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GENERALIZED NETWORKS: A FUNDAMENTAL COMPUTER-BASED PLANNING TOOL* 
F. GLOVER,f J. HULTZ4 D. KLINGMAN§ AND J. STUTZ§ 

This paper documents the recent emergence of generalized networks as a fundamental 
computer-based planning tool and demonstrates the power of the associated modeling and 
solution techniques when used together to solve real-world problems. 

The first sections of the paper give a non-technical account of how generalized networks 
are used to model a diversity of significant practical problems. To begin, we discuss the model 
structure of a generalized network (GN) and provide a brief survey of applications which 
have been modeled as G N problems. Next we explain a somewhat newer modeling technique 
in which generalized networks form a major, but not the only, component of the model. 

The later sections give a technical exposition of the design and analysis of computer 
solution techniques for large-scale G N problems. They contain a study of G N solution 
strategies within the framework of specializations of the primal simplex method. We identify 
an efficient solution procedure derived from an integrated system of start, pivot, and 
degeneracy rules. The resulting computer code is shown, on large problems, to be at least 50 
times more efficient than the LP system, APEX III. 
(NETWORKS; FLOWS; P R O G R A M M I N G COMPUTERS) 

1.0 Introduction 
A generalized network (GN) problem is simply a type of LP problem and can thus be solved using any 

standard LP solution technique. However, none of the current LP systems is capable of fully exploiting the 
structure of generalized network problems. With the recent development of G N computer codes, Bradley 's 
1975 prediction that G N problems "in the near future . . . could come to be regarded as a fundamental 
model" [10] is coming true. Modelers have begun to devote attention to determining if an LP model is a 
G N problem and, more importantly, to devising formulat ions in which generalized networks play the role 
of critical components. 

There are two powerful incentives for adopting a G N formulation whenever possible. The major 
advantage is the ability to solve G N problems—and by extension a variety of problems with G N 
components—with a remarkable degree of efficiency. The second motivation for using G N models is that 
they can be conceptualized graphically as well as algebraically. The pictorial presentation of a generalized 
network is a useful device for communicating mathematical models to nonscientific users and for teaching 
others how to formulate problems. 

The purpose of this paper is to document the recent emergence of generalized networks as a fundamental 
computer-based planning tool and to demonstrate the power of the associated modeling and solution 
technologies when used in concert to solve real-world applications. The paper contains a nontechnical 
account of how generalized networks are used to model a diversity of significant practical problems. Using 
a graphical representation, we first define the model structure of a generalized network. Next we provide a 
brief survey of applications which have been modeled as G N problems. We then explain somewhat newer 
modeling techniques in which generalized networks form a major, but not the only, component of the 
model. This modeling approach yields a formulation that enables one to solve the problem as a sequence of 
G N problems resulting in dramatic gains in efficiency over alternative approaches. To provide an 
understanding of this approach and the role of generalized networks within it, we describe a real-world 
problem which has been solved by its use. 

The paper also gives a technical exposition of the design and analysis of computer solution techniques for 
large-scale G N problems. It contains an indepth computational study of G N solution strategies within the 
framework of specializations of the primal simplex method. Here we identify an efficient solution procedure 
derived from an integrated system of start, pivot, and degeneracy rules. The resulting method is shown, on 
large problems, to be at least 50 times more efficient than the sophisticated state-of-the-art LP system, 
APEX-III. In others words, the method can solve a problem every week for a year and consume the same 
amount of computer time required to solve the problem only once with the LP system. The memory 
requirements of the method, as well as the solution times, are sufficiently small to warrant its use as a 
computer-based planning tool not only in a batch processing environment, but also in an interactive setting. 
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2.0 Problem Definition 
The generalized network problem represents a large class of LP problems. This 

class includes any LP problem whose coefficient matrix, ignoring simple upper bound 
constraints, contains at most two nonzero entries in each column. A large portion of 
the literature on LP problems has been devoted to the special cases of the G N 
problem in which the nonzero elements of a column consist of a 1 and a — 1 (either 
initially or by linear transformation). This condition identifies the problem as a pure 
network, whose instances include shortest path, maximum flow, assignment, trans-
portation, and transshipment problems. The GN problem, by allowing other nonzero 
doubletons (and singletons) in a column, is actually the broadest classification of 
linear network related problems. Practical settings in which G N problems arise 
include problems of resource allocation, production, distribution, scheduling, capital 
budgeting, and so on. 

A generalized network, like a pure network, is best represented as a directed graph. 
Under the assumed existence of a finite optimum, it is possible to transform the 
coefficient matrix (by scaling or by complementing a variable relative to its upper 
bound), so that if a column has two nonzero entries, at least one of these is — 1. In 
this way, a directed arc is " formed" that leads from the node associated with the — 1 
to the node associated with the other nonzero entry. If both entries are - 1. the arc 
may be directed either way. Columns with single nonzero entries give rise to arcs 
incident on only one node. 

There is an important distinction between arcs in pure network problems and arcs 
in G N problems. In generalized networks, each arc's multiplier is the nonzero 
coefficient associated with the node at the head of the arc (i.e., the node to which the 
arc is directed). In pure networks, the multiplier is always 4 1. 

Consider the following GN problem: 
Mimimize \xl2 + 5jc 1 3 4- 3 x23 4 lx24 ~ 4x32 — 9x34 

Subject to: 
- l x I 2 - l x l 3 = - 5 

1xn — \x23 — 1-X24 4 1/3*32 ~ 0 
1 / 2 X 1 3 4- \ x 2 3 — \ x 3 2 — \ x 3 4 = 0 

- 1 / 5 * 2 4 + 3 * 3 4 = 1 0 

0 < xl2 < 3, 0 < jc 1 3 < 4, 0 < x23 < 6, 
0 < x24 < 5, 0 < jc 3 2 < 3, 0 < x 3 4 < 7. 

The network associated with this problem is shown in Figure 1. As with pure network 
problems, each row of the coefficient matrix is associated with a node and each 
column with an arc. In other words, a node corresponds to a problem equation and an 

(0, i . ^ CT. / ^ (0. 

l i cC 

FIGURE 1. Generalized Network. 
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arc corresponds to a problem variable. The arc is directed from the node associated 
with the - 1 entry toward the node associated with the other non-zero entry. Likewise, 
each arc has a cost, a lower bound, and an upper bound. In Figure 1 the cost is shown 
within the square and the lower bound and upper bound respectively are shown in 
parentheses. The nonzero multiplier associated with each arc is shown in Figure 1 
within a triangle on the arc. The constant terms (right hand sides) of the problem 
equations identify supply and demand requirements attached to the corresponding 
nodes. A negative constant term identifies a supply (which by convention equals the 
absolute value of this term), a positive constant term identifies a demand, and a 0 
constant term identifies a "conservation condition" in which the amount of flow 
entering the node must be exactly matched by the amount of flow leaving the node. 

The flow passing across an arc in a generalized network problem is acted upon by 
the nonzero multiplier. It indicates that the flow entering the arc is multiplied by the 
value of the multiplier as the flow leaves the arc. Thus, the amount starting out on an 
arc will not necessarily be the amount arriving at the opposite end. For example, if 2 
units start on the arc from node 1 to node 2 in Figure 1, 4 units will arrive at node 2 
since the multiplier is 2. Likewise, 10 units starting on the arc from node 2 to node 4 
will result in - 2 units arriving at node 4 since the multiplier in this case is — 1 / 5 . It 
should be noted that the cost, lower bound, and upper bound of each arc apply only 
to the units of flow entering that arc. 

Another important feature of GN problems is that total supply may not be the 
same as total demand. In pure netwdrk problems, total supply always equals total 
demand. However, the effect of multipliers is such that total supply and total demand 
may, in fact, be entirely different. This can result in odd structural consequences, such 
as absorbing and generating cycles. (See [3], [29], [30].) 

3.0 Applications of Generalized Networks 
Generalized networks can be used to model numerous problems for which there are 

no pure network equivalents. There are essentially two ways in which the multipliers 
on the arcs of generalized networks can function. They can act simply to modify the 
amount of flow of a particular good or they can transform the flow from one type of 
good to another. In the former case generalized networks can be used to represent 
situations involving evaporation, seepage, deterioration, breeding, interest rates, sew-
age treatment, purification processes of varying efficiencies, machine efficiencies and 
structural strength design. In the latter capacity, generalized networks can model 
processes of manufacturing, production, conversions of fuel to energy, blending, crew 
scheduling, allocating manpower to job requirements, and currency exchanges. The 
following applications lend insight into the possible uses of generalized networks. 

A complete water distribution system with losses has been modeled by Bhaumik [7] 
as a generalized network problem. This model was primarily concerned with the 
movement of water through canals to various reservoirs. However, the model also had 
to consider the retention of water over several time periods. The multipliers in this 
case represented the loss due to both evaporation and seepage. 

Turner and Gilliam [16] have proposed a file reduction model which has the form 
of a generalized transportation model (a special type of GN) with a single extra 
constraint. This model was designed to facilitate the reduction of extremely large 
microdata files to smaller, statistically representative files. The objective, in this case, 
was to minimize the amount of information lost in the reduction process. The arcs 
represented paths from the original records to the reduced records. A nonzero flow on 
an arc implied that the originating record was to be represented by the terminal 
record. The multipliers on the arcs were used to insure that the reduced file was truly 
representative of all of the original records. 
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Kim [35] has utilized generalized networks to represent copper refining processes. 
The electrolytic refining procedure, in this case, was modeled by a large d-c electrical 
network. The arcs were current paths with the multipliers representing the appropriate 
resistances. In this way, Kim analyzed the effect of short circuits in the refining 
process. 

Charnes and Cooper [11] have identified applications of generalized networks for 
both plastic-limit analysis and warehouse funds-flow models. In plastic-limit analysis, 
the network was generated by forming the equations for horizontal and vertical 
equilibrium and by employing a coupling technique. The warehouse funds-flow model 
was actually a multi-time period model. The arcs were used to represent sales, 
production, and the inventory holding of both products and cash. The multipliers 
were introduced to facilitate the conversions between cash and products 

A cash management problem has been modeled as a generalized network by Crum 
[12]. This model for a multi-national firm incorporated transfer pricing, receivables 
and payables, collections, dividend payments, interest payments, royalties, and 
management fees. The arcs represented possible cash flow patterns and the multipliers 
represented costs, savings, liquidity changes, and exchange rates. 

Other applications of generalized networks include machine loading problems [11], 
[13], [43], blending problems [11], [43], the caterer problem [13], [43], and scheduling 
problems dealing with production and distribution, crew scheduling, aircraft schedul-
ing, and manpower training [11], [13], [43]. 

4.0 Integer Generalized Networks 
The uses of arc multipliers are not limited to the examples just discussed. In fact, 

upon adding the requirement of discreteness, which forces the flows on particular arcs 
to occur in integer quantities, the G N problem is capable of modeling an unexpected 
diversity of problems [11, Chapter 17]. For example, introducing discreteness into the 
GN model produces a framework for problems such as scheduling variable length 
television commercials into time slots, assigning jobs to computers in computer 
networks, scheduling payments on accounts where contractual agreements specify 
"lump sum" payments, and designing communication networks with capacity con-
straints. While these are "direct" applications, the use of special modeling principles 
enables even more complex applications to be modeled and solved as integer GN 
problems. In fact, this approach makes it possible to model any 0-1 LP problem as an 
integer GN problem [23], [27]. These procedures extend quite naturally to accomodate 
mixed integer 0-1 LP problems where the continuous part of the problem is a 
transportation, transshipment or generalized network problem itself. Reference [42] 
shows how contemporary financial capital allocation problems can be modeled as 
integer GN problems. Many other important real-world applications have a similar 
"mixed" structure, including a variety of energy models, plant location models, and 
physical distribution models. The remainder of this section briefly describes the basic 
principles of this approach and discusses a practical application which has profited by 
its use. 

Figure 2 illustrates a useful modeling devise that finds application in a variety of 
settings. The costs, bounds, and multipliers are represented in the same fashion as 
earlier. In addition, the asterisk on the arc from node 0 to node A indicates that its 
flow must be an integer amount. Consequently, in view of the upper and lower 
bounds on this arc, the only acceptable flow values are exactly 0 and 1, and the 
multiplier thus ensures that either 0 or 3 units of flow are transmitted to node A. 
Further, the only possible way to distribute 3 units of flow into node A is to send 
exactly one unit to each of the nodes 1, 2, and 3 since each of the three arcs leaving A 
has an upper bound of 1. Thus, in sum, the following effect has been achieved: when 
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the flow on the arc from node 0 to node A is 0, the flow on each of the three arcs out 
of node A is 0; when the flow on the arc from node 0 to A is 1, the flow on each of 
the three arcs out of node A is 1. 

It should be noted that multipliers may also be attached to the arcs leaving node A, 
so that their flows may be further transformed. For example, the flow on the arc from 
node 0 to node A can represent an investment decision (invest if flow = 1, do not 
invest if flow = 0), and the flows on the arcs out of A can represent components of the 
investment (e.g., particular stocks in a portfolio, tracts of land in a real estate venture, 
items of equipment in a manufacturing operation, etc.). Multipliers on the latter arcs 
would then represent the number of items of each of these investment components 
that are obtained by selecting the main investment. (For example, a particular 
equipment investment may be composed of six machines of type 1, eight machines of 
type 2, and so forth.) The combination of arc multipliers and the 0-1 integer 
restriction gives rise to what is called an integer generalized network or a 0-1 
generalized network. This modeling tool has a variety of important uses, as dem-
onstrated more concretely by the following real-world application. 
4.1 Air Force Course Scheduling 

The Air Force requires Undergraduate Flight Training (UFT) graduates to take 
advanced flight training before their first operational assignment. In addition, U F T 
graduates must take from one to four survival training courses. Since the men come 
from different backgrounds, a different course schedule is required for each. 
Furthermore, both the flight and the survival training courses are offered only at 
certain times and at various locations around the country. They are subject to 
enrollment limits and have prerequisites. A set of feasible course schedules must be 
identified for each U F T graduate and given a "cost rating." Feasibility and cost 
considerations depend on factors such as attendance requirements at Combat Crew 
Training courses, various modes of transporting the students to the course locations, 
the number of dead days in the pipeline, the opportunity for the U F T graduates to 
take leave as desired, etc. 

The objective is to select a particular course schedule for each U F T graduate so 
that the complete set of schedules selected will satisfy all class enrollment limits and 
result in the smallest total cost. To solve this problem, the personnel manager in the 
Training Pipeline Management Division previously assigned each graduate to a 
feasible schedule by hand, trying to assure that all enrollment limits were satisfied. 
Clearly, this was a difficult and time-consuming task to do by hand; further, the total 
cost of training these men was probably far from optimal when the assignments were 
made manually. 

In search of a better approach, the Air Force developed an integer programming 
formulation for this problem. However, the IP formulation turned out to be almost 
totally resistant to solution. Consequently, we reformulated this integer programming 
problem as a 0-1 GN problem which is shown in Figure 3. 

FIGURE 2. Generalized Network with Integer Flow Restrictions. 
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The elements of this diagram may be explained as follows. The node represents 
the /th man and has a supply of exactly 1. Each man node is connected by arcs to its 
set of man/schedule nodes. These connecting man/schedule arcs have a multiplier ar 

equal to the number of classes in the schedule and a cost cr equal to the cost of 
assigning man i to his yth schedule. The asterisk again indicates that flow must be 
integer-valued. 

The arcs emanating from a man/schedule node in Figure 3 lead to the individual 
classes making up the schedule. Each of these arcs has an upper bound of one. Thus, 
if a particular schedule is "selected;' then every class in the schedule is also 
automatically selected. The objective is to pick a schedule for each man that will 
minimize the value of the assignments on the overall program, subject to the upper 
and lower attendance limits for each class, expressed as bounds on the arcs from class 
nodes to the sink node of Figure 3. All arc costs, except for those attached to the 
man/schedule arcs, are thus equal to 0. 

The U F T problem typically involves 120 men, 200 classes, and 460 schedules, 
resulting in a 0-1 LP formulation with 520 constraints and 460 0-1 variables. The 0-1 
GN formulation involves the same number of 0-1 variables, and introduces an 
additional 2,200 continuous variables (arcs) and 780 nodes. Viewed from an LP 
problem context, this might seem to represent a fair increase in size. However, it 

Man/Schedule Class 

FIGURE 3. U F T Formulation. 
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actually represents a relatively small GN problem. This 0-1 GN problem was solved 
using a specialized branch and bound procedure with GN subproblems. The optimal 
solution was often found and verified after only 30 seconds and in some cases 
required a total solution time of only 10 seconds on a CDC 6600. The problem was 
thus transformed from one that had been extremely difficult to solve as an integer 
program to one that was solved easily as a integer GN problem. 

5.0 Motivations for Using GN models 
The two important advantages to adopting a GN formulation where appropriate 

have been outlined. Unlike LP problems, a GN can be represented in graph form. The 
ability to represent a generalized network graphically as well as algebraically facili-
tates the modeling procedure and is a useful device for communicating mathematical 
problems to nonscientific users. The major incentive for using G N models is the 
ability to solve these problems—and a variety of additional problems with GN 
components—with a remarkable degree of efficiency. 

The following sections of the paper present an abridged computational analysis of 
algorithmic rules and computer implementation procedures for GN problems. The 
unabridged version [17] may be obtained by writing the authors. Computational 
studies of pure network solution procedures have done much to advance the state-of-
the-art. Excellent testing has been performed on computer codes for transportation 
problems [18], [20], [28], [36], [39], [43] and for transshipment problems [1], [4], [5], 
[10], [19], [26], [33], [37], [41]. These studies have provided critical insights into the best 
methods for solving such problems as well as providing benchmark data for future 
solution procedures. 

To date there have been no in-depth studies concerning the much broader class of 
GN problems, although computer codes do exist for solving such problems. Code 
development has been reported by Eisemann [14], Maurras [40], Glover, Klingman, 
and Stutz [25], Bhaumik and Jensen [8], Langley [38], and Balachandran [2], among 
others. Most of these papers report findings for only certain classes of GN problems 
and all of them are limited in the scope of the computational analysis. Thus, an 
important body of empirical research has heretofore been lacking in the network 
literature. 

The code NETG reported by Glover, Klmgman, and Stutz [25] was selected to form 
the basis for the computational testing of this study. This code is an implementation 
of the extended augmented predecessor index (EAPI) procedure [18, 24], and embo-
dies many of the latest advances in solution methodology for generalized network 
problems. 

In any computer implementation, there are numerous steps that can be performed 
in alternative ways. Experience from previous studies of pure network problems has 
shown that the determination of an effective set of decision rules to handle such 
alternatives can have an enormous impact on the efficiency of the implemented 
solution method. Consequently, one of our primary objectives in this study was to 
investigate decision rules for the GN problem and establish their relative merits. We 
determined the best rules and integrated them to produce a code which has been 
tested against the highly efficient linear programming system, APEX-III. This testing 
indicates that the streamlined version of NETG solves large-scale GN problems 50 
times faster than APEX-III. 

6.0 NETG Data Structures 
Since a generalized network problem is simply a type of LP problem, it can be 

solved using any standard LP solution technique. Improvements in inversion and 
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reinversion processes, data compactification, and pivot selection strategies have pro-
vided dramatic increases in the efficiency of primal simplex computer codes in recent 
years. The structure of a generalized network problem could be detected by a primal 
simplex LP code; this information could then be used to reduce storage requirements 
and to simplify operations. Further, the inherent generalized upper bounding (GUB) 
constraints in GN problems could be exploited by those LP codes which have a GUB 
feature. However, none of the current LP systems is capable of fully exploiting the 
structure of generalized network problems. 

One of the conspicuously exploitable features of generalized network problems is 
the sparsity of the coefficient matrix (at most two non-zero entries per column), and 
current LP codes are of course designed to take advantage of sparsity to store data 
economically. When the problem is transformed to graph form, storage may be 
reduced even further. By the use of simple ordered lists to capture the graph structure, 
NETG is designed to store only the head node identifier, the cost coefficient, the 
nonzero multiplier, and the upper bound for each column of the coefficient matrix. In 
this way, problem data can often be resident in "fast access" memory for extremely 
large problems. 

Bases for generalized network problems have a special structure. With possible 
reordering of the rows and columns, the basis matrix forms a block diagonal matrix. 
Each of the blocks is either triangular or near-triangular and can be represented as a 
quasi-tree ( a tree with an additional arc). Johnson [31], [32] originally proposed a 
linked list procedure for storing simple trees and suggested its use for the more 
complex quasi-trees. The EAPI method developed by Glover, Klingman, and Stutz 
[24] provides effective labeling procedures for restructuring (updating) quasi-trees by 
reference to such lists, and is used extensively in the updating routines of NETG. 

7.0 Computational Evaluation of Solution Strategies 
The computer code NETG is coded entirely in standard FORTRAN IV. We 

avoided the use of machine dependent operations in order to ease the transistion to 
various computers. The program was initially coded, debugged, and tested, using the 
R U N compiler on a CDC 6600 computer with a maximum main memory allocation 
of 130,000 words. The complete capacitated algorithm occupied 87V + 4A + 8500 
words of central memory, where N is the number of nodes and A is the number of 
arcs in the specific problem being solved. 

Since most of the testing performed would be of a comparative nature, it was 
desirable to obtain a set of problems that met certain specifications and that could be 
made available on a repeated basis. For this reason, a generalized network problem 
generator (NETGENG) was developed. This code was a logical extension of the 
NETGEN [37] problem generator for pure network problems. All parameters in 
NETGEN were retained with the added feature that the user can specify a range of 
values from which the arc multiplier values are chosen. The problems were specifically 
chosen so that the effects of problem structure on solution time could be noted. The 
problems varied in size from 200 nodes and 1500 arcs up to 1000 nodes and 7000 arcs. 
Complete problem specifications and test results can be found in [17]. 

Earlier research with pure network problems [19], [20], [33] has established that 
certain factors play a critical role in determining solution speed. These are: start 
procedures, pivot selection techniques, degeneracy, tolerance levels, Big-M value, and 
pivot tie-breaking rules. The computational testing for GN problems involved varying 
these factors within NETG, solving generated test problems, and comparing solution 
times and pivots performed. 

The testing was performed on a CDC 6600 computer located at the University of 
Texas at Austin. In each of the comparative tests, an attempt was made to execute the 
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codes involved during comparable time periods. The codes were timed by a clock 
routine supplied by CDC, which is generally accurate to two decimal places. 
7.1 Start Procedures 

The first phase of testing involved a comparison of three different start procedures. 
All of the starts tested were based on techniques that have proved effective for pure 
network problems. The first of these was the artificial start procedure. This procedure 
attached an artificial arc to every node in the problem. The artificial arcs were then 
assigned extremely large (Big-M) cost coefficients. 

The second method tested was the sequential source minimum (SSM) procedure. 
This method made a specified number of passes, each time sequentially examining 
every node in the problem. If the node had an associated supply, flow was assigned to 
the least cost arc leading from this node to a node with positive demand (or to a node 
with zero demand if no positive demand node existed). The flow was set equal to the 
minimum of the supply, the upper bound on the arc, or the demand (if nonzero). If 
the flow on an arc was set equal to the supply or the demand, the associated node was 
eliminated from further consideration. If the process was terminated before supply 
and demand were exhausted, then artificial arcs were appended. For the purposes of 
testing, the number of passes was set to 1,2, 3, 5, and exhaustive. 

The exhaustive node supply procedure was the last start method tested. This 
method was similar to the sequential source minimum in the way it assigned flow to 
arcs. However, the procedure continued to assign flow out of a particular node until 
the supply at that node was exhausted or until no further arcs existed. At that point, 
the next node with supply was considered. Upon completion, remaining supply and 
demand were met by appending artificial arcs. 

Each of the start methods described above was tested using two distinct pivot 
selection criteria. These were the node first negative and the node most negative 
criteria. Both methods were based on examining the nonbasic arcs leading out of a 
given node. The node first negative method selected the first encountered pivot 
eligible arc for the basis exchange. The node most negative method, on the other 
hand, selected the best pivot eligible arc (in terms of the magnitude of the updated 
cost coefficient) from the arcs out of the node. All other code parameters were held 
constant in all of the start procedure tests. Regardless of pivot criteria, the exhaustive 
pass SSM procedure proved to be the best start method in terms of resulting total 
solution time. It provided a reasonable trade-off between the time spent selecting an 
initial basis and the time recovered from using a reduced number of pivots. In some 
cases the exhaustive pass SSM method reduced total pivots by as much as 61% and 
total solution time by as much as 55% over the artificial start procedure. 
7.2 Pivot Selection Criteria 

It was noted during start procedure testing that the node most negative pivot 
strategy strictly dominated the node first negative strategy. Selecting the "best" arc 
out of a single node reduced total solution time by as much as 48%. For this reason 
we conducted additional testing to try to find the best pivot selection criteria. 

Past experience has shown that pivot selection methods involving a candidate list 
can greatly decrease solution time. An S-R candidate list procedure employs an array 
of length R. The list contains the pointers to pivot eligible arcs selected by using the 
node most negative procedure R successive times. After each pivot, the best arc that is 
still pivot eligible in the list is selected to enter the basis. If there are no eligible arcs 
on the list or if the list has been used S times, the list is refilled by calling the node 
most negative procedure R more times. A number of variations of this method were 
tested. Each involved differing initial values of S and R or differing methods for 
dynamically adjusting these values. 
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Testing showed that pivot selection involving a candidate list was far superior. An 
initial list size of approximately 5-10 was the best. In addition, if the candidate list 
could not be totally filled (i.e., k candidates were found, where k < R) then setting 
R = k and S = \ k proved to be the most effective dynamic reduction method. 
7.3 Other Procedures Tested 

The initial version of NETG had no check routines for identifying a degenerate 
pivot during the calculation of a basis representation. Consequently, in the presence 
of a degenerate pivot, the method computed unnecessary representation components 
and modified flows on the basis exchange cycle by a zero amount. NETG was then 
modified to exploit degenerate pivots, skipping the flow update procedures whenever 
possible. This modification reduced the total solution time by up to 25%. 

Tolerance levels define ranges within which values are assumed to be zero. In order 
to examine the effect of tolerance values, values of 0.000001, 0.01, 0.5, and 1.0 were 
tested. Varying the tolerance levels effects pivot eligible arcs and this had extremely 
interesting effects upon solution times. The best strategy was to select a moderate 
tolerance value of 0.01. 

The final parameter value tested was the Big-M value. (NETG did not employ a 
Phase I-Phase II procedure.) Testing indicated the Big-M should be set as small as 
possible while still insuring feasibility; e.g., in one case, the total solution time was 
reduced by over 42% simply by changing the Big-M value from 10000 to 150. 

The last decision rule tested was one for resolving ties in the test for a minimum 
ratio. NETG normally selects the first encountered minimum ratio. An alternative 
rule for breaking pivot ties was tested that selected a minimum ratio with the largest 
denominator. In the majority of cases, this rule reduced the total number of pivots but 
not solution time. 

8.0 Code Comparisons 
In order to assess the efficiency of the solution procedure we compared NETG, enhanced with the newly 

determined decision rules, with the linear programming computer code APEX-III. 
APEX-III is maintained by CDC and is operational on all CDC 6600 series and CYBER-70 series 

computers. The purpose of this test was to determine the advantages that specialized procedures have over 
standard LP approaches. 

TABLE I 
NETG vs. APEX-III 

NETG APEX-III 
N U M B E R N U M B E R 

PROBLEM OF NODES OF ARCS S B U V Cost b SBU's Cost 
1 100 1000 7.51 $1.35 62.65 $ 11.28 
2 100 1000 7.29 $1.31 80.93 $ 14.57 
3 100 1000 9.70 $1.75 94.72 $ 17.05 
4 250 4000 16.65 $3.00 453.02 $ 81.54 
5 250 4000 14.74 $2.65 742.61 $133.67 
6 500 5000 22.55 $4.06 1044.34 $187.98 c 

7 1000 6000 50.22 $9.04 1633.64 $294.06 d 

a CYBER-74 System Billing Unit. 
b Computer at $0.18 per SBU. 
c Stopped after 10,000 iterations. 

Objective Function Value = 25,337,282. 
Optimal Objective Function Value = 3,354,927. 

d Stopped after 10,000 iterations. 
Objective Function Value = 1,340,958,349. 
Optimal Objective Function Value = 3,964,490. 
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The two codes were tested on seven problems generated by NETGENG. These problems ranged in size 
from a 50 origin by 50 destination generalized transportation problem to a 1000 node generalized 
transshipment problem. 

The comparison between NETG and APEX-III was performed on a CDC CYBER-74 computer, 
compiling NETG with the CDC FTN compiler. The results are documented in Table I. The basis of 
comparison for these tests was a quantity called a System Billing Unit (SBU). Each procedure incurs SBU's 
based on the amount of CPU second used, 1 / 0 operations performed, and central memory used. In this 
way, SBU's may be used to compute the total cost for a job. Cost figures have been included, based on the 
lowest CDC price per SBU, $0.18. 

The results were quite remarkable, especially when the dollar charges were compared. NETG was in 
some cases more than 50 times more efficient than APEX-III. In fact, problems 6 and 7 had to be 
prematurely terminated on APEX-III after 10,000 iterations due to the exorbi tant processing costs 
involved. Yet NETG solved both of these problems in fewer SBU's than APEX-III required to solve the 
smallest of the problems tested.1 

1 The research was partly supported by ONR Contract N00014-76-C-0383 with Decision Analysis and 
Research Institute and by Project NR047-021, ONR Contracts N00014-75-C-0616 and N00014-75-C-0569 
with the Center for Cybernetic Studies, The University of Texas. 

We are especially grateful to Michael Held, the Associate Editor, and the referees for their many helpful 
and informative suggestions for improving the clarity and readability of this paper. 
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