Research Report CCS 291

A COMPUTATIONAL ANALYSIS
OF ALTERNATIVE ALGORITHMS AND
LABELING TECHNIQUES FOR FINDING
SHORTEST PATH TREES

by

Robert Dial*

Fred Glover*#*

David Karney*#*%*
Darwin Klingman#*#*#*#*

April 1977

*Director of Planning Methodology and Technical Support Division, UMTA/DOT,
Washington, D.C.

**Professor of Management Science, University of Colorado, Boulder, CO 80302

***Director of Computer Research, Analysis, Research and Computation, Inc.,
P.0. Box 4067, Austin, TX 78765

*%**Professor of Operations Research and Computer Sciences, University of Texas
and Director of Computer Science Research, Center for Cybernetic Studies,
BEB 608, Austin, TX 78712

This research was partly supported by DOT contract DOT-UT-60054 with Analysis,
Research and Computation, Inc., P.0. Box 4067, Austin, TX 78765, and by ONR
Contracts N00O14-75-C-0569 and N00014-75-C-0616 with the Center for Cybermetic
Studies, The University of Texas. Reproduction in whole or in part is permitted
for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building, 203E
The University of Texas
Austin, TX 78712
(512) 471-1821

ABSTRACT

This paper examines different algorithms for calculating the shortest
path from one node to all other nodes in a network. More specifically, we seek
to advance the state-of-the-art of computer implementation technology for such
algorithms and the problems they solve by examining the effect of innovative
computer science list structures and labeling techniques on algorithmic
performance.

The study shows that the procedures examined indeed exert a powerful
influence on solution efficiency, with the identity of the best dependent upon
the topology of the network and the range of the arc distance coefficients.
The study further discloses that the shortest path algorithm previously docu-
mented as the most efficient is dominated for all problem structures by the

new methods, which are sometimes an order of magnitude faster.

1.0 INTRODUCTION

Shortest and/or longest path analysis is a major analytical component of
numerous quantitative transportation and communication models [4,9,13,15,16,20,
23]. These mathematical models seek to improve efficiency and service by
increasing capacity, reducing travel time, minimizing congestion, reducing the
cost of transportation service, improving vehicle routing, or reducing energy
utilization. Such models usually utilize a network to represent the trans-
portation system (which may consist of road segments, railroad tracks, and
other common carrier transportation routes) where one desires to find a numerical
value of the minimum time, cost, distance, energy usage, etc., or maximum
capacity between several pairs of points in the network. The former problems
are often called shortest path problems while the latter are called longest
path problems.

Finding these values in many applications often requires finding the
shortest or longest path from one point (called a root node) to all other points
(nodes) in the network, where nodes can be road intersections, railroad junction
points, airplane terminals, and so forth. Further, such information is often
successively required for several different root nodes and for a large number
of different criterion functions (time, distance, cost, etc.). Additionally,
applications often involve iterative determination of the shortest or longest
paths for several different values of each criterion function's coefficients
during sensitivity analysis. For many applications the networks are very large,
containing several.thousand nodes and arcs (segments or links).

The longest path problem is often applied to schedule major projects such

as: phased network capacity improvement programs; maintenance, overhaul, and

leasing of large-scale transportation equipment; resource leveling; research

and development programs; and the market introduction of a new production service.
.The longest path problem is the central component of critical path scheduling,
often designated by a variety of acronyms such as CPS, CPM, and PERT. Regard-
less of the name used, it is very important to realize that the longest path
problem is mathematically identical to a shortest path problem. Thus, the
algorithms in this paper apply to such problems and henceforth we will use the
term shortest path problem to refer to both problems.

The above discussion illustrates the remarkable pervasiveness and signifi-
cance of shortest path problems and the importance of algorithms to handle these
problems efficiently. Because of this, a number of algorithms have been developed
for finding the shortest paths from one node to all other nodes in large directed
networks. Dreyfus [8] has written an excellent paper classifying the types of
algorithms and giving theoretical computational bounds for each class.

While the literature contains many shortest path algorithms, it is important
to observe that there are only a handful of general methods for solving shortest
path problems. Each general algorithm has within it subalgorithms. That is,
there are special subproblems or sets of operations that must be handled in
order to execute the general algorithm; e.g., finding the minimum of a set,
breaking a loop, reconnecting subtrees, carrying out computations over the nodes
and arcs of subtrees, etc. The literature basically contains descriptions of
a large number of different ways to handle these subproblems; unfortunately,
many of these alternatives are referenced in the literature as different algo-
rithms rather than as variants of the small class of general algorithms.

Historicall} these "algorithms' were developed and published because
researchers devised ingenious ways of handling one or more of the subproblems

in a mathematically efficient manner; i.e., the developer was able to show

3

that his algorithm would require in the worst case fewer addition and/or comparison
oﬁerations than another algorithm.

The use of digital computers has shown, however, that algorithms which have
excellent worst case bounds are not necessarily the most efficient (in terms of
computer time) for solving real-world problems. This is partially due to the
fact that real-world problems have unique features (e.g., only a fraction of the
total number of possible arcs, special network or grid structures, small distance
coefficient valiues, etc.) which are often not reflected in the worst case bounds.
More importantly, many of the '"good" (polynomially bounded) algorithms assume
that certain information is available or updated after each iteration at no
computational expense; however, when using a digital computer to execute the
algorithm, the maintenance of such information actually requires non-trivial com-
puter storage, retrieval, and comparison operations. Therefore, mathematically
efficient algorithms do not necessarily result in efficient computer solution
procedures.

This has, consequently, spawned an important interface between mathematics
and computer science, called computer implementation technology [14]. Computer
implementation technology is an essential and often neglected component of the
study of classes of algorithms. It is in fact a major practical tool for dealing
with the ubiquitous issue of computational complexity, since no analysis of
computational complexity can be truly meaningful without reference to the techno-
logy by which solution systems are implemented.

Computer implementation technology involves the design of special procedures
to carry out subalgorithms of a general method efficiently on a digital computer.
Typically, this requires research to determine: (1) the kinds of information
to keep on hand for executing certain operations most effectively, (2) the kinds

of data structures in which to express this information, and (3) the actual

methods for processing these data structures to make the desired information
available when it is needed. Effective use of such research further involves
design by feedback, iteratively amending and integratingbcomponent procedures by
reference to computational analysis and performance.

The evolution of efficient methods for network flow and shortest path
problems [1,2,3,6,9,10,11,12,13,14,22,24] uniquely demonstrates the power of
computer implementation technology, properly applied, to yield gains that were
not previously suspected. For example, 2000 node 7000 arc minimum cost network
flow problems that required several minutes to solve in 1968 can now be solved
in only 20 seconds, using the same general algorithm, computer, and compiler
[3]. Similarly, Gilsinn and Witzgall [9] found that improved implementation
technology caused solution times for shortest path problems to drop from one
minute to slightly more than one second, using the same general shortest path
algorithm, computer, and compiler.

In the past, due to the lack of attention to developing systematized
principles and concepts, it was common for people to attribute variations in a
genéral algorithm to the skill (art) of the computer programmer. Recently, an
awareness has developed within many of the science disciplines, and particularly
within operations research, that the design of efficient computer programs for
solving mathematical problems is subject to the enunciation of key methodological
and analytical principles, and therefore is primarily a science rather than an art.

The excellent study by Gilsinn and Witzgall [9] pioneered this awareness
in application to shortest path algorithms and provides a unified structure for
describing such algorithms. The purpose of this paper is to extend this work,
to evaluate procedures not investigated in the Gilsinn and Witzgall study, and
to further demonstrate the importance of computer implementation technology by

the exposition of new procedures that are superior to those previously documented.

This paper specifically focuses on characterizing and comparing different
algorithms for calculating the shortest paths from one node to all other nodes
in a directed network. This study shows that alternative list structures and
labeling methods indeed exert a remarkably powerful influence on solution
efficiency, and that the identity of the best of these methods depends upon
the topology of the network and the range of the arc length coefficients. An
additional significant result of the study is the disclosure that the new
implementation methods are sometimes an order of magnitude faster than the

previously fastest method.

2.0 NETWORK TERMINOLOGY AND STORAGE

This section contains formal definitions of the terms used to describe
shortest path problems and algorithms. 1In order to unify the literature in
shortest path methods and their implementation, we will largely use the terminol-
ogy of the Gilsinn and Witzgall study, departing only to make distinctions and
refinements not anticipated in previous work.

A directed network or simply a network G(N,A) consists of a finite set N
of nodes and a finite set A of arcs, where each arc a € A may be denoted as an
ordeged pair (u,v), referring to the fact that the arc is conceived as beginning
at a node u € N and terminating at a different node v € N.

A directed path or path is a finite sequence of arcs P = {al, a

gr eeal

such that for each i = 2, ...n, arc a; begins at the end of arc a;_q- P is

called a path from node u to node v if a, starts at node u and arc a terminates

at node v. If a network contains a path from node u to node v, then v is called
accessible from u. A path P from u to v is called a circuit if u = v. A path

for which a; # aj for i # j is called arc-simple.

Let 2(a) or 2(u,v) denote a nonnegative length associated with arc
a = (u,v) of a network. Then we define the length of path P to be

n
d(P) = % l(ai). Path t from one particular node to another node is called

i=1
a shortest path if d(P) is the minimum length of any path between these nodes.

A network may be represented in a computer in several ways and the manner
in which it is represented directly affects the performance of algorithms
applied to the network. Three basic ways of representing a network with ‘N!
nodes and lAI arcs are:

1. Use an IN !x IN] matrix C = (Cij)’ where element Cij = 2(i,j). This
value is treated as "infinity" (in practice, some very large number) if the
arc does not exist. This representation has two shortcomings. First, it
assumes that the network does not contain multiple arcs for the same node pair.
Second, if the network is sparse (that is, most Cij = o or equivalently
lA’ / IN,Z is small) then computer storage is not effectively utilized.

Matrix representation is normally used with matrix methods for solving
shortest path problems. Such methods [15] are normally used to find the
shortest path between all pairs of nodes simultaneously. Because of their
large storage requirements, their application is restricted to relatively
small networks and will not be considered in this paper.

2. Another way of representing a network is to list all of the arcs in
the network by keeping for each arc its beginning node, ending node, and
length. This requires 3 lA |computer memory locations, which is generally
superior to the matrix representation, but is not well suited to the imple-
mentation of certain network processing operations. The next representation
to be described h;s more attractive memory requirements and is also more

amenable to processing.

3. The most popular way of storing a network is to use a linked list
structure. In this method, all of the arcs that begin at the same node are
stored together and eacn is represented by recording only its ending node and
length. A pointer is then kept for each node (heading) which indicates the
block of computer memory locations for the arcs beginning at this node.

The seﬁ of arcs emanating from node u is called the forward star of node u
and denoted by FS(u); i.e., FS(u) = {(u,j) € A}. If the nodes are numbered
sequentially from 1 to IN, and the arcs are stored consecutively in memory
such that the arcs in the forward star of node i appear immediately after
the arcs in the forward star of node i-1, then this method, called the
forward star form, requires only ‘N' + 2 lAl units of memory.

Throughout this paper we will assume that the network is represented in
forward star form. In some cases we will further assume that the arcs of the
forward star of each node are ordered by ascen&ing length; this will be called
a sorted forward star form. Figure 1 illustrates the storage of a network in
a sorted forward star form. The number in the square attached to an arc of
the network diagram is the arc length.

The forward star forms are commonly used with special algorithms called
labeling methods for implementing shortest path and network flow solution
procedures. In general, labeling methods are the most widely used methods for
industrial and governmental applications, and constitute the primary focus of
this paper because such methods are especially effective in application to
large sparse networks. Next we define some terms commonly used in describing

labeling algorithms.

3.0 TREE TERMINOLOGY AND LABELING TECHNIQUES

In the context of directed networks, a rooted tree, or simply a tree, is
a network T(NT,AT) together with a node r (called the root node), such that
each node of NT’ except r, is accessible from r by a unique arc-simple path
in T.

ENDING
NODE POINTER NODE L
] 11— 2 3
2 3 3 4
3 5 L 4 5
4 7 3 7
— 2 4
4 6

FIG.1- SORTED FORWARD STAR FORM

A rooted tree T is called a minimum tree or shortest path tree of a
larger network G(N,A) if T contains all nodes of G accessible from r, and if
for each node v in NT’ the unique path P from r to v is a shortest path from
r to v in the network G.

Labeling algorithms typically start with a tree, T, consisting only of
the root node r and seek to enlarge and modify T until it becomes a shortest
path tree of a larger net&ork G. Thus, an important computer implementation

component of such algorithms involves properly handling T and storing G.

A common way of representing a tree in a computer is to think of the root
node as the highest node in the tree and all the other nodes hanging below the
root. The tree is then represented by keeping a pointer list which contains
for each node w # r in the tree, the starting node v of the single arc in the
tree terminating at w. This upward pointer is called the predecessor of node
w and will be denoted by p(w). Further, node w is called an immediate successor
of node v. For convenience, we will assume that the predecessor of the root,
p(r), is zero. Figure 2 illustrates a tree rooted at node 1, the predecessors
of the nodes, and other functions to be described subsequently. The predecessor
of a node is identified in the p array. For example, the precedessor of node
16 is node 5.

Most labeling algorithms keep another list indexed by the node numbers and
associated with the tree T. This list contains for each node v a label d(v),
whose value is the length of the unique path from r to v in T. (In some
implementations, d(v) is not always the correct length but an overestimate
that gradually converges to the correct length.) Henceforth d(v) will be
called the node potential of node v. Nodes not in T may or may not be labeled
with a node potential value; usually they are given the label «, indicating
that they are not yet reached by the tree. The root r has a node potential
of zero.

In Figure 2 the number in the square on each arc indicates the length of
the arc. The entries in the d array identify the length of the unique path
from the root to each node. Figure 2 illustrates additional tree information
expressed as node functions, which will be used in the computer implementation
procedures to be discussed subsequently.

The first of these functions, the thread function [1,12], is denoted by

t(x). This function is a downward pointer through the tree. As illustrated in

10

Predecessor p (x)

Node potential d(x)

Thread t (x)

Reverse thread rt(X)

Depth dh(x)

Cardinality c(x)

Last node in subtree f (x)
//" 17 T~ NODE|p d t rt dh ¢ ¢
74 8 AN 1 /0 0 2 15 017 15
3 \ 2|1 1 4 1 19 ¢
//2 \\ 311 810 6 1 7 15
/ (3 2 an DI 4 12 4 5 2 2 617
[2 / \\ 514 6 16 4 3 2 16
pofoRo PN IR R AR A

N 7
| "\ i3]4”]2'] \ 190 %132 1% 3 % (]3134
5) ,8) N\%) \11{3 9 1214 2 35
9 e A PN A~ 12n1mais o3 112
T4] 113 \ 13[10 15 1410 3 113
/ /// \ 141018 1113 3 1 14
/(@ @) 16|5108 5 3)12
o <’ O~ ~ ~

17(8 79 7 4 117

FIG. 2- TREE LABELING TECHNIQUES

11

Figure 2 by the dotted line, function t may be thought of as a connecting link
(thread) which passes through each node exactly once in a top to bottom, left
to right sequence, starting from the root node. For example, in Figure 2,
t(l) = 2, t(2) = 4, t(4) =5, t(5) = 16, t(1l6) = 8, etc.

Letting n denote the number of nodes in T (NT,AT), the function t satisfies
the following inductive characteristics:

a) The set {r, t(r), t2(r), eees tn_l(r)} is precisely the set of nodes
of the rooted tree, where by convention tz(r) = t(t(xr)), t3 = t(tz(r)), etc.

tk_l(r) will be called the antecedents of node tk(r).

The nodes r, t(r), ...,

b) For each node i other than node tn-l(r), t(i) is one of the nodes such
that p(t(i)) = i, if such nodes exist. Otherwise, let x denote the first node
in the predecessor path of i to the root which has an immediate successor y
and y is not an antecedent of node i. 1In this case, t(i) = y.

c) tn(r) = r; that is, the "last node" of the tree threads back to the
root node.

The reverse thread function, rt(x), is simply a pointer which points in
the reverse order of the thread. That is, if t(x) = y, then rt(y) = x. Figure
2 also lists the reverse thread function values.

The depth function, dh(x), indicates the number of nodes in the predecessor
path of node x to the root, not counting the root node itself. 1If one con-
ceives of the nodes in the tree as arranged in levels where the root is at
level zero and all nodes "one node away from" the root are at level one, etc.,
then the depth function simply indicates the level of a node in the tree.

(See Figure 2.)
The cardinality function, c(x), specifies the number of nodes contained

'in the subtree associated with node x in the tree. By the nodes in the subtree

12

associated with node X, we mean the set of all nodes w € NT such that the
predecessor path from w to the root contains x. (See Figure 2.)

The last node in a subtree function, f(x), specifies that last node in
the subtree of x that is encountered when traversing the nodes of this subtree
in "thread order." More precisely, f(x) = y where y is the unique node in the
subtree of x such that t(y) is not also a node in the subtree of x. (See
Figure 2.).

Note that both the domain and the range of each of the above discrete
functions consist of the set of nodes and thus are independent of the number
of arcs. Since INI is the maximum number of nodes that could be in T, a one
dimensional array of size [Nl, called a node length array, is allocated to
each function during computer implementation. The procedures for updating

the values of the functions when the tree is reconfigured will be detailed

subsequently.

4.0 SHORTEST PATH PROBLEM AND LABELING METHODS

By means of the foregoing terminology, the problem of finding the shortest
paths from a given node r to all other nodes in network G(N,A) may be stated
as that of finding a minimum tree T(NT’AT) of G rooted at node r.

Labeling methods for computing such a minimum tree have been divided into
two general classes, label-setting and label-correcting methods. Both methods
typically start with a tree T(NT,AT) such that NT = {r} and AT = . A label-

setting method then augments N_ and AT respectively, by one node v € N and one

T

arc (u,v) € A at each iteration in such a manner that u € NT’ v € NT’ and the
unique path from r to v in T is a shortest path. A label-setting method ter-

minates when all arcs in A which have their starting endpoints in NT also have

their ending endpoints in NT'

13

A label-correcting method, on the other hand, always exchanges, augments,
or updates arcs in AT in a manner that replaces or shortens the unique path
from r to v in T, but does not guarantee that the new path is a shortest path
(until termination occurs). Using the notation defined in the previous section,

we now give a precise description of each of these general methods.

General Label-Setting Method

1. Initialize a tree T(NT’AT) such that N_ = {r} and AT = ¢7 Further,

T
set p(t): = 0, t € N; d(t): = o, t € N - {r}; and d(xr): = 0.
(The notation a: = b sets a equal to b.)
2. Let S = {(u,v): ue NT; vEN- NT’ (u,v) € A}. If S=0, go to

step 4. Otherwise proceed.

3. Let d(u) + 2(u,v) = minimum (d{(p) + 2(p,q)). Redefine
(p,q)es

Np: = Ng U {v}

Ar U {(u,v)}

e

p(v): = u

d{v): d(u) + 2(u,v)

and repeat step 2.
4. Stop. T(NT,AT) is a minimum tree and for each node v € N, d(v) is
the length of a shortest path from r to v # r.
It is worth noting that a label-setting method only works for nonnegative
arc lengths. A label-correcting method, however, works for negative arc lengths

as long as there are no circuits of negative length in the network G(N,A).

General Label-Correcting Method

1. Initialize a tree T(NT’AT) such that N = {r} and Ap = @. Further,

set p(t): = 0, t € N; d(r): = 0; and d(t): = o, t € N - {r}.

14

2. Go to step 4 if there does not exist an arc (u,v) € A such that

d(u) + f(u,v) < d(v). Otherwise, for such an arc, redefine

Np:o= Np U {v}

Api = An - {(s,v) € A} U {(u,m)}
p¥v): =u

d(v): = d(u) + L(u,v)

3. Repeat step 2.

4. Stop. TN ,AT) is a minimum tree and for each node v € N, d(v) is

T
the length of a shortest path from r to v # r. Further, if a
shortest path from r to v exists (i.e., if p(v) # 0), then it may

be constructed by successively examining the predecessors of v

until the root node r is encountered.

5.0 EXPERIMENTAL DESIGN

Alternative implementation methods are evaluated in this study by solving
a diverse set of randomly generated shortest path problems using the same
computer (a CDC 6600), the same compiler (a FORTRAN RUN compiler), and executing
the codes during time periods when thé demand for computer use was comparable.
Further, all of the codes were implemented by the same systems analyst and no
attempt was made to exploit any of the unique hardware characteristics of the
CDC 6600.

Even with these safeguards, minor differences between the solution times
of any two codes for a single test run of each must be regarded of questionable
significance. For this reason, each test problem was solved 100 times (i.e.,
for 100 different roots) and the average solution time reported. Each code
makes use of a real-time clock routine supplied by CDC. This routine can be
émployed using a FORTRAN subroutine call and is generally accurate to two

decimal places. The reported times include only the elapsed time after input

15

of the shortest path problem and prior to output of its solution. This includes
the time required to initialize the function arrays.

The problem set consists of shortest path problems from two distinct
topological groups. One set consists of rectangular grid networks. A p X q
rectangular grid network may be envisioned as having its nodes arranged in p
parallel rows each containing q nodes. Each node connects by arcs only to the
four nodes (if present) to its right and left and above and below. Thus a
P X q grid network has pq nodes and 4 pq - 2p- 2q arcs. It is important to
note, however, that the arc lengths are randomly generated. Thus, arc lengths
are not necessarily symmetric and the triangle inequality may not hold.

The grid network test problems all have 2500 nodes with rectangularities
of 50 x 50, 25 x 100, 10 x 250, and 5 x 500. These problems were generated
using a unifrom probability distribution with two unique distance ranges for
the arc lengths; the first range of arc lengths lies between 1 and 100 and the
second between 1 and 10000. Table 1 describes all of these grid problems and
contains solution times on the alternative implementations to be discussed
subsequently.

The second topologically distinct set of problems consists of random
networks. A random network is one in which two nodes are selected randomly
to form a new arc to add to the network. The nodes are selected using a uniform
probability distribution, subject to the restrictions that the two nodes are not
the same and arcs are not allowed to be duplicated. The random network test
problems all have 1000 nodes and contain either 5000, 10000, 15000, 20000,
25000, or 30000 arcs. For each of these problem sizes, two problems were
generated, one with arc lengths between 1 and 200 and the other with arc lengths

between 1 and 10000. Again the arc lengths were randomly selected using a

16

‘uni jou PIQ--¥NQ

86" LG T6°¢C TT°¢ Le: 4% 6¢” we* ET" Y 0000T-T 0668 00¢¢ 006 X ¢
99° 19° (8°C 68°C Le: £y 06" 9¢° 00°¢ 0000T-T 08%6 0062 067 X 01
9L LG we'e Le'c 7 06" LS ¢’ €0°T 00001-T 06L6 006¢ 00T X 6¢
z8” LG* 9°1 0L°T IV 6% 09° T 89° 0000T-T 0086 00672 06 X 09
(6T ANa Ly AN KA 6¢" £y’ we* 0L°¢ 00T-T 0668 00¢2 006 X ¢
¢9° UNQ £y 8¢€" 8¢" 7y 6%° 9¢° 96°¢ 001-T1 08%6 00<¢ 0SZ X 0T
gL 4NQ oy’ LE” o%* 16° 86" YA 66° 00T-1 0526 00s¢ 00T X <S¢
I8° UNC oy A% % 8% 09° ¢¢T 99° 00T-T 0086 00s¢ 0S X 0¢S
%S £sS (4] 1S 9 V) €0 rAY, 10 28ury soay SapoN A3Taern8ue3oay
y3adual
oay

(STFYL 00T Y04 CEOVYEAV ‘dTIL/SOES)
SJOMLEN dI¥D NO SHWIL NOIILATOS

I °T9BlL

SOLUTION TIMES IN SECONDS ON A CDC 6600 FOR RANDOM NETWORKS
(SECS/TREE, AVERAGED FOR 100 TREES)

17

Table II

Arc
Length
Nodes Arcs Range Cl c2 C3 C4 C5 S1 S2 S3 S84
1000 5000 1-200 .15 .13 42 .28 .20 .21 .23 DNR .34
1000 10000 1-200 .31 .28 .63 .42 .35 .33 .32 DNR .50
1000 1500¢ 1-200 WAA .43 .72 .58 .47 42 .39 DNR .61
1000 20000 1-200 .59 .59 .90 .70 .61 .52 47 DNR .72
1000 25000 1-200 .80 .80 1.17 .88 .77 .62 .55 DNR .81
1000 30000 1-200 .91 .91 1.31 1.01 .90 .70 .62 DNR .90
1000 5000 1-10000 .16 .13 .43 .28 .20 .50 .53 .30 .34
1000 10000 1-10000 .32 .29 .61 .43 .35 .51 .45 40 W47
1000 15000 1-10000 .43 .43 .71 .59 .46 .59 .51 .49 .58
1000 20000 1-10000 .65 .64 .89 .71 .63 .68 .59 .62 .66
1000 25000 1-10000 .85 .85 1.21 .90 .79 .76 .61 .69 .70
1000 30000 1-10000 .97 .96 1.32 1.03 .91 .88 .70 .86 .81

DNR--Did not run.

18

uniform probability distribution. Table II contains the computational results
on the random network problems.

To provide researchers with reproducible benchmarks, the appendix contains
FORTRAN listings of the problem generators and the two coﬁputer codes found to

be the best in this study.

6.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL-CORRECTING METHOD

In this section we discuss a sequence of implementations of the general
label-correcting algorithm which successively utilize more and more information
(as embodied in the node functions) to determine the effect of this information
on the efficiency of the algorithm. The merits of these alternative implementa-
tions are then evaluated by solving the test problems.

6.1 Implementations Using Only p and d Functions

Step 2 of the general label-correcting method involves finding any arc a
which can be added to (or updated in) the tree with a resultant decrease in the
node potnetial of its ending node. One of the fundamental subalgorithms of
this general method involves searching for such an arc in an intelligent manner.
Several observations have been made in the literature regarding this search.

The most rudimentary observation is that if the arcs are sequentially examined,
it is not necessary to examine any arc (u,v) € A whose beginning node has an
infinite node potential since d(u) + 2(u,v) < d(v) will never be satisfied for
nonnegative arc lengths.

This observation extends quite naturally as follows. If each arc (u,v) €
FS(u) has been examined and found to satisfy the condition d(u) + 2(u,v) 2 d(v),
then it is unnecessary to re-examine these arcs until the node potential of u
decreases. This observation is one of the primary motivating factors for

storing the network in a forward star form. As will be seen, the order in which

19

forward stars of nodes are examined plays a major role in the efficiency of the
algorithm.

Based on the preceding observation, it is convenient to keep a seguence
list of nodeé whose node potentials have decreased since their forward stars
were last examined. That is, nodes are added to the sequence list whenever their
node potentials are decreased and deleted from the list upon examining their
forward stars. By not allowing a node to appear more than once on this list,
it is possible to restrict the size of this list to a node length array. One
simple ﬁay to guarantee that a node is not duplicated on the sequence list is
to complement the forward star pointer of the node when it is added to (or
deleted from) the list. Using this technique, the sign of a node's forward
star pointer is checked before adding the node to the sequence list. If its
sign is positive, the node is added to the list; otherwise, it is already on
the list.

The sequence list can be managed in a variety of ways. In particular, if
the forward stars are examined in the order in which their identifying nodes
are placed on the sequence list, the list is said to be managed in a FIFO
(First-in, First-out) manner; if the forward star of the latest node added to
the list is examined before that of a node placed on the list previously, it is
said to be managed in a LIFO (Last-in, First-out) manner. Yet another way to
manage the sequence list is to pick the node at the front of the list to examine
next as in the FIFO procedure, but to add nodes at either the front or the back
of the list; that is, to handle the sequence list as a two-way sequence list
adding to either gnd but always deleting from the front. As will be seen, the
way in which the sequence list is managed has major ramifications for the effi-
ciency of the algorithm. We now describe in detail the codes whose solution

times are indicated for grid networks and random networks in Tables I and II.

20

Code Cl employs a FIFO sequence list, and the predecessor and node potential
functions. The list is processed by using two pointers, s and e, where s points
to the entry whose forward star is to be examined next and e is the position of
the last node added.

Code C2 utilizes the predecessor and node potential functions and a two-way
vsequence list. The two-way sequence list is implemented as suggested by Pape [22].
That is, the sequence list is a node length array, called CL, identified by node

numbers, such that

"
-1 if node x was previously on the list
but is no longer on the list
0 if node x has never been on the list
CL(x) = <
+y if node x is on the list and y is the
next node of the list
+ oo if node x is on the list and x is the
L last node on the list

In addition, the start and end pointers, s and e, are kept. (See the listing
of code C2 in the appendix.)

The solution times in Table II are very similar for codes Cl and C2. Thus
for random networks, the management of the sequence list does not seem to affect
sélution speed. The results in Table I, on the other hand, show that this is
not true for grid networks. Code C2 is dramatically superior in this case.

This surprising difference can be explained as follows. The minimum tree
and also most of the intermediate trees are very narrow and deep in grid networks,
due to the fact that only one or two tree arcs emanate from each node. This
causes the subtree of an arbitrary node v, in general, to exhibit the '"narrow
and deep" property. Moreover, if the node potential of node v is decreased by
an amount & then the node potentials of all nodes in the subtree of v must

ultimately be decreased by 8§ (unless the subtree later becomes restructured,

21

in which case some node potentials will decrease by an even greater amount).

To illustrate, suppose arc (8,3) of Figure 2 is to be added to the tree and
d(3) is set to d(8) + 2(8,3) =5+ 1 = 6 (hence d(3) Is decreased by 2). Then
the length of the unique path from the root to each node in the subtree of node
3 is reduced. Consequently, the node potentials in this subtree should be
decreased.

The FIFO sequence list postpones updating these node potentials since node v
is added to the back of the list. 1In contrast, the two-way sequence list adds
v to the front of the list (if it is not already on the list). Thus, loosely
speaking, nodes in the subtree of v tend to be updated before other nodes are
examined.

This updating sequence helps to eliminate unnecessary node potential
corrections that are dominated by the § correction that should be transmitted
through the subtree. That is, an arc (p,q) may satisfy the condition
d(p) + 2(p,q) < d(q) only because d(q) has not been reduced by 8. The occurrence
of such unnecessary corrections can have a cumulatively deleterious effect.

In particular, each one causes a new node to be added to the sequence list

which has an "erroneous" (i.e., dominated) node potential value. Each time such

a node is then selected from the list (if it has not in the meantime received

a "corrected" node potential value), a correspondingly erroneous value is trans-
mitted to still other nodes. The difficulties of the process are thus perpetuated.

The effects of generating and transmitting erroneous node potentials, just
discussed, raise the question of whether a label-correcting method can be imple-
mented by means of more sophisticated list structures and processing techniques
with a net gain in computational efficiency. We now consider implementations

designed to respond to this question.

22

6.2 Implementations Using p, d, t, ¢, and f Functions

The thread function, as observed earlier, provides an efficient way of

locating each node in the subtree of any node in N Thus, if the node potential

T
of node v is decreased by §, the thread function can be used to update all node
- potentials in node v's subtree. As shown in [1], the last node and cardinality
functions can be used efficiently to update t.

We have designed two codes, C3 and C4, to test the major implementation

alternatives. Code C3 uses the p, d, t, ¢, and f functions as follows. The

code starts with Nt = {r = root}, At = @ and initializes p(v) = 0, v € N;

t(r) =r; t(v) =0, veN-A{r}; d(r) = 0; d(v) = ®, ve N~ {r}; c(xr) = 1;

c(v) =0, ve N-{r}; f(r) = r; £() 0, veN- {r}. Code C3 also uses a
logical node array e toindicate if a node's forward star requires scanning. 1In

particular, for v € N, e(v) = 1 if the node potential of v has changed since v

was last examined and e(v) 0, otherwise. This array is initialized by setting
e(r) =1 and e(v) =0, ve N- {r}. Using e, the algorithm then searches for

an arc (u,v) € A such that § = -d(u) + d(v) - 2(u,v) > 0, whereupon d(v) is
reset to d(v): = d(v) - 8§ and the node potentials of all other nodes in the
subtree of node v are decremented by §. The algorithm terminates when e(v) = 0,
v € N. (Since each element of e has only two states, it is not necessary to

use a separate computer array for this function.)

The p, t, ¢, and £ functions are updated by the following set of operations
where (u,v) denotes the arc to be added to AT. (The reader may find it helpful
to perform these operations using Figure 2 and letting (u,v) = (8,3).)

Step 1: Identify the node y suéh that t(y) = v. Then set t(y): = t(£(v)).
(Note that the ‘identification of y may be efficiently done by first letting

'

y' = p(v). Second, if t(y') = v then y = y' and the process stops. Otherwise,

let y' = f(t(y'")) and repeat the second step.)

23

Step 2: Identify the first node x (lowest node) common to the predecessor
paths for u to r and v to r. Then set c¢(i): = ¢(i) + c(v) for each node i in
the predecessor path from u to x (excluding node x) and set c(i): = c(i) - c(v)
for each node i in the predecessor path from p(v) to x (excluding node x).

Step 3: Let w = p(t(f(v)). If w =0, then set w = r. Set £(i) =y
(i.e., the node y determined in step 1) for those nodes i on the predecessor
path from p(v) to w, excluding w itself if p(t(f(v)) # 0.

Step 4: Set p(v): = u.

Step 5: Set t(f(v)): = t(u).

Step 6: Set t(u): = v.

The second code, C4, based on the more sophisticated node functions is a
simple modification of C3 in which the e array is replaced with a FIFO sequence
list.

6.3 A Primal Simplex Method Interpretation of the Label-Correcting Algorithm

The preceding implementations of the general label-correcting algorithm
may be viewed as specialized variants of the primal simplex algorithm where
the basic variables correspond to the arcs in AT’ augmented by artificial arcs
which start at the root r and end at node i for each i € N - NT such that
£(r,i) = ., The interpretation is especially direct for the codes C3 and C4,

which insure that the node potentials always satisfy complementary slackness,

i.e., ~d(u) + d(v) = 2(u,v), (u,v) € A

T and -d(r) + d(i) = #(r,i), 1 e N - NT'

Extending this interpretation, the process of selecting an improving arc (i,j)
corresponds to searching for an arc which violates dual feasibility. The process

of adding such an arc (t,s) to N_ and deleting an arc (p(s),s) from AT is

T

equivalent to a simplex basis exchange. (Note that if p(s) = O then arc (p(s),s)

corresponds to an artificial arc and is not a member of AT') The update of the

24

node potentials after performing this basis exchange simply maintains comple-
mentary slackness.

From this point of view, the replacement of the e érray of C3 with the
FIFO sequence of C4 corresponds simply to the use of different pivot sélection
rules. Tables I and II show that this change of pivot selection strategy strictly
improves solution time.

The previous codes Cl and C2, on the other hand, correspond to a deferred
updating version of the primal simplex algorithm in the sense that a basis
exchange is performed each time an arc is added to AT’ but the full set of
updated node potentials in a subtree are not immediately determined. In particular,
codes Cl and C2 differ from the codes C3 and C4 by requiring that complementary
slackness be maintained only "locally" rather than globally. The times in
Tables I and II demonstrate that it is not necessarily beneficial to maintain
complementary slackness after each iteration. Code C2, while postponing the
update of the dual variable (node potential) values, appears to balance the
distortion caused by using locally updated dual variable values with the work
required to maintain globally updated values.

6.4 Additional Implementations Using Alternative Pivot Strategies

As a result of the interpretations of these codes as variants of the primal
simplex method, we undertook to test variations of C3 and C4 that used other
types of pivot strétegies. First, code C4 was modified by scanning the forward
star of a node removed from the FIFO list multiple times. Each time the forward
star is scanned, the arc violating dual feasibility by the largest amount is
selected for the basis exchange. This pivot criterion was tested because it
has been shown in;other network flow applications to be more effective than
simply pivoting the arcs in a '"random" order [5,10,11,24]. The times for this

variant of C4 are not shown in Tables I and II because, contrary to the results

25

for other types of network flow problems, the solution times were uniformly
10% to 15% slower than for the "unordered" selection procedure.

Following this, we tested a number of other more sophisticated pivot
criteria. Mulvey [2] has shown that an excellent pivot criterion for large
transportation and transshipment problems derives from the use of an arc
candidate list. Mulvey's approach involves two parameters r and s, where r
specifies the maximum number of arcs on the list and s specifies the maximum
number of pivots to be made befpre revising the elements on the list. The
candidate list is created by sequentially examining the forward star of nodes
with an e value of 1 in code C3 and selecting arc {(u,v) in each forward star
which violates -d(u) + d(v) < %£(u,v) by the largest amount (if one exists)
for inclusion on the list (accumulating at most r such arcs). Each time the
list is revised, the search for ércs is initiated at the node following the
node where the search was stopped when building the previous list. 1If r
eligible arcs cannot be found, the size of r is reduced to the number actually
encountered.

The candidate list approach was incorporated into code C3 and tested for
several different list sizes. The outcome, again surprisingly, yielded solution
times inferior to those of code C4.

We then designed another variant of the candidate list approach, which
made use of the sequence list of code C4. in particular, the first r nodes
were taken from the sequence list to form a node candidate list. éeveral
diffefent strategies were tested for picking nodes off this candidate list.
First, the nodes were selected in increasing order of their cardinality function
value, and the forward star of the selected node was scanned.

The logic behind this pivot selection strategy is that nodes with larger

cardinality function values are likely to be closest to the root node, indicating

26

an increased attractiveness for being examined first. Several different list
sizes were tested, but none reduced solution times. Similarly, tests were
conducted for the strategy of selecting the nodes in increasing order of their
node potential values. This also failed to reduce solution times.

These results étrongly suggested that more sophisticated versions of
special purpose simplex codes using globally updated node potentials are not
competitive with the simpler label-correcting code C2. Before submitting
completely to this conclusion, however, we'deciAed to test a different imple-
mentation of the simplex method where the c and f functions are replaced by
the reverse thread, rt, and depth, dh, functions. The primary motivation
underlying this implementation is that these functions can be updated more
easily thar the previous functions in the setting of shortest path problems.
(This is not true, however, in the setting of other network flow problems.)

6.5 Primal Simplex Implementations Using p, d, t, rt, and dh Functions

The implementations based on the reverse thread and depth functions,
like the preceding implementations, use the thread function to find and update
all node potentials in a subtree. The rt and dh functions are used to update
t, replacing the c and f functions in this task.

First, a code C5 was implemented using p, d, t, rt, and dh functions
initialized such that p(v) = 0, v € N; t(r) = rt(r) = r; t(v) = rt(v) = 0,
veN-{r}; d(r) = 0; d(v) = @, ve N- {r}; dh(v) = 0, v € N. Additionally,
code C5 uses a FIFO sequence list to locate an arc (u,v) € A such that
§ =-d(u) + d(v) - 2(u,v) > 0, whéreupon all nodes in the subtree of node v
are decremented b& 6 and "added to" the sequence list. Simultaneously, the
depth of each node in this subtree is incremented by ¥ = d(u) - d(v) + 1. The

algorithm terminates when the sequence list is empty.

27

The p, t, and rt functions are updated by the following steps where (u,v)
denotes the arc to be added to AT' (The reader may find it helpful to perform
these steps using.Figure 2 and letting (u,v) = (8,3).)

Step 1: Identify the first k > 1 such that dh(tk(v)) < dh(v). (Note that
the identification of k should be done simultaneously with the updating of d
and dh since identifying k requires tracing out the nodes in v's subtree.

In fact, tk_l(v) is the last node in the subtree of v.) Set t(tk_l(v)): = t{u),
re(ew): = £, tre(): = t5(v)), and re(e5()): = re(v).

Step 2: Set t(u): = v, rt(v): = u, and p(v): = u.

The solution times in Tables I and II indicate that the special purpose
simplex code C5 is 25% to 30% faster than the equivalent method using the
P, d, t, ¢, and f functions, code C4. The results also clearly show the
importance of matching data structures with algorithmic steps. Further, the
results‘inaicate that the code C5 is usually the first or second fastest label-
correcting code. The code most often superior to C5 is code C2. As with code
C4, we modified code C5 to perform a number of candidate list pivot strategies.
None of these variants improved solution times, however.

These results raise the question as to why the "quasi-simplex" code C2,
which defers the complete updating of node potentials is generally superior to
the full simplex codes C3, C4, and C5 (and to their dominated variants whose
times are not reported in the tables). Analysis of the computational data for
these codes discloses that the number of pivots (label-correcting iterations)
made by code C2 typically is on the order of 1 1/2 to 2 times the number of
nodes in the problem. Observe that any label-correcting method which starts
with a tree consisting of only the root node, must make at least as many pivots

as the number of problem nodes if each node in G(N,A) is accessible from the

28

root. Thus, the margin for improvement in the number of pivots made by C2
is small.

In fact, the simplex codes C3, C4, and C5 do achieve some of this theoreti-
cally available improvement. In particular, the average number of pivots made
by these codes is approximately 1 3/8 to 1 1/2 times the number of nodes.

The augmentations of codes by more sophisticated pivot rules still require
pivots ranging from 1 1/4 to 1 3/8 times the number of nodes. However, these
small gains in the number of pivots do not represent corresponding gains in
solution time, and in fact lead to net losses. It appears that the additional
overhead involved in maintaining and updating the extra functions (plus
possibly maintaiﬁing a pivot candidate list), simply overshadows the gain
achieved in reducing the number of pivots for sparse shortest path networks.
However, as density increases in the shortest path networks, the pivot reduction
achieved by the full simplex codes over the quasi-simplex code C2 becomes
effective. In particular, the results in Table II indicate that the simplex
code C5 becomes comparable to C2 at 20000 arcs and is the fastest label-
correcting code for the 1000 node random networks with 25000 and 30000 arcs.
Thus, it appears that as the networks become sufficiently dense, it is worth-

while maintaining complementary slackness.

7.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL-SETTING METHOD

In this section we discuss several implementations of the general label-
setting method. The primary difference between these implementations is the
way in which the minimum in step 3 of the algorithm description is found.

As for alternative implementations of the 1abel~corrécting method, these imple-
mentations are evaluated by solving the same test problems using the same

computer and compiler.

29

A naive implementation of the general label-setting method would be to
find the set S of step 2 by examining all arcs in A and then calculating and
discarding node potentials to find the minimum of step 3. This involves
examining all arcs during every execution of step 2, as well as performing
many unnecessary node potential calculations in step 3. The implemgntations
described in this section make use of temporarily retained node potentials
in such a way that each arc in A is examined at most once, thereby avoiding
extensive recalculation.

As a basis for understanding these implementations, it is useful to observe
that steps 2 and 3 of the label-setting method simply find an arc from a tree
node to a non-tree node which yields the minimum distance extension. Figure
3 illustrates one way of viewing these steps at some iteration where the
tree T(NT,AT) consists of the solid line arcs and their associated nodes. The

dashed line arcs and their ending nodes N_ indicate possible tree extensions.

E

(Note that N—NT may not be equal to N_.)

£
By reference to this diagram, it may be seen that steps 2 and 3 can be

performed by keeping a temporary node potential and predecessor for each node

v in NE such that d(v) = minimum (d(u) 4+ 2(u,v)) and the predecessor of v is

u € NT

set to a node u which yields the minimum node potential for v. Thus, if
p(v) = u then -d(u) + d(v) = £(u,v). Step 3 then adds a node v in NE with

the smallest temporary node potential to N,, and correspondingly adds its arc

T
(p(v),v) to AT' After performing this step, node v's potential will never
change (i.e., it is assigned a permanent node potential at this time) and arc

{(p(v),v) is permanently assigned to the tree. The name label-setting stems

from this property of the algorithm.

30

In the following subsections we discuss four alternative implementations
for carrying out steps 2 and 3 in this manner. These implementations differ
in the way they handle the following fundamental operations: (1) the computa-
tion and updating of temporary node potentials, (2) the determination of the
minimum temporary node potential, and (3) the assignment of one or more
temporary node potentials to a node in N_.

E
7.1 Interpretation of the Label-Setting Method as a Primal Simplex Method

Before discussing these implementations, it is interesting to observe
that the label-setting method may be viewed as a special purpose primal simplex
method where the basic variables correspond to the arcs permanently assigned
to AT’ augmented by artificial arcs which start at the root r and end at
node i for each i € N - NT such that 2(r,i) = «. The node potentials clearly_

satisfy complementary slackness at each iteration; i.e., -d(u) + d(v) = 2(u,v),

(u,v) ¢ AT and -d(r) + d(i) = 2(r,i), i e N - N Further, the process of

T
selecting an improving arc (i,j) to enter the basis corresponds to searching
(in some fashion) for an arc‘which violates dual feasibility (i.e.,

-d(i) + d(j) £ 2(i,j)) by the largest amount. The process of adding such an
arc (t,s) to AT and deleting the artificial arc (r,s) from this basis is
equivalent to a simplex basis exchange. The setting of the node potential of
node s after performing this basis exchange simply maintains complementary
slackness.

Thus, the label-correcting and label-setting methods are both simply
variants of the same general algorithm. More specifically, they are both
special purpose pfimal simplex methods which use different pivot strategies.
It is well known in linear programming literature that searching for the

variable which violates dual feasibility by the largest amount at each itera-

tion to enter the basis does not usually produce good solution times. In fact,

31

such an approach normally results in unusually large solution times. However,
in the case of shortest path problems with nonnegative arc lengths, the
following subsections demonstrate that various researchers have devised inge-
nious ways of exploiting the topology of the problem so that such a pivot

strategy can be performed by examining each variable at most once.

FIG. 3 - LABEL-SETTING ITERATION

7.2 Dijkstra Address Calculation Sort

The first implementation to be discussed is the one originally Qeveloped
by Dial [6], called code S1. Several studies [9,23] of shortest path algo-
rithms have concluded that code S1 is the fastest code, superior to all other
label-setting and label-correcting implementations.

The Dial code operates in accordance with the previous observations by

keeping a unique temporary node potential and predecessor for each node v in

32

N. such that d(v) = minimum (d(u) + £(u,v), and maintaining p(v) = u for a

E
u € NT

node u satisfying d(v) = d(u) + 2(u,v). Likewise, at each iteration, a node v
in NE with the minimum temporary node potential is added to NT and its arc
(p(v),v) is added to AT'

The chief feature of code S1 is the manner in which temporary node poten-
tials are updated and their minimum is identified. in particular, after
adding node v to NT’ the updating is accomplished simply by scanning the
forward star of node v. The new candidate values for node potentials imputed
by these arcs are then calculated and compared with their current temporary
node potentials, retaining the smaller one with its corresponding predecessor.

The Dial implementation then identifies the minimum temporary node
potential using the following observation. Each temporary node potential
equals a permanent node potential plus the length of some arc. Consequently,

temporary node potential values may be uniquely represented modulo (zmax + 1)

where gmax = maximum 2(a). That is, if d(p) # d(q), where d(p) and d(q) are
aceaAh

temporary node potentials, then d(p) modulo (Qmax + 1) # d{(q) modulo (Qmax + 1).

To see this, suppose that node v has the minimum temporary node potential
at the current iteration. Then d(u) < d(v) for u ¢ NT and thus for t ¢ NE
d(v) < d(t) < d(v) + zmax' In other words, at each iteration all temporary
node potentials are bracketed on the lower side by d(v) and on the upper side
by d(v) + Qmax' Thus it is possible from one iteration to the next to uniquely
represent all temporary node potentials modulo (Qmax + 1).

To find the minimum by this procedure, it is convenient to use a computer

array k of size Qmax + 1 where

33

i +
0 if 1 # d(v) modulo (Qmax 1), for any v ¢ NE

ceos +
1 if i d(q) modulo (gmax 1), for some q € N

k(i) =
E’

where Py is a pointer which points to all nodes in NE that have a modulo
temporary node potential value of i. The nodes in NE that have the same modulo
temporary node potential value (and thus, on any given iteration, the same
temporary node potential value) are identified by chaining the nodes by a
two-way linked list. Thus, every node with the same temporary potential value
is linked to an antecedent and a successor node (which may be dummies at the
"ends" of the list). When a node's temporary potential changes, the node is
disconnected from the chain simply by re-linking its antecedent and successor
to each other. This array achieves an "automatic sort" of the nodes in Ng
relative to their temporary node potentials. Figure 4 illustrates the sort

structure induced by the k array and the two-way linked lists, representing

node names by the symbol n,

k
O[P

1
SD> 2

3 O [—=I|n..[*—In

i
r

-
1|—==|D

O

v
N

\ P, |—=|n

£

12

MAX

FIG. 4 - ADDRESS CALCULATION SORT

34

The current minimum temporary node potential is found by sequentially
examining the elements of k in a wrap around fashion. Each time a nonzero
element of k is encountered, the current minimum node potential is that of
the nodes associated with this element, and examination of k resumes at the
next nonzero element of k on the next iteration.
To describe the implementation of this algorithm, it is convenient to
define the following terms:
1. The imputed node potential value of node q, relative to the forward
star of v, denoted by dv(q), is d(v) + 2(v,q).

2. An improving imputed node potential dv(q) is one such that
dv(q) < d(q); i.e., dv(q) is smaller than the current minimum
temporary node potential of node q.

3. Node q is an improving node relative to FS(v) if it has an improving

imputed node potential.

4. A node v is scanned by examining FS(v) and updating d(q) and p(q)

for each improving node q € FS(v); i.e., d(q): = dv(q) and p(q) = v.

To implement this approach, the algorithm initializes p(v) = 0, v ¢ N;
d(r) = 0 and d(v) = ®, v e N - {r}; and k(i) = 0, 0 < i < % ..+ The root
node r is then scanned and the improving nodes of FS(r) are "added to'" the
appropriate elements of k. The first pass of the k list starts at k(0),
examining the elements of k in sequence until the first nonzero element is
encountered. Each node v associated with this nonzero element is then
sequentially removed from the two-way chained list and scanned. Any improving
node q located during the scan of v is removed from "its current position'" in
Tk and moved.to its new position dv(q) modulo (gmax + 1). (If d(q) = « then

node v has never been added to k and thus no step is required to remove it.)

35

At each subsequent iteration, the examination of array k resumes where
it left off (and wraps around if necessary) to find the first nonzero entry.
This entry identifies a node with the new minimum temporary node pbtential.
All chained nodes with this temporary node potential are then removed from k
and scanned in the manner previously indicated. The algorithm stops when a
complete pass of k is made without finding a nonzero entry.

This approach is called an address calculation sort because the insertion
and deletion of an item from the list simply involves calculating an address
in a convenient and straight forward manner. Its application to shortest
path implementations, as proposed and coded by Dial, is known in the litera-
ture as CACM Algorithm 360 (see [6]). This algorithm, as noted earlier, was
found by Gilsinn and Witzgall [9], as well as by authors of several unpublished
studies, to be the most efficient shortest path method for problems with non-
negative arc lengths.

Two attractive features of this algorithm, in addition to its efficiency,
are its simplicity and the structuring which assures that each arc is examined
at most once. This latter feature, which is independent of the use of the
address calculation sort, follows from the fact that an arc is scanned in a
given iteration if and only if its starting node has a minimum node potential
at that iteration. Every node ‘''reachable'" from the root must have a minimum
potential at some step, but never more than once, thus only the arcs starting
at reachable nodes are examined at all.

This implementation has two major time consuming tasks: (1) inserting
and deleting nodeé in the two-way linked array when their node potentials are
reduced, and (2) examining the elements of k to find the next minimum. The time

required by the first task is partially illustrated by the increasing solution

36

times of Table II when the number of arcs is increased. The effort of the
second task is dramatically shown by comparing the times in Tables I and II
for the different arc length ranges.

These solution times generally show that the algorithm's performance
depends on the maximum arc lengths, number of nodes, and number of arcs.

Each of these items has a direct or indirect influence on the two main com-
putational tasks. More specifically, the maximum arc length directly affects
the sparseness of the k array (as measured by t/(SZ,max + 1) where t equals the
number of nonzero entries in k). As the sparseness of k increases, more
elements of k must be examined at each iteration to find the new minimum.

The number of nodes and the number of arcs in the network both indirectly
affect the sparseness of k since these parameters influence the number of
nodes with temporary node potentials. Additionally, these parameters affect
the number of nodes whose node potentials decrease from iteration to iteration
and thus require relocation in the two-way linked lists.

Another limitation of this implementation stems from its computer memory
requirements. In particular, the k array is of size lmax + 1 which can be
prohibitive for large arc lengths. Different ways of coping with these limita-
tions are discussed subsequently.

7.3 Dantzig Address Calculation Sort

One way to reduce the effort of inserting and removing nodes on the two-
way linked list is to postpone adding nodes to the list. This can be done by
observing that it is unnecessary to scan the entire forward star of the node
v when it is ass?gned a permanent node potential. In particular, only the
endpoint of a minimum lengtﬁ arc in such a forward star needs to be considered
for addition to k. This follows from the fact that all temporary node potentials

determined from node v will be greater than or equal to the node potential

37

determined for the endpoint of a minimum length arc of FS(v). We now describe
an approach designed to exploit this observation.

In order to limit the nodes considered for addition to k by selecting
a minimum length arc from FS(v), it is convenient to store the network G(N,A)
in a sorted forward star form. George Dantzig [4] was the first to suggest
this type of scheme, and thus we refer to it as the Dantzig address calculation
sort.

At first glance, the Dantzig address calculation sort appears to incur
substantial pre-processing work--a fact thatAhas apparently discouraged other
researchers from pursuing this approach. Indeed, for a}"one—shot" solution
of the shortest path problem, the effort devoted to organizing the data in a
sorted forward star form outweighs the advantages to be gained. However, it
is important to recognize that the construction of a large transporation net-
work, as must commonly be done for a large city, costs hundreds of thousands
of dollars. Further, once this data base is constructed, it is used again
and again to find shortest path trees for alternative root nodes. These
repeated applications can all be based on a single pre-processing effort.

Additionally, changes to the data base of such large transporation net-
works generally involve only a small portion of the overall configuration
(adding or deleting certain arcs, or changing the lengths of others). Thus,
minimal additional wo?k is required to amend the sorted forward star form to
accommodate the effect of such changes.

It is possible to take advantage of a network in sorted forward star form
by modifying the code S1 in the following principal way. The improving nodes
of the forward star of each node in NT are sequentially added to the two-way
linked list (the two-way linked list is actually replaced by a one-way linked

list in this implementation) as the previous node of NT is removed. Thus,

38

the one-way linked list contains at most as many nodes as nodes in NT'

Additionally, each time a node n, is added to the one-way linked list,
the predecessor of n, at the time it is added (i.e., the forward star node
which put node n, on the list) is paired with n, and added to the list.

That is, each item on the one-way linked list is a pair which consists of a
node and its predecessor. This has several advantages. First, it allows a
node to appear more than once on the one-way linked list and thus eliminates
the need to move nodes when their temporary node potentials are decreased.
This, in turn, postpones the removal of a duplicate node from the one-way
linked list until the temporary node potential imputed to this node by its
paired predecessor is a minimum. This correspondingly postpones the scan of
this predecessor to identify its next improving node as long as possible.

The algorithm basically operates in the manner previously described for
S1 except that: (1) The two-way linked list is replaced by a one-way linked
list. (2) The forward star of each node v in NT is scanned until an improving
node u is found, whereupon u is placed on the linked list with its predecessor
v, and p(v) is set to v and d(v) is set to d(p(v)) + 2(p(v),v). (Node p(v)
is not scanned again until the ordered pair (v,p(v)) is removed from the linked
list.) (3) k is sequentially searched for the next minimum as before.

It should be noted in this implementation, however, that the next nonzero
element of k may not point to the next minimum, as was the case for S1. Thus
when a node v is removed from the linked list% it is discarded if its paired
predecessor differs from its current predecessor in array p, since this implies
that v has already been assigned a permanent node potential. In any event,
the predecessor paired with v is scanned for its next improving node. If an
improving node is found, i; is added to the linked list in the manner already

described.

39

In the case that v's paired predecessor is equal to its current predecessor
p(v), then v's temporary node potential is a minimum and v is assigned a perma-
nent potential and added to NT' Further, node v is scanned as described in
step 2. Code S2 embodies this implementation. A precise description of the
implementation is given by the listing of the code in the appendix.

The advantages of this implementation are: (1) the algorithm can be
terminated when all nodes are permanently labeled; (2) a node is never moved
on the linked list when its node potential is improved; and (3) the postpone-
ment of adding temporary node potentials to k deeps less information on d and
potentially avoids adding dominated values to k.

Because of (1) it is not necessary for k to be empty; consequently, even
when all nodes are reachable from the root, it is nof necessary to examine
each arc once. The strategy of (2) could have been applied in the Dial
implementation, but is not, because in the Dial implementation if a node is
duplicated on the linked list, the number of nodes on the linked list could
be as large as the number 6f arcs. This is normally prohibitive because of
computer memory space. However, in the S2 implementation, the number of nodes
on the linked list will never exceed the number of nodes in the problem since
there is at most one node on the linked list for each node in NT'

The computational results in Tables I and II reflect these advantages. The
results in Table II indicate that the code S2 strictly dominates code S1 on pro-
blems with 10,000 or more arcs (i.e., problems with an average of 10 or more arcs
per node). A thorough analysis of these results indicates that this dominance
results primarily from advantage (1) above. Namely, on problems with 10 or
more arcs per nod;, S2 examines only a subset of the arcs before stopping.

This indicates that the superiority of code S2 should become more pronounced

on denser problems. In addition, the results in Table II indicate that code S2

40

is the fastest code for problems with 10,000 or more arcs in the 1-200 arc
length range and for problems with 15,000 or more arcs in the 1-10,000 arc
length range.

The results in Table I, however, indicate that code S2 is inferior to
code S1 for grid problems. This is due to the fact that code S2 has to
examine almost every arc on these sparse problems. Dantzig in [4] suggests
pre-ordering the arc lengths inreach forward star before solving the problem.
Thus, we called the above code the Dantzig address calculation sort. Next
we briefly discuss a number of our attempts to improve this method.

7.4 Improvements to the Dantzig Address Calculatijon Sort

Recall that code S2 keeps at most one entry on k for each node with a
permanent ﬁode potential. Thus for problems with 1000 nodes and with arcs
in the 1-10,000 arc length range, k is very sparse. As a result, a lot of
time is spent searching for the next nonzero entry of k.

In an effort to reduce this search time, we tried two different imple-
mentation strategies. The first was simply to bartition k into segments of
equal length and to keep counters of the number of nonzero entries in each
segment. This was done for segment sizes of 16, 32, 64, 128, and 256. The
algorithm then examined the counters to determine if any of their associated
elements contained a nonzero entry. If not, all the elements of the segment
could be skipped without being submitted to examination. The results of this
testing are not shown in Table II because this procedure did not improve
solution times.

This testing did disclose an interesting piece of information, however.
Namely, the tests indicated that the nonzero entries of k are approximately
uniformly distributed in R. (Note this is probably due to the fact that the

arc lengths were generated using a uniformly distributed probability distribution.

41

Thus, the above results may not hold for problems whose arc lengths do not
satisfy this property.) Due to the sparseness of k, this implies that each
counter value is small and thus each segment of k contains very few nonzero
entries.

To take advantage of this finding, we aggregated the segments of k.

That is, rather than chaining together nodes with the same temporary node
potentials, we chained together all nodes in each segment. We then linearly
sorted the elemenﬁs of a segment at the point at which it was selected for
examination. This type of sort is called a single radix sort [19] and the
radix r is the size of each segment. Code $3 is a modification of code S2
and uses a single radix sort.

The results in Tables I and II indicate that code S3 dramatically dominates
codes S1 and S2 on grid problems. Further, code S3, in contrast to codes S1
and S2, is very stable as rectangularity varies. Similarly, the results in
Table II indicate that code S3 strictly dominates code S1 and dominates code
S2 on the sparser random networks. As density reaches 20 arcs per node,
code S2 dominates code S3.

Besides its computational improvement, the single radix sort has an addi-
tiénal‘advantage: It requires less computer memory. The size of the k array
is reduced from (Rmax + 1) to (Emax + 1)/r.

However, betfer computational bounds (based on worst case analysis) are
available for balanced and unbalanced binary sort procedures [16,19] than for
the single radix sort procedure. Consequently, we developed a code, S4,
based on the Dantzig approach using an unbalanced binary sort to test whether
the better theoretical worst case bounds might supply a practical advantage.
Tables I and II indicate that S4 is slower than S1 and S2. We did not use

a balanced binary sort, which has a still better bound (i.e., logarithmic

42

bound) than the unbalanced binary sort, because the Gilsinn and Witzgall study
[9]) as well as other unpublished studies found the Dijkstra algorithm using a
balanced binary sort to be slower than code S1.

Without going into great detail, an unbalanced binary sort works by keeping
a binary tree of numbers (nodes) with a root number (node). A number is added
to the list by comparing the number with the root. If the number is smaller,
it is moved downward to the left and compared next with the number in that
position. If the number is larger, it is moved downward to the right and
compared next with the number in that position. This type of comparison and
movement continues until the bottom of the tree is reached along some path.
At this point, the number is hung to the left if it is smaller than the last
tree number to which it was compared. Otherwise, it is hung to the right.
The minimum is always the left-mo;t node in the tree. fhe treé is
called an unbalanced binary tree because the &epth of the bottom nodes invthe

binary tree may vary greatly.

8.0 EVALUATION SUMMARY

8.1 Solution Times

The results in Tables I and II indicate that the code S1 previously
believed to be the fastest code for calculating the shortest path from one to
all other nodes in a network is dominated by codes C2, S2, and S3. Further,
the study shows that the most efficient solution procedure depends on the
topology of the network and the range of the arc length coefficients. On grid
networks and sparse random networks code C2 is the fastest. In fact, this ccde
is sometimes an order of magnitude faster than S1. As density increases, code
82 dominates C2. This dominance depends both on density and the range of the

arc length coefficients. For example, for a problem whose arc lengths are in

43

the 1-200 range, code S2 dominates C2 when the average number of arcs per node
exceeds 10; however, for a problem whose arc lengths are in the 1-10,000 range,
code S2 does not dominate C2 until the average number of arcs per node exceeds
15.

8.2 Memory Requirements

Table III contains the computer array requirements of each code. Code C2
not only computationally dominates the other codes on grid and sparse network
problems, but also dominates them in terms of computer memory requirements.
Table II indicates the paradox involved in using the label-setting codes to
solve large shortest path problems. In particular, code S2 is the fastest of
all the codes (including C2) on dense problems but requires substantial computer
memory which often would prohibit using it to solve such problems.

8.3 Limitations

This study has examined the efficiency of algorithms when all problem data
is kept in fast access main computer memory. It is exceedingly important to the
realm of ultra large-scale applications, which are arising with increasing
frequency, to similarly examine design principles for efficient computer codes
and to determine the best algorithmic rules for the situation in which problem
data is exchanged between main computer memory and peripheral storage.

The creation and testing of methods with ultra large-scale capabilities
to identify the precise trade-offs of mathematical and computational considera-
tions in an environment where data must be allocated and transferred between
different types of memory will require substantial research. It is our belief,
based on the present study, that the best implementation principles to emerge
from such research will be based on the design of code S3. This belief may

seem paradoxical since code S3 is clearly dominated by other codes. The belief

44

largely rests on the fact that the use of peripheral storage will make it
impractical to randomly access arc data. All other codes require random
access of arc data. Further, if random access is not used then we feel that
updating the node potentials in the manner accomplished in code C3 will

prove extremely valuable.

Table III

COMPUTER ARRAY SPACE

Node
Node Arc Length
Code Length Length Logical Other
Cl 4 2 1
Cc2 4 2 1
C3 6 2
C4 7 2 1
Cc5 7 2 1
Ss1 5 2 1 1 (2 + 1)
max
S2 6 2
S3 6 2 112 + 1
max
r
S4 10 2

Where r is the size of the radix.

45

Acknowledgments

This paper has greatly benefited from discussion with leading researchers.
In particular, we wish to thank Dr. Ellis Johnson for pointing out a number of
potential advances of the Dantzig algorithm. Further, we wish to acknowledge
the apt comments and direct assistance of Professor Uwe Pape in developing
code S2. The assistance of Fernando Palacios-Gomez in developing the Dantzig
binary sort code S4 is sincerely acknbwledged.

The authors also wish to acknowledge the cooperation of the staff at The
University of Texas Computation Center and the editorial assistance of Dr. John

Hultz.

10.

11.

12.

13.

14.

15.

46

REFERENCES

R. Barr, F. Glover, and D. Klingman, "Enhancements of Spanning Tree
Labeling Procedures for Network Optimization," Research Report CCS 262,
Center for Cybernetic Studies, University of Texas at Austin, 1976.

G. Bradley, G. Brown, and G. Graves, "Design and Implementation of Large
Scale Primal Transshipment Algorithms," Technical Report NPS55BZBW76091,
Naval Postgraduate School, Monterey, California, 1976.

A. Charnes, F. Glover, D. Karney, D. Klingman, and J. Stutz, "Past, Present,
and Future of Development, Computational Efficiency, and Practical Use of
Large-Scale Transportation and Transshipment Computer Codes," Computers

and 0.R., 2 (1975).

D. Dantzig, Linear Programming and Extensions, Princeton University Press,
Princeton, New Jersey, 1963.

J. Dennis, "A High-Speed Computer Technique for the Transportation Problem,"
JACM, 8 (1958), 132-153.

R. Dial, "Algorithm 360 Shortest Path Forest with Topological Ordering,"
Communications of the ACM, 12 (1969), 632-633.

E. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Numerical
Mathematics, 1 (1959), 269-271.

S. Dreyfus, "An Appraisal of Some Shortest-Path Algorithms," Operations
Research, 17 (1969), 395-412.

J. Gilsinn and C. Witzgall, "A Performance Comparison of Labeling
Algorithms for Calculating Shortest Path Trees," NBS Technical Note 772,

U.S. Department of Commerce, 1973.

F. Glover, D. Karney, and D. Klingman, "Implementation and Computational
Study on Start Procedures and Basis Change Criteria for a Primal Network
Code," Networks, 4 (1974), 191-212.

F. Glover, D. Karney, D. Klingman, & A. Napier, "A Computational Study on
Start Procedures Basis Change Criteria, and Solution Algorithms for Trans-
portation Problems," Management Science, 20 (1974), 793-813.

F. Glover, D. Klingman, and J. Stutz, "The Augmented Threaded Index Method
for Network Optimization," INFOR, 12 (1974), 293-298.

B. Golden, "Shortest Path Algorithms: A Comparison," Research Report
OR 044-75, Massachusetts Institute of Technology, 1975.

R. Helgason, ‘J. Kennington, and H. Lall, "Primal Simplex Network Codes:
State-of-the-Art Implementation Technology," Technical Report IEOR 76014,
Department of Industrial Engineering and Operations Research, Southern
Methodist University, Dallas, Texas, 1976.

T. Hu, "Revised Matrix Algorithms for Shortest Paths," SIAM Journal of
Applied Mathematics, 15 (1967), 207-218.

16.

17.

18.

19.

20.

21.

22.

23.

24.

47

E. Johnson, "On Shortest Paths and Sorting," Proceedings of the ACM
25th Annual Conference, (1972), 510-517.

D. Karney and D. Klingman, "Implementation and Computational Study on
an In-Core Out-of-Core Primal Network Code," Operations Research,
24 (1976).

D. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms,
Addison-Wesley, Reading, Mass., 1973.

D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching,
Addison-Wesley, Reading, Mass., 1973.

E. Moore, "The Shortest Path Through a Maze," Proceedings of the Inter-
national Symposium on the Theory of Switching, 1957.

J. Mulvey, "Column Weighting Factors and Other Enhancements to the Aug-
mented Threaded Index Method for Network Optimization," Joint ORSA/TIMS
Conference, San Juan, Puerto Rico, (1974).

U. Pape, "Implementation and Efficiency of Moore-Algorithms for the
Shortest Route Problem," Mathematical Programming, 7 (1974), 212-222.

D.W. Robinson, "Analysis of a Shortest Path Algorithm for Transportation
Applications," Control Analysis Corporation, Technical Report, March 1976.

V. Srinivasan and G. Thompson, "Accelerated Algorithms for Labeling and
Relabeling of Trees with Applications for Distribution Problems," JACM,
19 (1972), 712-726.

48

APPENDIX

49
SuttruUi live De

Sc Fluws itk Sruritol Palng T4 ALL mUVES rrUM InkE KUCT kK

Fukh Irc soleunn Lerlvew bY bk WRRAYS &y vy AND L. Il RETUKMKS
Ihe SHURKTEST Falit denbbk Ll Tne ARBAYS P ANU U,

ALL VvaxlApoLLS s#rE 1YFe L1hibkbEr,

DEF Ll blure U vanlaAacLeS
VvAarRLADLE LE s i IF

VR L ARKAY MEANLIRG

NULE NUMmoer UF wubES LN The METvURR

LivaA MAxIruv ARC Lewuoln FLUS Uit

Intbdn PUSTITLIve CUNSTANT GREATER THAN ANY
PAIM (lecey +LlankInliy)

K ik RULT wlut

N NUs. GF ARLS LIST ur 1u=n0ubkS FUOR THE ARCS IN Tht
NETwuKA Ly URJEX BY FRUM NUDE

L Nue UF ARLS ARC LENGINS FUR THE ARCS 1 N

. nNUUE + 1 calsY PULNTS Twlu iHeE N Al L L1ISTS

(o UL PrbutCESSURS ur Ine NUCES 1w THE
SrmutiesT P&IH TkEE

U subc LErolr ur FAln FrRUM RGO (PUTENTIAL)

LAaShvE roretl ARRAY Fur SAVIMNG ARKAY A

N wulb/ b+ SULLESSUR ARKAY Fuk Suwx] AND Fktht LILIST
civlnrito

K LMAK PUlwiek TU #1IxST ENTRY UF Sukl LISTS

| Luvb+l vOueS Tu e SCANACD

r anuite + 1 PrevtLEdSSurS ur Tre wuveS In T whEN
MUt #AS ARDUEU TU Suxl LISI

ir=et HeAw Ub FRee STURAGE LIS

el wUMgt R ur SUUES Lmhbclbd

L ' Nex b oourl LISE fu br crasitneED

ErlrY PULWITS

S2 RAS Tou EndrY PULwES
S U3l mne rnbrtnbu U In TEE FLIRST CALL ANRND
52 MUDT ot JSEL In ALL SuocSciiutwn] CALLS

CcCOoOoOCcCOoOO0OOcO OO0 OO0 OO CoONOOC OO0
b 54

CUimalw oo LmAX, Lk I, LEREE
Cuvimuime v 12v)t devv)pud Twl),PC 1ol)ea(1e1),
1 SO 1wl D21)enl e54) 10 1al), i60avel fel)
inTeuer Cl|tbyY,A,L?,[,AUX,HISIV’KI[I"A"U,[":_!‘!"X'I‘“Ef‘,h
C EwinY Fur sl LALLS AP Ten e FLIr3H
C KeSlunte A pxrminy Frum JASAVE
suberziobetl
IVER R S RNV
{x “lL)=1ladkvc Ll
GL tu IS .
C eI XY Poulatl rux Findl CALL
EivikY Sew

C Suil bRLS Fuk CAUH wtue BY IACReASIat ARU Loivblh
C Sdbhl uses A SrbLL Surd alie LaTervALS o Enu 1
Lu (7 1=1, 0k
fl=aci) ‘
Ie=nl(l+1)
N e

Irticu=1J ~o,0u,05

&b

o
J

/o
&5
[

be

75

[eEeRe

I

[VN o

AlL)=w

LU

(N

/1

iECrnebe a1 5) LU

v
LU
1y

=1
U
=4

835

NtySviit =1
lvrk=lutil

v

RALu=d

(239

J=1

U g N

ARERALU=LU
JanvZiwld)
JL=L ()
Goob(A)) vu 11U
wlRRL)ZH AR
Likniv)=Linrn)
rERLUSARK
FASAR=]{s
Ir(An, bt o11) Go
RURA L W) S U

Link]oul=du

Cuwiilaut
IF{in.twal) wuU

ir

Ly
Gu

(JdL.

=1
T

/9

lu 7&

hu o2

U o4

(ig=1)==1.(Lec=1)
Cleivi v

<.
T

ETSE0] A - FTAUI RN it N |

vu 7o [=1, .duer
Indavetl)=za(1)
Cuwiluc

1
St
St
L

b

L LALLZLE vadt A
I oouuriedl]
I Uk Fett
Linrnex

LU 1 us=il,npb
viu) =1k 1w

nrld)=a

Stuj=zu+tl

Ful=a
Plul=o

Cuni Ll
lrebe =t
Stivuub+l)=.
vu 2 LT 1L uiA

nl)=w

Cut.t it

SikK
re
Lc
L=

boapbunryfbe

V=g
1

Labl %uul

vi)=an
T o I |

=

Lo

Sci

LAl

"
lu

S50

nbbut

AVE AXKC wvAala ol RY PULMT

w1 Tn

FLlAL onutribs !l ULS|
Cuanl Live

1r

Y.

SRR

1A

bl

1ol Ri.LES TU
Sltukabt L1ST
AIKRAYS

viSTANLE ZEtku

Ae.Ct

obe

50

BHEKAY A I

ITwr it 1y
I o

(LActkL)

Latrctcouw

lAasAavE

A SCAI

FUK

nUve U

A PrEDELESOUR NUDL

39

[Pl =~ o]
<

NN el e

o o

o

55

S4a

51

ok b=aobl+i
Ir(noselecueillb) Lu 10 1S
t=n{u)
Lrein fF ALL ArLS UUIT UF U HAVE tietw SCARNED
lF(btetbwen) it TU HE
ot v bEwUAL U THE Tu=wdDE Any UPLATE PUINTER A(U)
w=iv ()
Irosblen) LU 1L 59
LS 18 ine LASE Are UUT LF U
Alu)=¢
GU Tu de
a(ulzteti
feo 1o drit dew wlSTAnLE TU w FROM U VIA The ARC (Len)
les=L(t)+utuy
Creln Lk ARC 1S JWPRUVIRG. LF MUY GET wEXT AKC QUL uF U.
IrP(uiw) Lo lES) LU U 12
LGetl JTes “ubilmAak)
Y=ileo=-Lev
tFlY,LbebraX) LU TG 1w
YSY=LwaX
LU U 9
AC LUy) 10 an IwPrUviob ARC s1l6 KEUUlEDU SHUFITEST vIstaAnCe
TES anty Y = Jeds wUlulbLmax)
PUL 1ALo axC bt FIRST Frbo LULATLIUN Aib AUD Tu BEGLLIWNNING UF
LIST Y Aanu UrUslE PREUVELESSUR sab LLISEANCE
A=RLY)
I=zirket
tFree=5(1)
S(l)=x
1{1)=x
rH(L)=y
nlY)=l
cle)=ieo
Fl)=u
e
ENL Ur SUAM Ur mbnbLY LABELED HLULE

Lol neXT o rrC Uul ur PrREUVELCESSuUR wULE
u=fu
E=a(u)
CreCK LF ALL arC3 UUL UF U HAVE BEbtow SCAWNED
irltobued) Lo U B2
St v mdbAL 1S ink TU=aUlk AfNY UPualE rPULWIEK A(U)
» Sl)
P Chaolei) bu lTu 9%
Fnls I inkE CasT axt uul UF U
a{u)=a
Lu 1Y 54
alulzeri .
ted 1o Iric b UISTANLE Ju w FRUS U VviA Trb AC (U,w)
leS=L) +uiu)
Lricur e Axl 1S 1wPRUVING. IF wul bel nEXT AKC Gul oF U.
Irtbiadateales) su 1y s
Gel JTES ruwitiinx)
Y=loeS=Ley
IrtY b LX) Gu tyu So
YZY=Lmak
Ly Tu 5y
AR (Ur) 1o A LePruvinG Al wlin KReuultuyu SHUKRIEST LISTAaKCE
les Aai Y 2 oo cuultrnaa)

50

N e RVAN N e

(V3

-0

(g I op]

15

Pul 1l arl L

X=K(Y)
I1=lkFrEL
irKee=5(4)
o(ll)=x
1{l)z=n
nil)=u
K{ryJl=|]
Ulvwil)=iko
Fla)=U

I Rt

Firol
LISH Y 4AnU ukFURIEL FPREUELESOUK

22

Frtt Lutallun AU ALQU Tu BELInnlNG UF

Aw ULISlance

By UF SCA UF PREOECESSUR wlut

Cun L ade
Gel dexl wuwve lu
=ndiL)
IF(lentev) GU
L=Lt]
lr (.t osbLinAaK)

3t SCANMLU uF

lu 14

LU

hu

15

Four LLIST

tAall 1P wU LePRUVLING ARLS FUunL Ui THIS PASS UF LI1ISTS
tolu 1S
#a55 LE LLISTS

tr b tvay) b
Sci Ur Fux rnexl

Mk S

tev=aLbvtLmAX

L=1

Gu tu 13

Kewuve ArC (1), T(1)) Fur L1331 £ Anb ®eETuwxi LUCALTLIUN 1 Tu FRtE

List
n(L)=ot1)
StUl)=1krEr
Itreo=
uzi(l)
lu=n(i)

IF oruxileof wviStasicoc

SCAN UNLY IhE PrEUVELEIDUKR

lritflusca.r(u))
LU L 58

Lunil frdc

Re fUuk

Lwb

LY

TAY rErCi

fu 5

Yuuk

DELREASED (AnU PREULECESSUR ChHANLED),

OoCocoOCcCCc oo o000 O0O0 6

oo

1w
C

C

oo

1cy

[aNe!

53

outikuu b itk L2
Ce FLnus lrc snurteS) =alhnds U ALL wlUUES FrUm Tht KUUT K
FUR 1HE RE TwlURK DEFLIAEL Y inbk AMRAYS Ay ny AND L.
11l REIURMS dne Srurted! FALIN Thkkr Liv THE ARFAYS F AN Ve
ALL varlapLes I Ce Art 1YPE IniELEN,
pbrFLiniTIuN UF VARIAGLLES

VAKIABbLE LesGin IF

NAME BN ORRKAY MEANLNG

nNULDE NUMPBpER UF NCues Ian THE ReETwWORK

K tHE KUl wdbe

LieF PUSTITLIvVE CUnSTANT LREATENR TRAN ALY
PaTh Leswbln (lece +1InFLE1TY)

be hue. UF ARLS List ur tL=nUueES Cr Tht ARLS 1w THE
wETHORR [0 URLER BY FrRUM NULE

L e UF AKLOS ARL LEsbihS FGR Tk ARCS 1w W

A mUvE+l : EivisY rulhis lalu iv AL L

ACL) PULInNTS TU Tre Flnsl AxC wUL UF
NULE 1 FUR 1Z1rédreeerivubt
Alrtl) 1S 1 PLUS ThE Wuwotr OF AKCS

15 fULE PREvELESSUKRS GF Tre iwuubd> 1IN The SHURTEST
Pailrm Tkto
null LErG TS ur Tht Shauklesi PAITHD
LL ULt GUELE Uur s~uleS TU ot SLAnnED

COmmun wuvt e 1evivi), Ll 1evie), Al 1) ,00 121),C0LC Tl)
CurMmuUun P 11), 1or
infeGeik LeAsLL,P K

IiTlabtlzAal Lo
DU lve 1=1,uisbc
SEl GlISthawmChEs 10 LirInNLITY, CLbAax PreleCESSURS AMD vutut
pll)=4nt -
PUL)=v
CL(l)=v
St b wisidatht UF KUUT TU LERU
Uik) =S
SLi wububt 1w CunwTalm unbLY FRULT X
CLir)=1nr
I=w
wl=r

MALK tuut UF ALGURLI P

SLaw are o mrly wul o ub owier L= erlO A(L) TU ACLI+1)-1
IAzAatitrl)~1
to=ul)
lnl=sa(y)
I (lAlebladp) ou Tu £vl
LU Zdvv Ix=iAal, LA
“=nliK) :
CurPUIlE Diotanlt Tu nUUE A uSline AKE (1,K)
noT L+l L)
CrnbLrh rUuK UEULKEADE L SuRITESTE wistANCE
IF WUl Lerruvicb, LE ABEXT wmixg
I (A ot (n)) LGu 1Uu cvw
EUntase ur arorieSE dLlSTanLES w1l ARC (L, nd

L

C

C

C -

C

C

C

C

c

C

[N e

14y

lb(!

fn?

2vl

54

UFUATE PrRELUELELSSULR AU S0URIEST ULbTAN

rin)=1
vpin)=no

CHECK wNutbUbk SHAluS Ur ~ube K
I (CLn)) levslburavo
mLbe R hRAD bEVeEr cobke 3LANNED
AUL wuUbE K 14U EBErD b o WUBUE AP lbEr MUULE

LLlivl)=
ARE wout
mEEn

K

(4

l\’]

K RE& By UF wUEUE Nt Awu FLAG AS thi UF

crin)=int
Lu 11U v

Al A HAd ALKEAUY bbby SUANMEL

AU NUUE A Tu otulwnlas ub wuoub Judl
cL(n)=Ler (L)

CL(ll=n
ue KO Io

1

U wurc e

Cumi beut

Ged weaAld
Ice=Cr ¢

FiLao wdut
te(ll)=~-
1=10L
1F (1.v

cwl UF

rETUR
EvbU

dubt 1 Fur proublinist UF WlUEBUE
1)

I A5 mAvinG cbhon SCamacts

1

belurp) LU TU 1290

fe ALGURIL -

AFTEr

wubt 1

WLbbut

('tﬁﬁﬁhf:ﬁﬁﬁ(?(‘t(_)ﬁﬁﬂ(“;l‘)(‘)ﬁ(—)(",(’)ﬁﬁrﬁﬁ(‘)ﬁl‘)ﬁﬁﬁﬁ.ﬁ(‘ﬁ(‘.ﬁ(‘;‘

[l

aocCcooc oo oOoOCO0OO0O

1¢1

55

LRIV EruRn SPrUKRTEST PATP TEST FrublLE™ LENERATUK

GerekATES MUbL T IPLE brID ETWURRKRS wiilrt DPECLIFLIED UINMENSTIUNS AND
ArC LEwGIA kanet, Ealn PRUSLEr 48 FULLUnEY BY A LIS GF wNGUES
wrilrn LA tbE Udscty ad Ink wuul nlt.

FPrUBLE>D Arbt LEubkalbu Ul TAFe 2.

LiviPu (rrus slaniARy SYSTite™ Lwrul beVICE)

KECURD 1 = KAnpULY NurbeEr SEED (Floelw)

KELCURD 2 = (415)
it = yumbbr UF O RUY S LN UKLV
wiv = suvpbkn ub CuturnS Liv LRI
mMAVE = avenAte ARC Ledblin, ARKC LENGTHS wililLl tbE velwbbi

1 Aivb e*ximwAvLe

neGUT = humisbkr UFE wLLES 1 Trik RUUT NUbE LISH

reCURL % ihnd rECURL K = AuvtS LU ne IwnCLubb 1o Tk ®xUUT NULE
LisT. FhU® o« U UL wubDEeES CANn ot SPELiF v, 1F
FEwER Toan SRUGT UL d ARE BEwibroV, ikHE Inprdl LEST 13
JeRmIivATED BY BErtbErInG A ZERKU. nLub o AKE bhivbEkATCD
KenpumiLY U ComPLETE Tre LiSE UFP wkRUUY NUDES.
FurivAl 1o (19).

RECURULS 2 1rn=0 K LAN bt rEefPEalbky FUK AS ™MANY FRuUDLEMS AS UESIRKEU.
Ine LASl Prublbi IS Fubiuaty bY A BLANK ~ReCURU,

FROBLE = FuRiAl
ALL Relurud Akt wreliltw wilnm A Lloid) FURMAI

It PrROUGLe FlLe LAnN LUnRTALN MURE TRA Jie PRUBLEM, wllrln £ACH
PrUbiLg Y,

LAxU 1 CuUviialNg (e TUIAL ~udtr UF NUDES, tht wUsbeR OF KUAS
In THE orivuy Tre NUMpEs UF CULUMNS IR Tht
bixlb, Imc TulsbL NUMBER UF ARLS, Thnt AvERELE
A LENolny wUMpbK oF Gdbes 1w THc L1I3Y uF
rUUT wUUES

Ine Al CATA FrULLUSGO L SElS OF LARD {mALGES, EACH SET vesSCrIrIss
b AnRCO LWul UF A GLiveEn pUUE, I'me Seld Live IHE ARUS UUT UF
MUl by VUUE Zr eaar LD Wy Ly URLEKS {ne LAST SET 1S rubLilwtw
Y A EdLAGA xELbino,
«lindn Jrme Sttt uwb CAmru LraubeS DerFladms TiHe ARLS OUT OF A NULUE,
CAary |1 Glveyw Iro suroex ur AxCo DUl Ur Tho uvt
CARL 2 tlvedsS ihe Tu wuveS Fux ThneSc ARCS
CAxL $ Glved 1ot ARC Lo e inS.
Ll Alews Ze=xUy CLARUS € Ao 5 armp Umlliitu.
rocliunine Ine Akl valid 18 drt L1331 ur KUUT wlwe CANUDIUATES, Uit
Pen KeLuxu o ddh Tre LAS) ENTRY obELivb FULLuvbty BY A SLANA RECURU.

I Last pPRrdu=leir Iw Ihte FLLE 15 FOLLUasbU BY A SECUMND BLANK KECUKRD.

LUMMunN Llutd)y LULS LA)
KEwlnvy 2
ENIER Kapdm wusiics Steo
“ehUlieslil) Stbw
FPurtoal (F Tealss)
FNl R RS Fasar TERS = wlUeroi UF KUWS AR CULuMnS liv bhlU,

56

C AVERALGE AKL LESLI1, usser ub KULTS TU o GEwerATEU
C BLANK rEUURU tbrelaaled 1IoabPul
1< RCAU(lsime) wdipgingyivAvL iU
1o FUOxmAT(LoLY)
CALL mAFr(OLED)
C - muueS 1o iulaw wuMseER UF NUOED
NUDEDSEMAIXiv Y
C narC LS Tulal wumbbx UE CARLS
NARLSdxaUueS=c* (i)
C AaRllt PrUbLe Y noaRbtr
C gt = w13 IrnaAjler

aRIle(erion) rnUDooymepiviip NVARL piAVE UG
iF(mirobu,) S

C KLPLALE AvErAabb Losoin oY 1«40t AverALE LENGTH
C ELL ARL Lol elll FrUM 1 LU kVE
AV e xivhv
C ARl cdusiils e TUlaL sumBer LE ERCS
NARL S
C GEwERALE ARLS UUT UF wuut A) LrID PUSITLION (Mpi) obLINNING wlTH
C Llr1) Ant LUINL ALAUSS KUwD
¢ I 1S irt ube nuebes (1 1Tu waxiiw) FUR The suDe AT (Menw)
w=pNo =i
2 NAZE
AT}
C Fum wubb Lign) bhaoxAll AKCS T0 nbLLES AslVE ANU bELUY:
w1 Jd=l, 2
C SKRIP ARL 1F 10U e 19 UFr Lr1LU
JF(heLl el sU=e RoLlevdt) vu TU L
C A CUuLm S mbked Uul oF s0be (g
MAT AT
C 1lu £S5 v owz
TlHutma)=n=1)xi. -+
C. 1UESE Lo AmL LbEnbLIir stlwkEe™ 1 Aivb NAVLE
[vlsitmri=AviraxhanF ()41
1 K=Kt¢
AT
C Fur vt (ep) bRibxale 4rCs 10U wowesS Tu LbErl Aive Kibrd
PU 5 J=l,e
JF{rnatl el sure NRoulomn) LU 1L S
=AY]
LHUCwAI S L=) xR
Julost (r)=rmAavirrAnk (v)+l
5 RSK+<Z
C cRilTE LUl seentir UF o Aanlos
erRlielesrlac) wh
WARKUDT yBKRULT A
LF LR bwev) LU HTU &
C aRLlE Ui tu o aebltedS A LENGIRS ur o AkCo GwUT OF sbve 1
L snlir 1F o nuiek
‘v'hllt((l]*‘u‘) kll‘)(“)lr\:lli“ﬁ\)
anlielerie o) LLblolb () A=, 0iA)
C AuvAaNCE U s X1 wbivk
d i=1+1
C thElrk IF Luarn
IF{levlerures) GU TU D
C UvE by sEx LUl um™
NTiNT _
IF(hveblbea) wu Tu &
C muvk TU NEXAT Rus
1521
Mt]

(F U

V.

OO~

oo

(g

o O

57

LrR=$
KbaUu wbal nLDE TU bt IsCLubey 1w rUUD MUDE LLIOST
rEAu(l,lvi) R
leny bkl ATES 1ePul UF SPoulbltu wuulS LF Fevew ThHAN
MUk S kARL CireibrbEv.
Irtivretwae) Lu U b

NRUUT

FPULDE EnlorREL muST ot UlSiELIhLl Frum PrECEDLNMG KRUUT Liv LIST

IFlnkacweln) LU U /
srlle(drive) R

LRSur
NRUUT SR -]
ed LU/

Stur mblEx LroUul NUUES FHAVE otckiv ENTERED
Irivmuul stea3) LU JUu ©
GLrbERAlD MEr Al Rl KANRDUCLY .«
I=rant (v)*xwuubotl
IF (ool enuied) LU 1L Y
nULE LLobre oL MUSE o UISTLnGl FreUM PreCeolst RUUT i
IF(lebwoeir) LU TU &
ewRllTeEdZrlwe) A

L=l
vrGul=urRuoul =1
LU U b

wRIte uJdl onexl kuul o atoo
wRTg Texiriemsles LIST
fsRilolerlas) R
PRINT lews, vULEO s wARLp vy v nha Vi NRUUT
LU 19 v
Ewb)

Lis]

]

(i Co iy g

(SR ATN o B AV AP g

C,C, 00, oy O

~,

rL.C, 0 0, Cor (L0, (),

.

58

s DUM WE FoURK SHUKRIEDST FAlr leol PrUbLEs GenthaTUk

L ERATES MULTIPLE RELUUK SChuRRS wilr SPeCIFIEL LEwSlTIRES AND
wF L LERG IR KANLED . AL FRUBLEY 1S5 FULLUACu ©BY & LIST UF UOLES
~iLH CAn bE USEu AYS Irc rOul ULt

~mubbLbrmS ArRc LLErRAITCEL VI, bAFE 1.

LUl (Frui- SEaDANY SYOS TR LIwnkFul veviCe)

L LUKD 1 = RANLDUNM sdMobR Skbl (Fle.ly)
~LLURD 2 = (al»)
W= nuMeeXx OF wUDES 4 PRUDLEM, ZERC TERmINATES 1nPUT
MAN = AVERKALE wuUimpbbEkR UF ARLS LeavING BACLH wlLE, EACH
NUDE AdlLL fAVE FxUM o U 2*NAN ARCS.
AN MUST nul oo uRtAlbex THAN W/ Ze
LAVE = AVEKAGE ARC LErGlH, An{ Lbwb(rs eolbtl vt pElwtbn
1 AU Z2*LeVeE
AKUUT = sumook GF ablbedS Lis THE ruUl bubk LISI
~rCUKD 3 Ihxu RECURU K = uuto U ok Dwibtudtu 1w Ink KGUT HUDE
LisSt. FixUe: v 10 nrUCul nuoeS CAN ot SFECIFLEU. 1k
Featk ThAan ARLUT nobeS axE BntewbD, He Lwmrul LIST IS
terMlicAlED Y ERIbERInG A LERU, NUUES ARE LEwtKeIED
RAawburLY fu ClrPLEIE TrE LLIST UF axUUl ANULES.
rusal 1o (15).

~tCUXKUS 2 trirkg K Can ot rePEAToe rurR AS ManY PruUsLEmS AS ubSIKED.
toc LAST PRunLen 1S FutLiUsatu oY A olLARK ncluro,

~~xuvbem Funibal
cLbh RECURDS aARE axililow 40T A (lolS) FURMAT

ik PRUBLEr FILE Canw CunTAliv murke 1AW ONc FRUBLEM, wlirln tEACH
TRGBLEY Y,

Caxp 1 LU sltmliio TnE wUMber UF wwUDES, AVERAGE LEWGTH OF tACH
ARU, AVERALE nUvintr UF AKLS LEAviaob BEACH wuLLy
pMuMgE R U wuutd Tu ot ubku AS RUUT nNUUVED.

imE ARC OATA FuULLUNS Lo SETS ubF CARD LIMAGES, tACH Stl DboSiLrlbBiig
Tite ArCS ULl UF A LLIVEY MULE . Tre otio Glve tHE AxiS Uul ur
TUUE 1, NUDE 21 eeer vub iy v UrUbRR, THE LASY Sed 1S ruLblneD
~Y A bLAnK rclCdKu,
caTnla Tre Scl ub CArb 1mabks whBFinlive trbk ARKCS UUl UF A WOUbk,
CAku 1 sives inc nuYBER UF oARCY JUIT ur Int rUDE
CAKL ¢ tivedS et Tu wuiibEd FUur eSSt AxLS
CARU %5 bLlves tne Ax{ LEwbIing.,.
ir CAamu 1 LUl 4103 bR, LARDS ¢ AlY 3 Art ullileu,. If CAarp 1
iwllalecs wurnz TPpAN 1o ARLS, ULARUD 2 Alw 3 AKE RorbbAlepl AS
CLCEDOAKY .)
rubbliUnnlob bk Al URlA LS Tdac LiST JF xUUT AULE CANUDIDALIES, ONE
o wkeluaw w1lin ITne CAST et RY moinb FUOLLUEL Y A bDLANKR RELORD,

inE LAST Prusitoem Lo ife Fliet 15 FuLlUnby 8Y A Stlunl pLANK RECURD.

LuwlCAL LUk
glmENStuin nLES S) b i sl (Hvin),LLPIZbEG)
R S WD |

rovliok ranOL U b ockw

bCw

O -

[l]

41

C

]

L Oeo

N]

59
REAUDC, SE LY
FuReALTLE L e 1)
CALL mRanFioctb)
Elvitr nJdFobR Ul wUUESsy AVERALE wUMMEr UF ARLS PEXK AUbo, AVERAGE
ARE LEaGIH, nen wurpeErx UF rRUUTS.
Kt AU bt10'4‘1'&VH'\'L'\VE,NNUU‘
IF(n JLbEeiz) Lu TU 2o
K=
KKK
eR1ITECL) DU) wspAN, LAVE LU
GEweRAIE AU DATA
KA=o
VDU 4vi [=1y
UUr 1S A Luultat axmAYy ducr ITnal vurPld) = LirlUb. 1 AN ARL rUrM
wobk I U e J 1mAS Abntsury ool GENERATED ARMD JFALSE.
UlrsekaloSt .
vL 4l ozl
surlJi=.rALSE.
S ARAE () XANANTE .S
ARITEC(LsSee) Wb
IF dTroxe Axe wit ARLS LUT GF NebLe L, SKIF VU nGDE AND ARU LENLIH
LoibErnAl LU
1P iy Jowe 0) LU TU 4o
=iy
KASKAK+Nn
GEieERATE axy LEdasTrAS Fur THe n akUCs OUT GOF wULE |
LU Syt J=1en
NUISTHlu)ZexLbveErxAnr () +]
Cunwllnit '
U B L1
YESHmavE ()
LL 1o wead 1u wlut
tbzwry+1
IFCLLLLTaiv) L=
Cricln FUre acl LUPLLICALTLIUD
It (ouriiL)) vu 1w ¢l
purlbLil)=,.inrnurn.
Lot (L)=LL

o Luinvi Lauk
46 LUl e

aRllE Jvul 10 ~LUueS ANU LEvbLISYD Uur aAar(CS GUT UF wubk 1
ARITECY, Dev) (NLISTUJ)pu=l,en)
AxIle (i) (vl ST(J)sd=1ern)

4 Louni Lwut
Suw Furi-6i(iolD)

rolS Tulab rurmoeix LE kKxLS
KRR
FRIME Sclenen,bRKUUIpLAVE

Sl ruUr=sAT(lro,sll)

LKRZ o)
REAU ~EXT SULE Tu s tanCLUVEL 10 rLul NUoE LIS
S KREAU Sy e nR
L=
IF (e ivb e) U T Y
ZERU 1oreLeAleEYS Larul b orellrieb KCUTS IF Fihver TRAn NROGT
LLUEYS ArE Eidlonrbt U,
ebhbkalt weeps Lol xULES KANUULMLY,
I=xpar () xe +1
lrllablenlt U i 94
tdue borbkealty o esl e violioCl Frum FRECEilone wUul 1w LLIST
irlletvelbR) LU 1 Y5
aRITECYEeSYy)

60

Lk=1
sRUUTZARUG =]
C SIUP AFTEx nrull rould PAVE Hboew bBn TekED
TP (MNRULL s e) LU PL 95
93 IF(ivr sGlesn) LU U D
LU ju Y4
C ARITE IxbsiLEN Kecudsu FUR ROUT Wubk L1181
e 1=
SHRLITeEll 500 o
Lu Tu 1

wRiTe IRAlLLr ~ELUuKb FOUR FLLE
G GR1ITE(L, D) o
SHup
END

