in 

the predecessor path from u to x (excluding node x) and set c(i): = c(i) - c(v) 

for each node i in the predecessor path from p(v) to x (excluding node x). 

Step 3: Let w = p(t(f(v)). If w = 0, then set w = r. Set f(i) = y 

(i.e., the node y determined in step 1) for those nodes i on the predecessor 

path from p(v) to w , excluding w itself if p(t(f(v)) 4 0. 

Step 4: Set p(v): = u. 

Step 5: Set t(f(v))s = t(u). 

Step 6: Set t(u): = v . 

The second code, C4, based on the more sophisticated node functions is a 

simple modification of C3 in which the e array is replaced with a FIFO sequence 

list. 

6.3 A Primal Simplex Method Interpretation of the Label-Correcting Algorithm 

The preceding implementations of the general label-correcting algorithm 

may be viewed as specialized variants of the primal simplex algorithm where 

the basic variables correspond to the arcs in A^,, augmented by artificial arcs 

which start at the root r and end at node i for each i e N - N ^ such that 

£(r,i) = 0 0 . The interpretation is especially direct for the codes C3 and C4, 

which insure that the node potentials always satisfy complementary slackness, 

i.e., -d(u) + d(v) = £(u,v), (u,v) e A^ and -d(r) 4- d(i) = £(r,i), i e N - N . 

Extending this interpretation, the process of selecting an improving arc (i,j) 

corresponds to searching for an arc which violates dual feasibility. The process 

of adding such an arc (t,s) to N^ and deleting an arc (p(s),s) from A^ is 

equivalent to a simplex basis exchange. (Note that if p(s) = 0 then arc (p(s),s) 

corresponds to an artificial arc and is not a member of A .) The update of the 



24 

node potentials after performing this basis exchange simply maintains comple-

mentary slackness. 

From this point of view, the replacement of the e array of C3 with the 

FIFO sequence of C4 corresponds simply to the use of different pivot selection 

rules. Tables I and II show that this change of pivot selection strategy strictly 

improves solution time. 

The previous codes CI and C2, on the other hand, correspond to a deferred 

updating version of the primal simplex algorithm in the sense that a basis 

exchange is performed each time an arc is added to A^, but the full set of 

updated node potentials in a subtree are not immediately determined. In particular, 

codes CI and C2 differ from the codes C3 and C4 by requiring that complementary 

slackness be maintained only "locally 1 1 rather than globally. The times in 

Tables I and II demonstrate that it is not necessarily beneficial to maintain 

complementary slackness after each iteration. Code C2, while postponing the 

update of the dual variable (node potential) values, appears to balance the 

distortion caused by using locally updated dual variable values with the work 

required to maintain globally updated values. 

6.4 Additional Implementations Using Alternative Pivot Strategies 

As a result of the interpretations of these codes as variants of the primal 

simplex method, we undertook to test variations of C3 and. C4 that used other 

types of pivot strategies. First, code C4 was modified by scanning the forward 

star of a node removed from the FIFO list multiple times. Each time the forward 

star is scanned, the arc violating dual feasibility by the largest amount is 

selected for the basis exchange. This pivot criterion was tested because it 

has been shown in other network flow applications to be more effective than 

simply pivoting the arcs in a "random" order [5,10,11,24]. The times for this 

variant of C4 are not shown in Tables I and II because, contrary to the results 



for other types of network flow problems, the solution times were uniformly 

10% to 15% slower than for the "unordered" selection procedure. 

Following this, we tested a number of other more sophisticated pivot 

criteria. Mulvey [2] has shown that an excellent pivot criterion for large 

transportation and transshipment problems derives from the use of an arc 

candidate list. Mulvey's approach involves two parameters r and s, where r 

specifies the maximum number of arcs on the list and s specifies the maximum 

number of pivots to be made before revising the elements on the list. The 

candidate list is created by sequentially examining the forward star of nodes 

with an e value of 1 in code C3 and selecting arc (u,v) in each forward star 

which violates -d(u) + d(v) < £,(u,v) by the largest amount (if one exists) 

for inclusion on the list (accumulating at most r such arcs). Each time the 

list is revised, the search for arcs is initiated at the node following the 

node where the search was stopped when building the previous list. If r 

eligible arcs cannot be found, the size of r is reduced to the number actually 

encountered. 

The candidate list approach was incorporated into code C3 and tested for 

several different list sizes. The outcome, again surprisingly, yielded solution 

times inferior to those of code C4. 

We then designed another variant of the candidate list approach, which 

made use of the sequence list of code C4. In particular, the first r nodes 

were taken from the sequence list to form a node candidate list. Several 

different strategies were tested for picking nodes off this candidate list. 

First, the nodes were selected in increasing order of their cardinality function 

value, and the forward star of the selected node was scanned. 

The logic behind this pivot selection strategy is that nodes with larger 

cardinality function values are likely to be closest to the root node, indicating 
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an increased attractiveness for being examined first. Several different list 

sizes were tested, but none reduced solution times. Similarly, tests were 

conducted for the strategy of selecting the nodes in increasing order of their 

node potential values. This also failed to reduce solution times. 

These results strongly suggested that more sophisticated versions of 

special purpose simplex codes using globally updated node potentials are not 

competitive with the simpler label-correcting code C2. Before submitting 

completely to this conclusion, however, we decided to test a different imple-

mentation of the simplex method where the c and f functions are replaced by 

the reverse thread, rt, and depth, dh, functions. The primary motivation 

underlying this implementation is that these functions can be updated more 

easily thar the previous functions in the setting of shortest path problems. 

(This is not true, however, in the setting of other network flow problems.) 

6.5 Primal Simplex Implementations Using p , d , t, rt, and dh Functions 

The implementations based on the reverse thread and depth functions, 

like the preceding implementations, use the thread function to find and update 

all node potentials in a subtree. The rt and dh functions are used to update 

t, replacing the c and f functions in this task. 

First, a code C5 was implemented using p , d , t, rt, and dh functions 

initialized such that p(v) = 0, v e N; t(r) = rt(r) = r; t(v) = rt(v) = 0, 

v e N - {r}; d(r) = 0; d(v) = 0 0 , v e N - {r}; dh(v) = 0, v e N . Additionally, 

code C5 uses a FIFO sequence list to locate an arc (u,v) e A such that 

6 ="d(u) + d(v) - £,(u,v) > 0 , whereupon all nodes in the subtree of node v 

are decremented by 6 and "added to" the sequence list. Simultaneously, the 

depth of each node in this subtree is incremented by Y = d(u) - d(v) + 1. The 

algorithm terminates when the sequence list is empty. 
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The p , t, and rt functions are updated by the following steps where (u,v) 

denotes the arc to be added to A^. (The reader may find it helpful to perform 

these steps using Figure 2 and letting (u,v) = (8,3).) 

k 

Step 1: Identify the first k > 1 such that dh(t (v)) < dh(v). (Note that 

the identification of k should be done simultaneously with the updating of d 

and dh since identifying k requires tracing out the nodes in v's subtree. 

In fact, t k ^(v) is the last node in the subtree of v.) Set t C t ^ " 1 ^ ) ) : = t(u), 

rt(t(u)): = t ^ C v ) , t (rt(v)) : = t k ( v ) ) , and rt(t k(v)): = rt(v). 

Step 2: Set t(u): = v , rt(v): = u , and p(v): = u. 

The solution times in Tables I and II indicate that the special purpose 

simplex code C5 is 25% to 30% faster than the equivalent method using the 

p , d, t, c, and f functions, code C4. The results also clearly show the 

importance of matching data structures with algorithmic steps. Further, the 

results indicate that the code C5 is usually the first or second fastest label-

correcting code. The code most often superior to C5 is code C2. As with code 

C4, we modified code C5 to perform a number of candidate list pivot strategies. 

None of these variants improved solution times, however. 

These results raise the question as to why the ! fquasi-simplex f f code C2, 

which defers the complete updating of node potentials is generally superior to 

the full simplex codes C3, C4, and C5 (and to their dominated variants whose 

times are not reported in the tables). Analysis of the computational data for 

these codes discloses that the number of pivots (label-correcting iterations) 

made by code C2 typically is on the order of 1 1/2 to 2 times the number of 

nodes in the problem. Observe that any label-correcting method which starts 

with a tree consisting of only the root node, must make at least as many pivots 

as the number of problem nodes if each node in G(N,A) is accessible from the 
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root. Thus, the margin for improvement in the number of pivots made by C2 

is small. 

In fact, the simplex codes C3, C4, and C5 do achieve some of this theoreti-

cally available improvement. In particular, the average number of pivots made 

by these codes is approximately 1 3/8 to 1 1/2 times the number of nodes. 

The augmentations of codes by more sophisticated pivot rules still require 

pivots ranging from 1 1/4 to 1 3/8 times the number of nodes. However, these 

small gains in the number of pivots do not represent corresponding gains in 

solution time, and in fact lead to net losses. It appears that the additional 

overhead involved in maintaining and updating the extra functions (plus 

possibly maintaining a pivot candidate list), simply overshadows the gain 

achieved in reducing the number of pivots for sparse shortest path networks. 

However, as density increases in the shortest path networks, the pivot reduction 

achieved by the full simplex codes over the quasi-simplex code C2 becomes 

effective. In particular, the results in Table II indicate that the simplex 

code C5 becomes comparable to C2 at 20000 arcs and is the fastest label-

correcting code for the 1000 node random networks with 25000 and 30000 arcs. 

Thus, it appears that as the networks become sufficiently dense, it is worth-

while maintaining complementary slackness. 

7.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL-SETTING METHOD 

In this section we discuss several implementations of the general label-

setting method. The primary difference between these implementations is the 

way in which the minimum in step 3 of the algorithm description is found. 

As for alternative implementations of the label-correcting method, these imple-

mentations are evaluated by solving the same test problems using the same 

computer and compiler. 
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A naive implementation of the general label-setting method would be to 

find the set S of step 2 by examining all arcs in A and then calculating and 

discarding node potentials to find the minimum of step 3. This involves 

examining all arcs during every execution of step 2, as well as performing 

many unnecessary node potential calculations in step 3. The implementations 

described in this section make use of temporarily retained node potentials 

in such a way that each arc in A is examined at most once, thereby avoiding 

extensive recalculation. 

As a basis for understanding these implementations, it is useful to observe 

that steps 2 and 3 of the label-setting method simply find an arc from a tree 

node to a non-tree node which yields the minimum distance extension. Figure 

3 illustrates one way of viewing these steps at some iteration where the 

tree T C N ^ A ^ ) consists of the solid line arcs and their associated nodes. The 

dashed line arcs and their ending nodes N indicate possible tree extensions. 

(Note that N-N may not be equal to N .) 
I E 

By reference to this diagram, it may be seen that steps 2 and 3 can be 

performed by keeping a temporary node potential and predecessor for each node 

v in N £ such that d(v) = minimum (d(u) + £(u,v)) and the predecessor of v is 
u e n t 

set to a node u which yields the minimum node potential for v . Thus, if 

p(v) = u then -d(u) + d(v) = £(u,v). Step 3 then adds a node v in N_ with Ej 

the smallest temporary node potential to N T and correspondingly adds its arc 

(p(v),v) to Ap. After performing this step, node v T s potential will never 

change (i.e., it is assigned a permanent node potential at this time) and arc 

(p(v),v) is permanently assigned to the tree. The name label-setting stems 

from this property of the algorithm. 



30 

In the following subsections we discuss four alternative implementations 

for carrying out steps 2 and 3 in this manner. These implementations differ 

in the way they handle the following fundamental operations: (1) the computa-

tion and updating of temporary node potentials, (2) the determination of the 

minimum temporary node potential, and (3) the assignment of one or more 

temporary node potentials to a node in N_. 
E 

7 • 1 Interpretation of the Label-Setting Method as a Primal Simplex Method 

Before discussing these implementations, it is interesting to observe 

that the label-s etting method may be viewed as a special purpose primal simplex 

method where the basic variables correspond to the arcs permanently assigned 

to A t , augmented by artificial arcs which start at the root r and end at 

node i for each i e N - N x such that ¿(r,i) = °°. The node potentials clearly 

satisfy complementary slackness at each iteration; i.e., -d(u) + d(v) = £(u,v), 

(u,v) e A t and -d(r) + d(i) = £(r,i), i e N - N . Further, the process of 

selecting an improving arc (i,j) to enter the basis corresponds to searching 

(in some fashion) for an arc which violates dual feasibility (i.e., 

-d(i) + d(j) i ¿(i,j)) by the largest amount. The process of adding such an 

arc (t,s) to A t and deleting the artificial arc (r,s) from this basis is 

equivalent to a simplex basis exchange. The setting of the node potential of 

node s after performing this basis exchange simply maintains complementary 

slackness. 

Thus, the label-correcting and label-setting methods are both simply 

variants of the same general algorithm. More specifically, they are both 

special purpose primal simplex methods which use different pivot strategies. 

It is well known in linear programming literature that searching for the 

variable which violates dual feasibility by the largest amount at each itera-

tion to enter the basis does not usually produce good solution times. In fact, 
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such an approach normally results in unusually large solution times. However, 

in the case of shortest path problems with nonnegative arc lengths, the 

following subsections demonstrate that various researchers have devised inge-

nious ways of exploiting the topology of the problem so that such a pivot 

strategy can be performed by examining each variable at most once. 

FIG. 3 - LABEL-SETTING ITERATION 

7.2 Dijkstra Address Calculation Sort 

The first implementation to be discussed is the one originally developed 

by Dial [6], called code SI. Several studies [9,23] of shortest path algo-

rithms have concluded that code SI is the fastest code, superior to all other 

label-setting and label-correcting implementations. 

The Dial code operates in accordance with the previous observations by 

keeping a unique temporary node potential and predecessor for each node v in 
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N £ such that d(v) = minimum (d(u) + l(u,v), and maintaining p(v) = u for a 

u 6 N t 

node u satisfying d(v) = d(u) + £(u,v). Likewise, at each iteration, a node v 

in N £ with the minimum temporary node potential is added to N^ and its arc 

(p(v),v) is added to A^. 

The chief feature of code SI is the manner in which temporary node poten-

tials updated and their minimum is identified. In particular, after 

adding node v to N T , the updating is accomplished simply by scanning the 

forward star of node v . The new candidate values for node potentials imputed 

by these arcs are then calculated and compared with their current temporary 

node potentials, retaining the smaller one with its corresponding predecessor. 

The Dial implementat ion then identifies the minimum temporary node 

potential using the following observation. Each temporary node potential 

equals a permanent node potential plus the length of some arc. Consequently, 

temporary node potential values may be uniquely represented modulo (£ 4- 1) 
max 

where = maximum ¿(a). That is, if d(p) j d(q), where d(p) and d(q) are 

a e A 

temporary node potentials, then d(p) modulo (£ + 1) ^ d(q) modulo (£ + 1) 
max max 

To see this, suppose that node v has the minimum temporary node potential 

at the current iteration. Then d(u) < d(v) for u e N and thus for t 8 N 
E 

d(v) < d(t) < d(v) + A
m a x - In other words, at each iteration all temporary 

node potentials are bracketed on the lower side by d(v) and on the upper side 

by d(v) + ¿ m a x . Thus it is possible from one iteration to the next to uniquely 

represent all temporary node potentials modulo (I + 1 ) . 
max 

To find the minimum by this procedure, it is convenient to use a computer 

array k of size I + 1 where 
max 
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k(i) = 

0 if i ï d(v) modulo (Z + 1 ) , for any v e N 
max y E 

p if i = d(q) modulo (Z + 1 ) , for some q e N. 
i max n 

where p is a pointer which points to all nodes in N that have a modulo 
E 

temporary node potential value of i. The nodes in N that have the same modulo 
E 

temporary node potential value (and thus, on any given iteration, the same 

temporary node potential value) are identified by chaining the nodes by a 

two-way linked list. Thus, every node with the same temporary potential value 

is linked to an antecedent and a successor node (which may be dummies at the 

"ends" of the list). When a node's temporary potential changes, the node is 

disconnected from the chain simply by re-linking its antecedent and successor 

to each other. This array achieves an "automatic sort" of the nodes in N v hi 

relative to their temporary node potentials. Figure 4 illustrates the sort 

structure induced by the k array and the two-way linked lists, representing 

node names by the symbol n . 
l. 

0 

1 

S C>2 
3 

1 MAX 

n 

s 

n 12 

a n. 

FIG. 4 - ADDRESS CALCULATION SORT 
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The current minimum temporary node potential is found by sequentially 

examining the elements of k in a wrap around fashion. Each time a nonzero 

element of k is encountered, the current minimum node potential is that of 

the nodes associated with this element, and examination of k resumes at the 

next nonzero element of k on the next iteration. 

To describe the implementation of this algorithm, it is convenient to 

define the following terms: 

1 . The imputed node potential value of node g , relative to the forward 

star of v , denoted by d v ( q ) , is d(v) + £(v,q). 

2. An improving imputed node potential d (q) is one such that 

d v ( q ) < d(q); i.e., dy(q) is smaller than the current minimum 

temporary node potential of node q. 

3. Node q is an improving node relative to FS(v) if it has an improving 

imputed node potential. 

4. A node v is scanned by examining FS(v) and updating d(q) and p(q) 

for each improving node q e FS(v); i.e., d(q): = ^ ( q ) and p(q) = v . 

To implement this approach, the algorithm initializes p(v) = 0, v £ N; 

d(r) = 0 and d(v) = 0 0 , v £ N - {r}; and k(i) = 0, 0 < i < I . The root 
max 

node r is then scanned and the improving nodes of FS(r) are "added to" the 

appropriate elements of k. The first pass of the k list starts at k(0), 

examining the elements of k in sequence until the first nonzero element is 

encountered. Each node v associated with this nonzero element is then 

sequentially removed from the two-way chained list and scanned. Any improving 

node q located during the scan of v is removed from "its current position" in 

k and moved to its new position d (q) modulo (£ + 1 ) . (If d(q) = » then v max 

node v has never been added to k and thus no step is required to remove it.) 
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At each subsequent iteration, the examination of array k resumes where 

it left off (and wraps around if necessary) to find the first nonzero entry. 

This entry identifies a node with the new minimum temporary node potential. 

All chained nodes with this temporary node potential are then removed from k 

and scanned in the manner previously indicated. The algorithm stops when a 

complete pass of k is made without finding a nonzero entry. 

This approach is called an address calculation sort because the insertion 

and deletion of an item from the list simply involves calculating an address 

in a convenient and straight forward manner. Its application to shortest 

path implementations, as proposed and coded by Dial, is known in the litera-

ture as CACM Algorithm 360 (see [6]). This algorithm, as noted earlier, was 

found by Gil sinn and Witzgall [9], as well as by authors of several unpublished 

studies, to be the most efficient shortest path method for problems with non-

negative arc lengths. 

Two attractive features of this algorithm, in addition to its efficiency, 

are its simplicity and the structuring which assures that each arc is examined 

at most once. This latter feature, which is independent of the use of the 

address calculation sort, follows from the fact that an arc is scanned in a 

given iteration if and only if its starting node has a minimum node potential 

at that iteration. Every node "reachable" from the root must have a minimum 

potential at some step, but never more than once, thus only the arcs starting 

at reachable nodes are examined at all. 

This implementation has two major time consuming tasks: (1) inserting 

and deleting nodes in the two—way linked array when their node potentials are 

reduced, and (2) examining the elements of k to find the next minimum. The time 

required by the first task is partially illustrated by the increasing solution 
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times of Table II when the number of arcs is increased. The effort of the 

second task is dramatically shown by comparing the times in Tables I and II 

for the different arc length ranges. 

These solution times generally show that the algorithm's performance 

depends on the maximum arc lengths, number of nodes, and number of arcs. 

Each of these items has a direct or indirect influence on the two main com-

putational tasks. More specifically, the maximum arc length directly affects 

the sparseness of the k array (as measured by t / ( & m a x + 1) where t equals the 

number of nonzero entries in k). As the sparseness of k increases, more 

elements of k must be examined at each iteration to find the new minimum. 

The number of nodes and the number of arcs in the network both indirectly 

affect the sparseness of k since these parameters influence the number of 

nodes with temporary node potentials. Additionally, these parameters affect 

the number of nodes whose node potentials decrease from iteration to iteration 

and thus require relocation in the two-way linked lists. 

Another limitation of this implementation stems from its computer memory 

requirements. In particular, the k array is of size & m a x
 + 1 which can be 

prohibitive for large arc lengths. Different ways of coping with these limita-

tions are discussed subsequently. 

7.3 Dantzig Address Calculation Sort 

One way to reduce the effort of inserting and removing nodes on the two-

way linked list is to postpone adding nodes to the list. This can be done by 

observing that it is unnecessary to scan the entire forward star of the node 

v when it is assigned a permanent node potential. In particular, only the 

endpoint of a minimum length arc in such a forward star needs to be considered 

for addition to k . This follows from the fact that all temporary node potentials 

determined from node v will be greater than or equal to the node potential 
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determined for the endpoint of a minimum length arc of FS(v). We now describe 

an approach designed to exploit this observation. 

In order to limit the nodes considered for addition to k by selecting 

a minimum length arc from FS(v), it is convenient to store the network G(N,A) 

in a sorted forward star form. George Dantzig [4] was the first to suggest 

this type of scheme, and thus we refer to it as the Dantzig address calculation 

sort. 

At first glance, the Dantzig address calculation sort appears to incur 

substantial pre-processing work—a fact that has apparently discouraged other 

researchers from pursuing this approach. Indeed, for a f lone-shot M solution 

of the shortest path problem, the effort devoted to organizing the data in a 

sorted forward star form outweighs the advantages to be gained. However, it 

is important to recognize that the construction of a large transporation net-

work, as must commonly be done for a large city, costs hundreds of thousands 

of dollars. Further, once this data base is constructed, it is used again 

and again to find shortest path trees for alternative root nodes. These 

repeated applications can all be based on a single pre-processing effort. 

Additionally, changes to the data base of such large transporation net-

works generally involve only a small portion of the overall configuration 

(adding or deleting certain arcs, or changing the lengths of others). Thus, 

minimal additional work is required to amend the sorted forward star form to 

accommodate the effect of such changes. 

It is possible to take advantage of a network in sorted forward star form 

by modifying the code SI in the following principal way. The improving nodes 

of the forward star of each node in N ^ are sequentially added to the two-way 

linked list (the two-way linked list is actually replaced by a one-way linked 

list in this implementation) as the previous node of N is removed. Thus, 
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the one-way linked list contains at most as many nodes as nodes in N^. 

Additionally, each time a node n i is added to the one-way linked list, 

the predecessor of n.̂  at the time it is added (i.e., the forward star node 

which put node n± on the list) is paired with n± and added to the list. 

That is, each item on the one-way linked list is a pair which consists of a 

node and its predecessor. This has several advantages. First, it allows a 

node to appear more than once on the one-way linked list and thus eliminates 

the need to move nodes when their temporary node potentials are decreased. 

This. in turn, postpones the removal of a duplicate node from the one—way 

linked list until the temporary node potential imputed to this node by its 

paired predecessor is a minimum. This correspondingly postpones the scan of 

this predecessor to identify its next improving node as long as possible. 

The algorithm basically operates in the manner previously described for 

SI except that: (1) The two-way linked list is replaced by a one-way linked 

list. (2) The forward star of each node v in N ^ is.scanned until an improving 

node u is found, whereupon u is placed on the linked list with its predecessor 

v , and p(v) is set to v and d(v) is set to d(p(v)) + £(p(v),v). (Node p(v) 

is not scanned again until the ordered pair (v,p(v)) is removed from the linked 

list.) (3) k is sequentially searched for the next minimum as before. 

It should be noted in this implementation, however, that the next nonzero 

element of k may not point to the next minimum, as was the case for SI. Thus 

when a node v is removed from the linked list, it is discarded if its paired 

predecessor differs from its current predecessor in array p , since this implies 

that v has already been assigned a permanent node potential. In any event, 

the predecessor paired with v is scanned for its next improving node. If an 

improving node is found, it is added to the linked list in the manner already 

described. 
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In the case that v f s paired predecessor is equal to its current predecessor 

p(v), then v f s temporary node potential is a minimum and v is assigned a perma-

nent potential and added to-N . Further, node v is scanned as described in 

step 2. Code S2 embodies th is implementation. A precise description of the 

implementation is given by the listing of the code in the appendix. 

The advantages of this implementation are: (1) the algorithm can be 

terminated when all nodes are permanently labeled; (2) a node is never moved 

on the linked list when its node potential is improved; and (3) the postpone-

ment of adding temporary node potentials to k deeps less information on d and 

potentially avoids adding dominated values to k. 

Because of (1) it is not necessary for k to be empty; consequently, even 

when all nodes are reachable from the root, it is not necessary to examine 

each arc once. The strategy of (2) could have been applied in the Dial 

implementation, but is not, because in the Dial implementation if a node is 

duplicated on the linked list, the number of nodes on the linked list could 

be as large as the number of arcs. This is normally prohibitive because of 

computer memory space. However, in the S2 implementation, the number of nodes 

on the linked list will never exceed the number of nodes in the problem since 

there is at most one node on the linked list for each node in N . 

The computational results in Tables I and II reflect these advantages. The 

results in Table II indicate that the code S2 strictly dominates code SI on pro-

blems with 10,000 or more arcs (i.e., problems with an average of 10 or more arcs 

per node). A thorough analysis of these results indicates that this dominance 

results primarily from advantage (1) above. Namely, on problems with 10 or 

more arcs per node, S2 examines only a subset of the arcs before stopping. 

This indicates that the superiority of code S2 should become more pronounced 

on denser problems. In addition, the results in Table II indicate that code S2 



is the fastest code for problems with 10,000 or more arcs in the 1-200 arc 

length range and for problems with 15,000 or more arcs in the 1-10,000 arc 

length range. 

The results in Table I, however, indicate that code S2 is inferior to 

code SI for grid problems. This is due to the fact that code S2 has to 

examine almost every arc on these sparse problems. Dantzig in [4] suggests 

pre-ordering the arc lengths in each forward star before solving the problem. 

Thus, we called the above code the Dantzig address calculation sort. Next 

we briefly discuss a number of our attempts to improve this method. 

7.4 Improvements to the Dantzig Address Calculation Sort 

Recall that code S2 keeps at most one entry on k for each node with a 

permanent node potential. Thus for problems with 1000 nodes and with arcs 

in the 1-10,000 arc length range, k is very sparse. As a result, a lot of 

time is spent searching for the next nonzero entry of k . 

In an effort to reduce this search time, we tried two different imple-

mentation strategies. The first was simply to partition k into segments of 

equal length and to keep counters of the number of nonzero entries in each 

segment. This was done for segment sizes of 16, 32, 64, 128, and 256. The 

algorithm then examined the counters to determine if any of their associated 

elements contained a nonzero entry. If not, all the elements of the segment 

could be skipped without being submitted to examination. The results of this 

testing are not shown in Table II because this procedure did not improve 

solution times. 

This testing did disclose an interesting piece of information, however. 

Namely, the tests indicated that the nonzero entries of k are approximately 

uniformly distributed in R . (Note this is probably due to the fact that the 

arc lengths were generated using a uniformly distributed probability distribution. 
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Thus, the above results may not hold for problems whose arc lengths do not 

satisfy this property.) Due to the sparseness of k , this implies that each 

counter value is small and thus each segment of k contains very few nonzero 

entries. 

To take advantage of this finding, we aggregated the segments of k. 

That is, rather than chaining together nodes with the same temporary node 

potentials, we chained together all nodes in each segment. We then linearly 

sorted the elements of a segment at the point at which it was selected for 

examination. This type of sort is called a single radix sort [19] and the 

radix r is the size of each segment. Code S3 is a modification of code S2 

and uses a single radix sort. 

The results in Tables X and IX indicate that code S3 dramatically dominates 

codes SI and S2 on grid problems. Further, code S3, in contrast to codes SI 

and S2, is very stable as rectangularity varies. Similarly, the results in 

Table II indicate that code S3 strictly dominates code SI and dominates code 

S2 on the sparser random networks. As density reaches 20 arcs per node, 

code S2 dominates code S3. 

Besides its computational improvement, the single radix sort has an addi-

tional advantage: It requires less computer memory. The size of the k array 

is reduced from (I + 1) to (5, + l)/r. 
max max 

However, better computational bounds (based on worst case analysis) are 

available for balanced and unbalanced binary sort procedures [16,19] than for 

the single radix sort procedure. Consequently, we developed a code, S4, 

based on the Dantzig approach using an unbalanced binary sort to test whether 

the better theoretical worst case bounds might supply a practical advantage. 

Tables I and II indicate that S4 is slower than SI and S2. We did not use 

a balanced binary sort, which has a still better bound (i.e., logarithmic 
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bound) than the unbalanced binary sort, because the Gilsinn and Witzgall study 

[9] as well as other unpublished studies found the Dijkstra algorithm using a 

balanced binary sort to be slower than code SI. 

Without going into great detail, an unbalanced binary sort works by keeping 

a binary tree of numbers (nodes) with a root number (node). A number is added 

to the list by comparing the number with the root. If the number is smaller, 

it is moved downward to the left and compared next with the number in that 

position. If the number is larger, it is moved downward to the right and 

compared next with the number in that position. This type of comparison and 

movement continues until the bottom of the tree is reached along some path. 

At this point, the number is hung to the left if it is smaller than the last 

tree number to which it was compared. Otherwise, it is hung to the right. 

The minimum is always the left-most node in the tree. The tree is 

called an unbalanced binary tree because the depth of the bottom nodes in the 

binary tree may vary greatly. 

8.0 EVALUATION SUMMARY 

8.1 Solution Times 

The results in Tables I and II indicate that the code SI previously 

believed to be the fastest code for calculating the shortest path from one to 

all other nodes in a network is dominated by codes C2, S2, and S3. Further, 

the study shows that the most efficient solution procedure depends on the 

topology of the network and the range of the arc length coefficients. On grid 

networks and sparse random networks code C2 is the fastest. In fact, this code 

is sometimes an order of magnitude faster than SI. As density increases, code 

S2 dominates C2. This dominance depends both on density and the range of the 

arc length coefficients. For example, for a problem whose arc lengths are in 
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the 1-200 range, code S2 dominates C2 when the average number of arcs per node 

exceeds 10; however, for a problem whose arc lengths are in the 1-10,000 range, 

code S2 does not dominate C2 until the average number of arcs per node exceeds 

15. 

8.2 Memory Requirements 

Table III contains the computer array requirements of each code. Code C2 

not only computationally dominates the other codes on grid and sparse network 

problems, but also dominates them in terms of computer memory requirements. 

Table II indicates the paradox involved in using the label-setting codes to 

solve large shortest path problems. In particular, code S2 is the fastest of 

all the codes (including C2) on dense problems but requires substantial computer 

memory which often would prohibit using it to solve such problems. 

8.3 Limitations 

This study has examined the efficiency of algorithms when all problem data 

is kept in fast access main computer memory. It is exceedingly important to the 

realm of ultra large-scale applications, which are arising with increasing 

frequency, to similarly examine design principles for efficient computer codes 

and to determine the best algorithmic rules for the situation in which problem 

data is exchanged between main computer memory and peripheral storage. 

The creation and testing of methods with ultra large-scale capabilities 

to identify the precise trade-offs of mathematical and computational considera-

tions in an environment where data must be allocated and transferred between 

different types of memory will require substantial research. It is our belief, 

based on the present study, that the best implementation principles to emerge 

from such research will be based on the design of code S3. This belief may 

seem paradoxical since code S3 is clearly dominated by other codes. The belief 
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largely rests on the fact that the use of peripheral storage will make it 

impractical to randomly access arc data. All other codes require random 

access of arc data. Further, if random access is not used then we feel that 

updating the node potentials in the manner accomplished in code C3 will 

prove extremely valuable. 

Table III 

COMPUTER ARRAY SPACE 

Node 

Code Length 

C I 4 

C 2 4 

C 3 6 

C 4 7 

C 5 7 

5 1 5 

5 2 6 

5 3 6 

5 4 1 0 

Node 

Arc Length 
L E N G T H L O G I C A L O T H E R 

2 1 
2 1 
2 

2 1 
2 1 
2 i i a + 1) 

max 

2 

2 i ( a + l 
max 

Where r is the size of the radix. 
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