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ABSTRACT 

This paper is an introduction to D E A (Data Envelopment Analysis) . Basic concepts 
and different D E A models covered include the " C C R " and " B C C " ratio forms, 
which are examined in relation to each other as well as in relation to the "Ad-
dit ive" and "Extended Addit ive" forms that arc also included in this discussion. 
The models presented are accompanied by interpretations which also relate DEA to 
other disciplines such as economics and management science. Illustrative examples 
provided in this paper are intended to facilitate understanding and use of DEA in 
conjunction with, or as alternatives to, presently used methods for evaluating 
ef f ic iency and controlling the performance of nonprofit and governmental entities. 
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I. INTRODUCTION 

The three papers that follow this one provide reports on selected uses of Data 
Envelopment Analysis (DEA) in evaluating the efficiency of organizations en-
gaged in nonprofit and governmental activities as follows: (1) universities, (2) 
electric cooperatives, and (3) vehicle maintenance units in the U.S. Air Force. 
The activities in each of these examples involve multiple inputs and multiple 
outputs with, in general, no "bottom line" available to evaluate performance. 
Applications in these three papers provide examples of different uses of DEA 
which include (a) obtaining perspective on findings of a recently completed study 
of institutions of higher learning in Texas by a legislatively appointed Select 
Committee on Higher Education (SCOHE), (b) supplying guidance for the man-
agement audits of electric cooperatives required by the Texas Public Utility 
Commission (PUC), and (c) providing a new approach for estimating amounts of 
"organizational slack" which might be present in vehicle maintenance activities 
by means of a field experiment conducted with the cooperation of the Tactical 
Air Command (TAC). 

The purpose of the present paper is to provide an introduction to DEA con-
cepts and methods along with some of the models that are now available for 
implementing DEA studies. Additional help, including validation tests with ac-
companying interpretations for establishing relevance of DEA results are pro-
vided in the next three papers. A still further paper by R. D. Banker is then 
presented as an introduction to another set of three papers which involve econo-
metric applications within a DEA framework—including hypotheses tests and 
other statistical analyses. Following this introduction (by Banker) another set of 
three papers concludes this collection with examples of DEA applications to (1) 
analyzing cost variances for management control of performance in hospitals, (2) 
incorporating value judgments for use in efficiency analyses of U.S. Army 
recruiting activities, and (3) evaluating recent changes of U.S. Air Force ac-
counting and finance offices for their effects on efficiency. 

The three papers immediately following our introductory presentation com-
pare DEA with other approaches, such as unit cost or performance ratios, index 
numbers and regressions used for evaluating efficiency. The next section of this 
introduction, therefore, tries to supply background and perspective by verbally 
describing DEA and then comparing some of its properties with what can be 
expected from these other approaches. Section 111 then attempts a portrayal of 
DEA and its workings by a graphical example involving only one input and one 
output. Starting with Section IV, the models needed for actual use are introduced 
in what are called "CCR" or "CCR Ratio" forms of DEA with attention 
directed only to one type of inefficiency in the form of the waste which econo-
mists refer to as technical inefficiency. Additional kinds of DEA models are 
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introduced in subsequent sections to deal with returns-to-scale efficiencies as 
well as nondiscretionary and threshold or ceiling conditions which may need to 
be taken into account in arriving at efficiency evaluations. 

II. DEA AND ALTERNATIVE APPROACHES 

DEA involves an application of mathematical programming to observed data to 
locate frontiers which can then be used to evaluate the efficiency of each of the 
organizations responsible for the observed output and input quantities. The solid 
line shown in Figure 1 of the next section of this paper is a frontier such as might 
be derived via DEA from data on the amounts of the one input utilized and the 
one output produced by each of the five entities. 

In DEA, the entities responsible for converting inputs into outputs are referred 
to as Decision Making Units (DMUs). This usage is generic and comprehends 
the activities of many different kinds of organizations and their subdivisions. 
Examples provided in the papers that follow include individual universities, 
electric cooperatives, and Air Force vehicle maintenance units (with the latter 
operating at subdivision levels of larger entities). 

Multiple outputs and multiple inputs may be used in DEA with each being 
stated in different units of measurement. Cross-comparisons to weight or evalu-
ate the relative importance of these different inputs and outputs are not needed in 
arriving at evaluations of technical efficiency in DEA because, being wasteful, 
the related input reductions or output augmentations can be effected without 
worsening any other input or output. DEA is used (a) to locate the DMUs 
responsible for these technical inefficiencies, and (b) to identify the sources and 
amounts of inefficiency in each of its inputs and outputs.1 

Avoidance of cross-comparisons of different inputs and/or outputs is accom-
plished in DEA by suitably arranged constraints. Suppose, for instance, that a 
particular DMU is to be evaluated by reference to the performance of other 
DMUs using the same inputs and producing the same outputs. For convenience 
of reference, we designate DMUC as the DMU to be evaluated. Solution pos-
sibilities obtainable from the output and input values observed for all DMUs are 
then examined with mathematical programming methods and the resulting solu-
tions are used to evaluate the performance of DMU0 . The solutions are required 
to satisfy constraints which do not allow any of DMU0 's observed input values to 
be increased or any of its observed output values to be decreased. Mathe-
matically speaking, a properly oriented inequality constraint is imposed to assure 
that the solutions satisfy this condition for each of DMU0 's inputs and outputs. 

Inequalities rather than equations are used to allow solutions which can better 
some inputs or outputs (without worsening other inputs or outputs). To avoid 
elaborate trial and error or simulation search for such betterment possibilities, the 
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optimization machinery of mathematical programming is used to find a "best" 
solution. Geometrically interpreted, this best solution will be located on a fron-
tier from which a comparison of DMU0 's behavior can be affected. Because of 
the constraints, no input or output is worsened. If this best solution does not 
improve upon any input or output DMU 0 is rated as 100 percent efficient; 
otherwise it is rated as inefficient and a straightforward reading of the solution 
locates the sources and amounts of inefficiency in each input and output. 

Only relative efficiency evaluations are obtainable when solutions are gener-
ated from observed data in this manner.2 The solutions generated in this manner 
do not generally result in input and output values that are coincident with the 
observed behavior of any actual DMU. Nevertheless, differences between the 
solution and DMU0's observed input and output values are said to provide 
"evidence"3 of its inefficiencies because these solutions are obtained from 
observed data. 

At this point, it is useful to compare what has just been said with what is done 
in other approaches that are now in use. Ratios in the form of unit costs provide 
one example. The use of a cost-per-student ratio as one criterion for evaluating 
university performance in Table 2 of the immediately following paper is an 
example in which each university is judged relative to an average of such unit 
costs. The value of this average which is used as a criterion of performance need 
not conform to the actual unit cost of any university. 

Extensions to deal with multiple outputs and inputs, and continuation of a ratio 
analysis approach can result in arrays like the one shown for the San Patricio 
Electric in Table 1 in the second of the two articles succeeding this one. Prepared 
by the Rural Electrification Administration (REA), a total of 670 ratios and other 
averages is made available in this manner for possible use in evaluating San 
Patricio's performance. See the discussion of this Table that is given in the article 
and which, in turn, is based on a more detailed development in Thomas (1^86). 

To avoid or to complement such complex arrays, recourse might be made to 
synthesizing an "index number" as a single summary number—e.g., for use by 
the Texas Public Utility Commission in identifying candidates for "efficiency 
audits" from among the 75 electric cooperatives for which such audits have been 
legislatively mandated. Synthesis of such an index number would, however, 
require recourse to a priori weights to reflect the relative importance of its 
component costs and volumes in order to obtain a suitable efficiency measure. 
Such an effort could encounter numerous difficulties that are bypassed by DEA 
because the latter does not require such a priori weight selections in order to 
arrive at its overall efficiency values. Instead, the "weights" to be assigned to 
DMU0 are obtained automatically from the data as part of the solution to the 
mathematical programming problem used to effect DEA efficiency evaluations. 

The DEA literature uses the term "virtual transformations" for these parts of 
the mathematical programming solution in order to avoid confusion with cus-
tomary weightings. Mathematically speaking, these virtual values transform 
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DMU0 's observed outputs and inputs into a "virtual output" and a "virtual 
input" which in the form of a ratio of virtual output-to-virtual input provides a 
measure of DMU 0 's efficiency for use with the CCR or BCC ratio forms of 
DEA. This is all accomplished by the computer codes used to apply the models 
to the observations (for all DMUs). The term "virtual" distinguishes these 
derived values from actual observations and the resulting ratio of virtual output-
to-virtual input may be regarded as an extension of the usual output to input form 
used for productivity (or efficiency) indexes. Unlike the usual index number 
usage of fixed weights, however, the values assigned to these virtual transforma-
tions by the mathematical programming solutions of DEA depend on the mixes 
of outputs and inputs used by each DMU0 and, indeed, the values obtained in this 
manner are optimal in the sense of giving the best possible virtual output-to-
virtual-input value for each DMU 0 that is evaluated. 

Index numbers with fixed weights are not the only alternative. A use of 
statistical regressions represents another alternative and this approach can also 
allow for differences in mixes and volumes in arriving at efficiency evaluations 
that are applicable to different DMUs. Exhibit 1 in the second of the following 
three papers provides an example in the form of nine separate regressions calcu-
lated annually by REA and supplied to individual electric cooperatives for use in 
evaluating their performance in each of the activities covered by these regres-
sions. Calculated from data in a national sample of electric cooperatives, the 
resulting regressions are assumed to be "representative" so that estimates ob-
tained from these regressions can be used to provide unbiased estimates of 
performance in the following manner. A particular cooperative like San Patricio 
can insert its particular values for each of the independent variables listed in the 
stub of Exhibit 1, and use the regression relation to obtain an estimate of the 
value of the corresponding dependent variable. Actually, this is all done by REA 
and compiled in an arrangement like the one shown in Exhibit 2 for use by a 
cooperative (as well as the REA field office) in evaluating its performance. Help 
which is needed to interpret these results is supplied in a variety of forms 
including the heavy black dots, which are used in Exhibit 2 to flag items that 
appear to be out of line. 

Even though these dots are oriented for attention to efficiency, the regressions 
used do not make any separations between efficient and inefficient performances 
that may be present in the data base. To state this differently, the regression 
estimates are formed from observations which contain inefficient and efficient 
behavior in unknown proportions. This is in contrast to DEA where a clear 
separation of efficient and inefficient behavior is effected because the mathe-
matical programming solutions use only frontier estimates to effect efficiency 
evaluations. 

Statistical estimates need not be derived only in the form of "central tenden-
cies," as in the usual least-squares regression approaches. They can also be 
oriented toward frontiers by suitably oriented constraints as in the work by 
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Aigncr and Chu (1968). In this form, they can also be used to validate any use of 
central tendency approaches as was done by Charnes, Cooper and Sueyoshi 
(1988), for example, in their review of a study commissioned by the U.S. Justice 
Department for use in its antitrust action against AT&T.4 

Whether used to secure central tendency or frontier estimates, however, these 
regression approaches are heavily dependent on numerous assumptions that must 
be made including assumptions about causal relations between outputs and inputs 
that need to be specified explicitly.5 A change from the assumption that these 
relations are linear to an assumption of a Cobb-Douglas (or other log linear) 
form, for example, can produce very different results from the same data. See 
Dewald, Thursby and Anderson (1986) and also Lalonde (1986) on the need for 
checking regression results against alternate possibilities. 

As noted in Charnes, Cooper, Golany, Seiford and Stutz (1985), DEA does 
not require explicit specification of the functions that are supposed to relate 
outputs to inputs. There are theoretical reasons for believing that results in the 
form of characterizations of efficient and inefficient behavior will be relatively 
robust even with DEA model changes—e.g., from CCR to BCC or other forms 
(see Ahn, Charnes and Cooper, 1989; Charnes and Zlobec, 1989). However, a 
variety of different DEA models are included in later sections of this paper both 
for perspectives on DEA, and because it may be desirable to check results 
secured from one DEA model against other possibilities. 

We also need to emphasize that the orientations in DEA are toward the obser-
vations associated with individual DMUs. Thus, in contrast with customary uses 
of statistical estimates, which are oriented toward all observations, DEA intro-
duces a new principle for effecting estimates from empirical data which is ori-
ented toward each observation. A least squares regression of the usual statistical 
variety, for example, uses only a single optimization to obtain a single estimating 
relation from n observations, whereas DEA uses n optimizations for the same n 
observations in order to obtain efficiency evaluations for each DMU. Stated 
differently, the thus derived (single) regression is assumed to be applicable to 
each DMU, as in the examples of the Table 2 use of the REA computed regres-
sion to evaluate the performance of the San Patricio electric cooperative. No such 
assumption is made in DEA and indeed the underlying functions may differ from 
one DMU to another. 

Because of the absence of any need for prescribing the underlying functional 
forms, weights, etc., in an a priori manner, it is fair to say that DEA is "em-
pirically based" in contrast to uses of statistical regressions, productivity index-
es, etc., which, in principle, require a great deal of analytical theorizing prior to 
choosing the forms in which they are to be used. This empirically based orienta-
tion has provided an opening for addressing many problems which have not 
heretofore received much research attention and it has also provided new ways of 
addressing problems which have been researched by other methods. As noted in 
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the concluding portion of the present paper, this orientation in DEA makes :t 
easier to attend to issues of relevance (as well as validity) of results by using 
study strategies which invite the participation of managers in choices of the 
DMUs as well as the inputs and outputs to be used. 

III. GEOMETRIC PORTRAYAL 

Figure 1 will help to portray what is involved in a use of DEA by means of a 
single output-single input example. For this geometric depiction, we associate 
the points P, , P2 , P3 , P4 , P5 with Decision Making Units (DMUs) designated as 
DMU, , DMU 2 , DMU3 , DMU 4 , DMU,. Using yj for the output and Xj for the 
input associated with DMUj, the values of these outputs and inputs can be 
regarded as coordinates of points Pj in order to represent geometrically the 
observed behavior of the corresponding DMUj, j = 1, . . . , 5. (See each of the 
yj and Xj pairs which are parenthesized as coordinates alongside the point Pj to 
which they refer in Figure 1.) 

How can performance efficiencies be determined from these observations? 
One possibility is to effect comparisons by reference to an output per unit input 
ratio for each DMU. For instance, DMU, which is associated with the point P, 

Figure / . Efficiency Evaluations in a One Output-One Input Example 
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might be evaluated in an ordinary ratio approach by comparing the ratio y , / x , 
with an average value for all 5 ratios calculated via 

2 y,/x, 
j - 1 y i / x i + y2/x2 + y 3 / x , + y 4 /x 4 + 

5 5 

One could then determine whether y , /x , is greater or less than the thus computed 
average of these ratio values as a way to assess the relative efficiency of DMU, 
in producing its observed output y, from its observed input x , . A problem can 
arise as to whether inefficient points like P, should be allowed to enter into an 
average that is to be used to determine whether the performance of P, is efficient 
and, of course, there will generally be more than one such inefficient point to be 
considered. Even if distinctions are to be made in point by point fashion there is 
no criterion that is evidently available to effect the distinctions between efficient 
and inefficient performers. Notice, for instance, that y 2 /x 2 = y , /x , even though 
P2 is associated with an efficient DMU and P, is not. 

Another problem can arise because the output and input magnitudes, as well as 
their ratios, may require consideration, and this will generally lead to a need for 
some kind of a priori system of weights. Finally, when it is necessary to deal 
with multiple outputs and multiple inputs, these weighting schemes will need to 
be extended with accompanying complications. 

An alternate possibility is to confine comparisons to DMUs which are "closest 
to" (or "most like") DMU, in their output and input mixes. DEA carries this a 
step further by effecting its evaluations by reference to subsets of efficient DMUs 
so that, inter alia, data from inefficient performers are excluded from the com-
parison set. 

To explain how this is accomplished by DEA, we begin by noting that a 
necessary condition for a DMU to be efficient (for DEA) is that the point 
representing its observed output and input values must be on a frontier like the 
one indicated by the solid line connecting the points P2, P3, P4 and P5 in Figure 
I. In fact, P3 and P4 represent the subset of observed efficient points which are 
closest to P, . The latter (i.e., P,) is not on the frontier and, hence, DMU, can be 
judged inefficient relative to the frontier as can be seen in Figure 1. 

A problem arises in using P3 and P4 for evaluating P, if it is desired to avoid 
cross comparisons with accompanying assumptions as to the relative values of 
inputs and outputs. Note that even though P3 and P4 are efficient, their output 
and input values are not both "better" than those for P,. P4 has an output which 
is "better" than that recorded for P, , in that y4 > y , , but it also has an input 
value which is "worse," in that x4 > x , . Similarly, for P3 we have x 3 < x, but 
also y3 < y, . DEA resolves this problem by allowing all points on the line 
connecting P3 and P4 to form part of an "efficiency frontier." These points are 
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then considered to be available for use in obtaining the desired efficiency com-
parisons for P, even when the coordinates of the point from which the com-
parisons are to be made do not represent actually observed input and output 
values. 

Location of the line segment connecting P3 and P4 as part of the pertinent 
"facet" of the efficient frontier for use in evaluating P, still leaves open the 
choice of a particular comparison point for determining the sources and amounts 
of inefficiency reported for DMU,'s behavior. Any point between the solid 
vertical and horizontal arrows leading from P, to this efficient facet yields a point 
with coordinates which are both at least as good as the values for DMU,. That is, 
any such point will have coordinates y and x which satisfy y ^ y , , and x ^ x, so 
that the output and input values for such a point are both at least as good as the P, 
coordinates. 

One possible choice for comparison is indicated by the point at the end of the 
vertical straight line and another is indicated by the horizontal straight line 
stretching from P, to the efficiency frontier. The vertical line yields a point on 
the efficiency frontier for which y > y, and x = x, so that all of the inefficiency 
appears as a difference in the output obtainable from the input amount that was 
utilized. That is, this choice assigns all of the inefficiency in P, to the output 
value. In similar fashion, the horizontal line assigns all of the inefficiency to the 
input value. These, however, are not the only choices available for evaluating 
P,. Another possible choice is provided by the arrow indicated by the broken line 
stretching from P, to the frontier. This choice locates a point with y > y, and x 
< x, and these output and input differences (y - y , ) and (x, - x), are in-
terpreted as amounts of both output and input inefficiencies in the observed 
performance of DMU, . 

Different DEA models may be used to obtain different comparison points but, 
as shown in Ahn, Charnes and Cooper (forthcoming, 1989a), the characteriza-
tions of full efficiency (i .e. , 100% efficiency) will generally be the same with 
different models.6 Moreover, as shown in Charnes and Zlobec (forthcoming, 
1989), efficiency characterizations in DEA are also generally stable in the pres-
ence of perturbations in the frontiers. By recourse to these analytjcal-theorctical 
developments, it is therefore possible to provide assurance that DEA rests on a 
body of underlying concepts and methods which can be used with different 
model forms, at least as far as efficiency characterizations are concerned, with-
out encountering the often drastic differences that accompany different choices 
of ratios and/or regressions (see Ahn, 1987, pp. 45-47) . 

Inefficiencies like those discussed for P, are associated with what are called 
"technical inefficiencies." Such inefficiencies, when present, are identified by 
DEA in the manner that has just been indicated—namely, the evidence shows 
that an output augmentation or an input reduction can be effected without wors-
ening any other output or input. Another kind of inefficiency is so-called scale 
(or returns to scale) inefficiency and this kind of inefficiency can also be made 
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part of a DEA analysis. Consider, for instance, the broken line ray from the 
origin to P2 in Figure 1. Movement on the frontier from P2 to P3 will be 
associated with increases in the slope of the corresponding rays. This means that 
average output is increasing with increasing amounts of input; hence, this evi-
dence indicates that increasing returns to scale are occurring on this facet of the 
frontier. 

These increases continue until P3 is reached. Movements from P3 to P4 , on the 
other hand, are associated with decreases in the slope of the ray from the origin to 
the frontier so that decreasing returns to scale are occurring with each increase of 
input on this segment (or facet) of the frontier. These returns-to-scale charac-
terizations, it should be noted, refer only to movement on efficient frontiers. The 
concept of returns to scale is ambiguous when applied to points like P, where 
technical inefficiencies are also present. Indeed, the definition of a production 
function as used in economic theory is oriented toward frontiers. This means 
that, given a production function, symbolized as f(x), the output y obtained from 
any specified x must be maximal. Hence, if x is chosen equal to x, and y, is the 
observed output, we must have 

^ ! ( o 
y*i 

where y*, is the theoretically maximal output obtained from this choice of x = 
x,. See Rhodes (1978) for more detailed discussions and see Section 4, below, 
for how returns to scale are determined empirically with the BCC and CCR 
models of DEA.7 

Evidently (1) can be used to determine technical inefficiency. For, when 
knowledge of the production function is available, the value of y ,* can be 
determined from x, and the difference between y ,* and y, would represent the 
amount of technical inefficiency observed for DMU,. Generally speaking, how-
ever, the knowledge which economic theory requires for use of a true production 
function is not available. Nevertheless, concepts associated with production 
function theory in microeconomics can still be used for guidance. For example, 
improvements in input consumption or output production are of interest in micro-
economics only when they have some positive value or price. It is then assumed 
that excess inputs will not be used. 

It is the assumption that each input and each output has "some" value that 
makes the location of technical inefficiencies of interest in DEA. In DEA, 
however, it is not assumed that such inefficiencies will not occur and, indeed, the 
location of such inefficiencies is a major objective in most DEA analysis. As 
noted when discussing P,, the DEA evaluations for any DMUC> are conducted 
relative to frontiers. Achievement of a position on the frontier, however, is not 
sufficient to eliminate technical inefficiency unless the point representing the 
outputs and inputs of DMU 0 is also on an efficient portion of the frontier. Our 
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simple one input-one output example can help to indicate what is being said if wc 
return to Figure 1 and consider P5, the point which records the output y5 and the 
input x5 for D M U V Evidently, y4 = y5 so that the output values for P4 and P5 are 
the same but x4 < x5 so DMU 5 is not efficient. If input has any positive value (or 
price), no matter how small, the evidence in this example would indicate that 
DMU5 is not efficient. It should have been able to reduce its input from x5 to x4 

without reducing its output and, hence, a wastage of this resource was recorded 
in the amount of the difference between x5 and x4 . 

The evidence generated by the collection of DMUs represented in Figure 1 
shows that both DMU, and DMU5 were "technically inefficient." To extend 
this to the case of multiple outputs and multiple inputs, we can phrase what is 
involved as follows: Technical inefficiency is present in the observed behavior of 
some DMU if and only if the evidence indicates that any of its inputs or any of its 
outputs an be improved without worsening any other input or output. This ac-
cords with the already noted assumption that an improvement in any input or 
output is desirable because all inputs and all outputs are assumed to have 
"some" positive value. See the discussion of expression (2) in the next section 
where it is shown how to represent the fact of having "some" positive value 
without any need to specify this value numerically. 

Technical inefficiency, when present, may be said to indicate the availability 
of a "free lunch." See Leibenstein (1976) and Stigler (1976) for a discussion of 
the relative importance of such inefficiencies in economics. This kind of ineffi-
ciency is thus to be distinguished from scale inefficiency in that achievement of 
the latter generally requires some input alteration in order to obtain an output 
increase (or decrease) that will eliminate the scale inefficiency. Thus, movement 
along an efficiency frontier to achieve scale efficiency generally carries with it a 
relative imputation of output and input values in the form of prices (or other 
weights) in order to determine whether (and by how much) such scale return 
possibilities should be exploited. 

A need for recourse to prices or weights to obtain efficiency evaluations 
creates a difficulty for governmental and nonprofit DMUs because prices or 
weights are generally not available for all inputs and outputs. This difficulty is 
avoided by DEA in the manner already noted when considering technical ineffi-
ciencies. It needs to be considered anew, however, in identifying scale ineffi-
ciencies, especially in multiple output situations because some output-input com-
binations may be exhibiting increasing returns while others are exhibiting 
decreasing returns in the same DMU. 

One possibility is to identify a point like P3 in Figure 1 where it can at least be 
said that increasing returns cease (in going from P2 to P3) and decreasing returns 
begin (in going from P3 to P4). This, however, applies to the case of a single 
output, and such single output-single input cases will not always be available. 
Nevertheless, a point like P3 may be identified with constant returns to scale in a 
manner that extends to the case of MPSS (Most Productive Scale Size) which is a 
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concept introduced in DEA by Banker (1984) to deal with the case of multiple 
outputs (see also Banker, 1980b). 

There are, of course, a variety of complicating issues to consider. Neverthe-
less, the concept underlying Most Productive Scale Size can be brought into view 
via the simple example of Figure 1 where, as can be seen, y 3 /x 3 > yj/x. for all j. 
Hence, the returns to scale associated with the ray from the origin to P3 is at least 
as great as at any point. Banker's MPSS concept extends this to the multiple 
output-multiple input case by proportionately increasing all inputs to a point 
where decreasing returns begin to appear in at least one output. Carrying an 
activity beyond this point implies some use of relative prices or weights in order 
to compare the possibly greater gains in some outputs against the failure to 
achieve these gains in other outputs. 

In some DEA models, such as the CCR ratio form (which is described in the 
next section) efficiency evaluations may be effected by reference to points on the 
ray of maximal slope. This means that technical and scale inefficiencies are 
being considered simultaneously. When desired, however, the analysis may be 
modified, as in Banker's (1984) article on MPSS or an extension may be made 
by introducing new variables to separate these different efficiencies as in the 
BCC models of Banker, Charnes and Cooper (1984) that are discussed in Section 
IV. 

Evidently different DEA models can be used for different purposes. All of 
these different DEA models are oriented toward frontier concepts, however, and 
effect their efficiency evaluations for any DMUC by choosing subsets of efficient 
DMUs for this purpose. These different models also utilize multiple optimiza-
tions, one for each DMU, and their estimating principles therefore differ from 
regression (and like approaches), and thus the inferences made from the results 
secured need to take this into account. For instance, suppose a regression were 
fitted to the points of Figure 1 in the usual least-squares manner and produced a 
result which indicated that increasing (or decreasing) returns were present. Log-
ically speaking, the presence of statistically determined properties such as in-
creasing or decreasing returns should be considered as only a class property so 
that the application of this result to any individual DMU is not justified without 
further analysis. This differs from what is logically justified from a DEA analysis 
in that results from the latter analysis are intended to be applicable to each DMU 0 

that is evaluated. 

IV. CCR RATIO MODELS AND TECHNICAL 
INEFFICIENCIES 

For purposes of computation and implementation it is necessary to turn to mathe-
matical formulations. We start with the following pair of problems which are a 
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dual pair of linear programming problems that can be used to obtain efficiency 
estimates for the CCR ratio form of DEA, 

min h0 = 6 0 - € ( X Sj + E s + ) 
i = l r— I 

subject to 
n 

o = M ì o - 2 XyXj - S f 
j - i ' 

n 

yro = E yrjkj - s r + 
j-i 

0 ^ X j . S i - s * 

s r . s + Aj.i = r = I, s; j = 1, . . . . . n. 

As was true in Figure I, data are assumed to be available for each of j = 
1, . . . , n DMUs for use in either of the above two models. Here, however, 
allowance needs to be made for the presence of multiple inputs and multiple 
outputs. This is done by introducing an index i for the ith input and an index r for 
the r111 output. The observed input and output values for each DMUj are then 
incorporated in the above constraints as follows: 

Xjj = amount of input i for DMUj 

yrj = amount of output r for DMUj (3) 

All inputs and outputs are positive.8 Since these x^ and yrj values are observa-
tions, this amounts to assuming that each DMU was observed to use the same i = 
1, . . . , m inputs and produce the same r = 1, . . . , s outputs, in possibly 
different amounts—with the amounts used and produced being indicated by the 
values of x and y. 

The symbol € represents a positive constant introduced as an artifact to insure 
that all of the observed inputs and outputs will have "some" positive value 
assigned to them. This value, which need not be prescribed explicitly, serves as a 
lower limit for the values that can be assigned to the variables fir and v{ as shown 

max y c = E M-Jro <2) 
r = 1 

subject to 
•ti 

2 Vi Xio = 1 
i = I 

s m 

2 W r - S ^ X y ^ 0 
= 1 ¡ = 1 

V: > * 
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by the final constraints in the problem on the right. The variables jjbr and v x are 
the virtual transformations referred to in Section II, above, and the fact that € is 
positive but not otherwise specified means that each of v t and will have 
4'some" positive value. Mathematically speaking, the value of € is defined to be 
so small that no multiple of €, however large, can compensate for a reduction in 
the value of min. 0o = 0O* where 80* is the optimal value in the left-hand 
problem. In other words, these € > 0 choices are defined so that the optimal 
value of 0O will not be affected by any value that may be assigned to the slack 
variables associated with e in the objective of the problem on the left.9 

The s f and s + are slack variables and the yro and x i o values shown on the left 
in (2) represent observed output and input values for DMU 0 , the DMU be-
ing evaluated. That is, the yro and x i o like the y5j and x y are all known con-
stants. The values that can be assigned to the slack variables in any solution 
are constrained to be non-negative. Hence, every solution must satisfy 

n 

yro 2 yrj Xj so that efficiency comparisons and evaluations will be effected 
j=i 

only from solutions with output values at least as great as the outputs achieved 
by DMU0 in every case. Similarly, s f ~ > 0 means the solutions will satisfy 

n 

0o
xio - 2 x,j Xj for each of the i = 1, . . . , m inputs utilized by DMUC. As 

shown in Charnes, Cooper and Rhodes (1978), an optimal 0O = 0* will never 
n 

exceed unity so it follows that x i o > 0*x i o > 2 Xy Xj*. Hence, every ob-

served input amount x i o utilized by DMU 0 will be at least as great as the one m 
used in its evaluation via 2 x^ Xj*. Thus, as explained in the discussion of 

Figure 1, the DEA efficiency evaluations of DMU 0 are to be conducted by 
reference to solutions that do not exhibit reductions in any of its outputs or 
increases in any of its inputs. Stated differently, the constraints do not allow 
solutions which involve output or input exchanges when the focus is on technical 
efficiency. 

Efficiency evaluations associated with these solutions will be dependent on the 
number of degrees of freedom that are available. There arc m + s constraints to 
be satisfied in the problem on the left in (2) and n observations, one for each of 
the j = 1, n DMUs that form the possible combinations from which efficien-
cy evaluations can be secured. From degrees of freedom considerations, the 
number of variables Xj used for the solutions in the problem on the left should 
be at least as great as the number of constraints. Thus, the number of DMUs 
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for which there are observations should be greater than the number of con-
straints and, for DEA efficiency evaluations, it is generally advisable to have 
n > 3(m + s). This is only a rule of thumb, of course, which may need to be 
adjusted in particular situations. 

We now formalize the concepts of 44virtual output" and "virtual input" as 
introduced in the preceding section. This will enable us to interpret the solutions 
to these mathematical programming problems in a slightly different manner. Any 
DMU from the set of j = 1, n may be singled out for evaluation as a DMU0 . 
In the problem on the right in (2) its evaluation is accomplished as follows. 
DMU0 's outputs yro, r = 1, . . . , s, are positioned in the functional at the top to 

s 

define a new "virtual output," yG = 2 M-r yro> by selecting virtual weights 
r— I 

which maximize the value of this virtual output, subject to the unity condition 
m 

imposed on the "virtual input" defined via xQ = X Vj x i o = 1. 
i — 1 

Drawing this all together, we interpret the problem on the right as follows: 
Select values for the virtual transformations, jir and Vj, which will maximize 
DMU c 's virtual output subject to the condition that its virtual input is equal to 
unity. The values of the virtual transformations should take the observations of 
all DMUs into account in a manner that does not permit their transformed outputs 
to exceed their transformed inputs. This condition is also applicable to DMUC so 
that y c ^ xG = 1. Using stars to denote optimal values, DMU0 is efficient 
relative to the observation set if an only if yG* = 1. 

The name Data Envelopment Analysis is obtained from the problem on the left 
in (2) in the following manner. An optimal solution will envelop the outputs 

n 

of DMU 0 from above via constraints of the form yro ^ X yrj w i t h a t 

j - i 

least one of these r = 1, s constraints satisfied as an equation. Thus there will be 
at least one "touching" of an observed output for DMU0 by the solution associated 
with an optimal choice of X* values. Similarly, the inputs of DMU0 are enve-

n 

loped from below via the constraints 0*x i o > 2 x0 Xj", with at least one 

of these input constraints satisfied as an equation. Thus, Data Envelopment 
Analysis is suggested as a name because the output and input data of DMU 0 are 
enveloped from above and below in the indicated manner. 

The input and output data in the columns of the problem on the left in (2) are 
the same as the input and output data in the rows of the problem on the right. It 
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follows that the number of variables in qne problem is equal to the number of 
constraints in the other. The two problems are said to be duals and are connected 
by a formal mathematical theory which asserts that y 0 < hw and, at an optimum, 
K = y<? ss 1 with h* = y* = 1 if and only if DMU 0 is fully (i .e. , 100%) 
efficient. 

Examination of the problem on the left in (2) shows that full efficiency will be 
achieved if and only if both of the following conditions are satisfied 

0 * « 1 

and (4) 
all slacks are zero. 

As was noted in Sections II and III, the optimal solutions are to be compared to 
DMU„\s observed performance in arriving at an efficiency evaluation. A value of 
0o* < 1 in this optimal solution reduces all of the inputs used by DMU 0 to a 
fraction of their observed values. This is interpreted to mean that a combination 
formed from the data from other DMUs can be located which uses only the 
amount 0* x i o < x i o and this indicates excesses in every input used by DMU 0 . If, 
in addition, any input slack s, - * is not zero for DMU 0 then this slack amount can 
also be subtracted from the amount of the ilh input used by DMU0 without 
altering any other input or output. Thus with nonzero slack for the ith°input we 
have 0* x i o - S j -* < 0* x i o < x i o . Similarly, a non-zero output slack means a 
shortfall is present in the output value with which it is associated and there is then 
an inefficiency in the amounts s r + * of the r*h output produced by DMU0 . 

The role played by 6 may be illustrated by returning to Figure 1 and using the 
following version of the problem on the left in (2) to evaluate DMU5 . For this 
single input-single output case, the evaluation problem for DMU5 is secured 
from Figure 1 for use with (2) in the following form, 

min 0O —e ( s f + s,+ ) 
subject to 

5 

o = 0O x I 5-£X,j -S|-
j - l 

5 

y.5 = S y . j X j - s + (5) 

Xj, s r , s + > o, j = 1 , 2 , . . . , 5,. 

where x l 5 and y I 5 refer to the amount of input I and output 1 used by DMU5 . 
I.e., we are using the index j, as in (2), to identify which of these 5 DMU 's is 
being referred to in (5). J 

One solution of (5) is X5 = 1 and 0O = 1 with all other variables equal to 
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zero—including all of the slack variables associated with € in the objective state 
at the top of (5). However, € > 0 requires the slack to be maximized as stated in 
th objective for (5) and so the solution XJ = 1 and s, = x l 5 - x I 4 > 0 with 
the same value of 0O = 1 improves on the preceding solution. That is, 0* -
€ s, ~ * < 0 = 1 with 0J = 0 and s , " * > 0. Hence, the solution with 0O = 1 and 
all slacks equal to zero could not have been optimal. It happens that the last 
solution 0O* = 1, s , ~ * > 0 is optimal and DMU5 is therefore found to be 
inefficient even with 0* = 1 because of the excess indicated by this amount of 
slack in its input. Thus, as in this example, the sum of the slacks is maximized, 
but this is accomplished by maximizing the slack without reducing the optimal 
value of 0O*. Consequently, hQ* = y c* < 1 when inefficiency is exhibited for 
DMUC by failure of this solution to satisfy either or both of the conditions in (4). 

It needs to be noted that P4 was used in evaluating the performance of DMU 5 

and, therefore, DMU 4 is technically efficient as shown in Charnes, Cooper and 
Rhodes (1978). Visual confirmation is obtained by observing that there is no way 
to move from P4 to any other point in the set bounded by the solid line in Figure 1 
without decreasing output or increasing input. This means that a tradeoff is 
necessary to effect any movement from P4 to any other point in the 4production 
possibility set." Some kind of pricing or weighting scheme must therefore be 
used to determine whether any such tradeoff is worthwhile. 

What has just been said about efficiency in observed behavior can be for-
malized as follows: 

100% relative efficiency is attained by any DMU only when comparisons with other relevant 
DMUs, which are efficient, do not provide evidence of inefficiency in the use of any input or 
output. In particular, the conditions in (4) are both satisfied when 100% relative efficiency is 
achieved and this means that it is not possible to improve some observed input or output value 
for the thus evaluated DMU„ without worsening other input or output values. 

The evaluation of any DMU is effected by reference to some combination of 
efficient DMUs selected from the set of available points on the efficiency fron-
tier. This is automatically accomplished in DEA computations which can be 
conducted with any available linear programming code to obtain an optimal 
solution formed from a relevant set of efficient DMUs. 

Generally, it will be desired to evaluate every one of the j = 1, . . . , n 
DMUs. This can be accomplished in serial fashion as follows. To evaluate P, , 
for example, only the values x 1 5 and y l 5 as shown explicitly in (5) would be 
replaced by x , , and y , , to obtain an efficiency evaluation of P,. Then x 1 2 and y l 2 

would replace x , , and y , , and the process continued until every one of these j = 
1, . . . , 5 DMUs was evaluated. This would be a tedious process to use for a 
large number of DMUs, of course, but the task can be avoided by recourse to 
computer codes that have now been designed for use with DEA. 1 0 Hence a user 
of these codes is freed for attention to issues other than computation or selection 
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of the pertinent DMUs to be evaluated since this should all be accomplished by 
the computer code used. 

Returning to the case of multiple inputs and outputs, if any inefficiencies are 
present they may be identified by reference to the conditions in (4). If adjust-
ments to the efficiency frontiers are wanted for any DMUC, they may be obtained 
by means of the following "CCR projection formulas": 

* i o = 0o*xio ~ s i~*» i = 1, . • • ,m 

= yro + s r
+ * , r = l , . . . , s (7) 

where the xiw and yro values are originally observed data and the stars indicate 
optimal values as determined by DEA. Then, as shown in Charnes, Cooper and 
Rhodes (1978, pp. 433-434) , the values of * i o and $r o obtained in this manner 
will yield an efficient point when these formulas are applied to all i = 1, . . . , m 
inputs and r = 1, . . . , s outputs for any DMU0 . 

Evidently, n optimizations, one for each of n DMUs, are used in a complete 
DEA analysis.11 For each optimization, the computer printouts should make 
information available on the efficient DMUs (mathematically speaking, this is 
part of the basis set) from which the inefficiencies were derived since these may 
be needed to guide interpretations and the tests and extensions that should be 
investigated. 

Examples are provided in the articles that follow in the form of standard 
computer printouts. See, e .g. , Exhibits 8 and 9 in the following article. The 
examples in that article use the problem on the left in (2). However, either of the 
dual pair of problems in (2) may be used, but if the problem on the right is used, 
the two conditions for efficiency in (4) give way to the following single 
condition: 

s 

y* = 2 n r * y r o = l . (8) 
r « l 

Achievement of this condition for 100% efficiency implies that no € enters into 
any of the optimal |x* values.12 

The above dual pair of linear programming problems represented in (2) were 
originally published in Charnes, Cooper and Rhodes (1978) to make it possible 
to obtain solutions for the following problem: 

m 
max hc = 2 uryro / 2 v,x lo 

r = I / i - 1 

subject to 

u
ryrj 1, j = 1, . . . , n (9) 
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2 v jXjo > £ , r = 1, s 
i = 1 
m 

X VjXio > e, i = 1, m 
i=® i 

The reason for the name CCR ratio form should now be evident. All con-
straints and the objective arc stated in ratio form. In this form the problem is 
interpretable as follows: Subject to these constraints choose the ur and v4 values 
that will assign the maximum possible ratio value, h*, which is to be used to rate 
DMU0 's efficiency. 

This is a nonlinear problem that would give rise to computational difficulties 
in trying to obtain the solutions required for practical use of DEA. However, the 
following version of the CC transformation from the theory of fractional pro-
gramming, as first given in Charnes and Cooper (1962), can be used to replace 
(9) with (2). 

ur = tp.r, r = 1, . . . , s 
Vj = tVj, i = 1, . . . , m (10) 

ni 

t = I / 2 V,X i o 

i = I 

Nothing is lost. Since all variables are positive, it is also possible to transform 
from (2) to (9) by means of these same formulas. Furthermore, by proceeding in 
this way, contact is made with the theory of fractional programming as given in 
Charnes and Cooper (1962) so that also 

max = h* = y j = h* (11) 

Hence, all three problems are available for use in computation or interpretation 
for Data Envelopment Analysis. Also, as noted in Charnes, Cooper and Rhodes 
(1978), still other problems and model types can be introduced via this route and 
this includes those that are related to each other via the duality theory of frac-
tional programming. See, e .g . , Schaible (1974). 

Thus, via the transformations given in (10), access is provided to the computa-
tionally efficient forms given in (2). Either of these dual pair of linear program-
ming problems may be used. Moreover, an optimal solution to the thus selected 
member of (2) also provides access to the optimal solutions for the other two 
problems as well. The analytical and interpretive power available from (9), can 
thus be added to the interpretations and alternative modeling possibilities which 
are available from the dual pair in (2). 

It perhaps suffices to indicate what is analytically added by noting that (9) can 
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be used to supply a proof, as in Charnes and Cooper (1985), that the optimal 
value of h* is invariant to changes in the units used to measure any input or 
output. That is, a change in the units used to measure any input or output—such 
as a change from pounds to tons—will not alter the value of max fiG = fi*. The 
relation in (11) means that this invariance property is also applicable to both of 
the problems in (2). Thus the units used for any input or output may be chosen as 
desired for any of these models without affecting these optimum values.13 

As already indicated, the model in (9) is what gave rise to the name "CCR 
ratio form" which, via the use of the theory of fractional programming, is 
transferable to the dual pair of linear programming problems in (2). Using the 
concepts of virtual output and virtual input as discussed in connection with (2), it 
is possible to make contact with the usual one-output-to-one-input ratio measures 
of efficiency used in engineering and the natural sciences. Conversely, DEA can 
be regarded as generalizing these engineering and natural science measures for 
use with multiple outputs and multiple inputs and this is also done in a manner 
that brings these concepts from engineering and science into contact with con-
cepts in economics (such as the concept of Pareto-Koopmans efficiency). See 
Charnes, Cooper and Rhodes (1978, pp. 430-431) . 

This virtual output-to-virtual input interpretation also provides access to easily 
usable and understandable graphical portrayals. These portrayals like the one in 
Figure 1 are available if its y and x values are regarded as having been derived 
from (9) so that, in particular, fi* = y*/x* < 1 with y*/x* = 1 if and only if the 
DMU0 being evaluated has achieved full (100%) efficiency.14 

V. BCC MODELS AND RETURNS TO SCALE 

The dual problems represented in (2) are now replaced by the following new pair: 

m s s 

min 6„ - e s" + 2 s r
+] max 2 M-ryro - u Q 

i - l r = l r = I 

s u b j e c t t o subject to (12) 

o = 0 o * K , - 2 X i j X j - s r V 
ia I 

* i o = 1 

yro = 
5 III 

2 yrj*j - s r
+ 2 nryr j - X v,Xy - u 0 ^ 0 

j = l " ~ r = 1 

V , ^ - € 

1 = Aj y. > € 
j=l 1 

0 ^ Aj , s f , s+ for i = 1, . . . , m; r = 1, . . . , s; j = 1, . . . . , n. 
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Comparison will show that this differs from (2) only in that the new 
n 

2 Xj = 1 condition appears at the bottom of the problem on the left and a new 

variable uQ appears in the problem on the right. The correspondence between the 
number of variables in one problem and the number of constraints in the other is 
thus maintained. Via this correspondence the variables in one problem can be 
used to evaluate a constraint in the other problem in terms of its effects on the 
objective being pursued. See Chapter I in Charnes and Cooper (1961) for a 
discussion of some of the managerial uses of these duality relations. 

n 

One reason for introducing the condition 2 Xj = 1 in (12) is to ensure 

that all solutions and, hence, their associated DMU efficiencies will be evaluated 
only by reference to original data points and their "convex combinations"— 
i.e., by percentage combinations which add to 100 percent. These combinations 
can then be used to generate comparison points on efficiency frontiers. Compare 
the discussion of such points formed from P3 and P4 in Figure 1 as potential 
candidates for evaluating DMU,. Note, in particular, that points on the ray 
stretching beyond P3 on the dotted line in Figure 1 are thus eliminated as possible 
candidates for evaluating points like P, by virtue of this "convexity condition." 

The new variable u0 which appears in the right-hand problem of (12) is now 
available for identifying returns to scale possibilities in accordance with the 
following criteria: 

u* < 0 increasing return to scale 
u* = 0 constant return to scale (13) 
u* > 0 nonincreasing return to scale, 

where the stars indicate that this value of u0 is part of an optimum solution and 
the symbol means "implies." 

As noted in Banker, Charnes and Cooper (1984) where these properties are 
developed analytically on the assumption of a unique optimum, the following 
two points need to be born in mind: 

First, the thus indicated returns to scale are "local" in that they are applicable 
only to the facet on the efficiency frontier where the reference point for the 
efficiency evaluation is positioned. (Refer to Figure 1, for example, where the 
facet from P3 to P4 displays returns which are locally decreasing while the facet 
from P2 to P3 displays returns which are locally increasing while the returns at P3 

are locally constant.) 
Second, in actual use the possibility of alternate optima also needs to be 

considered. For the general case of m inputs and s outputs, this topic is rigor-
ously addressed in Banker and Thrall (1988) with results that we summarize as 
follows: Local increasing returns are said to prevail if and only if uj < 0 for all 
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alternate optima. Local decreasing returns to scale are said to prevail if and only 
if u„ > 0 for all alternate optima. All of the remaining cases correspond to local 
constant returns to scale. • 

Using the concept of Most Productive Scale Size, it is shown that the pertinent 
information can also be extracted from the solutions to (2) in ways that relate 
them to sign conditions in (13) even though the extra variable u„ does not appear 
m these models. See also Banker and Thrall (1988) and Charnes and Cooper 
( i9o5). 

s 

2 uryro - u 0 
r = I 

max 
m 

2 v i X i o 
i — 1 

subject to 

1 > 

s 

I 
r « I 

u r y r j 

m 

2 v i x ü 

€ ^ 2 
i = 1 

V i o 

€ ^ ' 2 V i X i o 

forj = 1, n; r = 1, s; i = 1, m . 

inspection shows that this is the same as (9) except for the appearance of u0 in 
(14). In fact, the transformation in (10) that was used to go from (2) to (9) can be 
used to relate (14) to (12) and so no further discussion is needed to describe 
relations between the BCC ratio form in (14) and their linear programming 
equivalents in (12). 

VI. ADDITIVE MODELS 

As noted in Section II, it is sometimes desirable to test results by using different 
models. Hence, we introduce another class of models called the "additive mod-
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els" as introduced in Charnes, et al. (1985) which also incorporates the concepts 
and methods of DEA. These models are of interest in their own right, and lead to 
still other uses and extensions of DEA. They can be formalized as follows: 

max 
r — I r ? , S r + + S i m i n * i « - S H - r y r o + U o 

s u b J e c t t o : subject to: (15) 
m 

2 Vj X y - £ f A r y r j + U 0 > 0 
r = I 

Vt > 1 

My — 1 

n 

- y r o = 2 
j = i 

n 

y r A 

X i o = 2 

n 

XjjXj + s -

1 = 

I'M
 ki 

0 Xj, s r
+ . s f for i = 

Starting with the problem on the left, the only test for efficiency is whether all 
slacks are zero. That is, DMU 0 is fully efficient if and only if 

max 2 sr+ + 2 s f = £ s r
+* + S s f * = 0 (16) 

r— I i = 1 r = 1 »— 1 

As can be seen, there are no € in either of the above problems. Hence, such non-
Archimedean elements need not be considered. 

Figure 2 can help to show differences in the way the additive and the ratio 
models locate points from which inefficiencies may be determined. For this 
Figure, there are two inputs to be considered in amounts x, and x 2 and only one 
output y. Division of each of the inputs by the output amount with which it is 
associated converts these into rates of input per unit output. This is why x, and x2 

replace x, and x 2 as coordinates in their respective dimensions in Figure 2. 
Given the data plotted in Figure 2, it is desired to evaluate the performance of 

DMU 5 with the input rates (* l 5 , %25). This is to be accomplished by selecting a 
relevant point on the efficiency frontier. Here the efficiency frontier is repre-
sented by the "unit isoquant" as is shown by the solid line connecting P2 and P v 

A ratio model determines this point via a value 0O* which can be interpreted in 
terms of the ray indicated by the broken line from the origin to P5. In fact, the 
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P i t 

Figure 2. Unit Isoquant 

148 

X 2 A 

optimal value of 60* is geometrically interpreted as the length of the ray from the 
origin to b divided by the length of the origin to P5. Thus 

= €Jm ^ 1 (17) 

where €(0,b) refers to the length of the ray represented by the portion of the 
broken line from the origin to b and €(0,P5) refers to the length from the origin to 

P.V15 
The additive model, on the other hand, selects a point such as a, which 

maximizes the sum of the slacks, s, + s2 , where the value of s, is geometrically 
represented by the length of the solid horizontal line emanating from P5 and the 
value of s2 is represented by the length of the solid vertical line extending to the 
frontier.16 Although the amounts of inefficiencies designated by these two mod-
els will differ because different points on the frontier are thus selected, it is 
nevertheless important to note that both models characterize DMU5 as ineffi-
cient. 

It is not true that the amounts of the different inefficiencies will always differ 
when they are obtained by these two different types of models. Notice, for 
instance, that the points P, and P4 which are on the frontier in Figure 2 are not 
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efficient.17 The additive and ratio models will not only characterize them as 
inefficient but they will also do so in the same way-namely, by maximizing the 
slack value of s, which is associated with the first input for P4 and by maximiz-
ing the slack value of s 2 which is associated with the excess in the second input 
used by DMU,. Finally, P2 and P3 will both be identified as efficient (with zero 
slacks) by either the additive or ratio approaches. See Ahn, Charnes and Cooper 
(forthcoming, 1989) for an analytical development of relations between these 
models. 

Turning to the problem on the right in (15) we note that the condition that 
every input and every output has some positive value is now reflected in the 
constraints which require v x ^ 1 all i and |xr ^ I all r. These can be regarded as 
normalizations imposed on the values of these variables—which are assigned to 
the similarly indexed inputs and outputs in the objective stated for the problem on 
the right in (15). 

These input and output values in amounts x i o and yro in the objective of the 
problem on the right are dually related to the stipulations for the constraints in the 
problem on the left in (15). Hence, we may interpret the objective for the 
problem on the right as being oriented toward minimizing the "efficiency 
losses" occasioned by the deviations from the observed values to which they are 
related. 

The objective of the problem on the right can be reoriented to a gain, or profit 
maximizing, objective, as in the following: 

s m 

max 2 M-Jro "" 2 v i x i j - u 0 . (18) 
T— \ i ~ 1 

Using stars to indicate optimal values, we employ the duality theory of linear 
programming which relates this objective to the one stated in (16) by asserting 
that their values will be equal at an optimum. Thus, we also have 

s m 

2 Hr* y r o - 2 - U * = 0 (19) 
r = 1 i = l 

if and only if DMU 0 is efficient. 
The optimal values jxr* and Vj* may be used to evaluate the effects of incre-

ments or decrements in the outputs and inputs with which they are associated. 
These evaluators can be interpreted as providing "efficiency prices" for evaluat-
ing the rates at which tradeoffs may be affected on the frontiers with which these 
values are associated.18 These tradeoffs are determined by reference to ratios of 
these dual variables but they need not involve any monetary units (e.g., dollars) 
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and so terms like "profits" and "losses" and "prices" are to be regarded as 
only generic usages in the above discussions. 

As was remarked earlier, it is necessary to introduce external prices, or to use 
relative weights in order to determine whether such tradeoffs should be under-
taken. The dotted lines in Figure 2 provide an example which can also be used to 
illustrate the concept of "allocative efficiency." Theoretical considerations in 
the evaluations of allocative efficiency using the BCC model may be found in the 
article by Banker and Morey in this issue. See also Banker (1988) and Banker 
and Maindiratta (1988). 

Here we develop the concept of allocative efficiency in a simplified way by 
assuming a price p, for x , , and a price p2 for x 2 so that p, x, + p2 x 2 represents a 
total cost of using these amounts of x, and x 2 . 1 9 These costs can be associated 
with a "budget line" such as the one portrayed by the dotted lines in Figure 2. 
For instance, b2 = p, * 1 3 + p2 x 2 3 uses the coordinates of P3 to obtain the total 
cost of producing a unit output with these inputs. This is lower than the cost b, 
associated with the inputs at a. Hence, a is technically but not allocatively 
efficient. Thus, if cost minimization is an objective, the tradeoffs involved in 
moving from a to P3 are worth undertaking with these prices. 

Methods for determining amounts of allocative as well as technical efficiency 
have been available since the early work of Farrell (1957) but they all depend on 
an exact knowledge of prices to be considered. See Fare, Grosskopf and Lovell 
(1985) for discussion of these methods. Only recently has it become possible to 
relax the requirements for an exact knowledge of prices so that it is now possible 
to proceed with a much looser requirement in which only ranges (in the form of 
upper and/or lower bounds) on the possible prices or weights are required. This 
looser approach is the one which is most likely to be of use in evaluating 
governmental and nonprofit activities. See Banker and Morey, this issue, or 
Charnes, Cooper, Huang and Sun (forthcoming, 1989) and Thompson, Sin-
gleton, Thrall and Smith (1986). See also Thrall (forthcoming, 1989). 

The variable u0 in the right-hand problem of (15), which remains to be ex-
plained, plays the same role here as was displayed in (13) for the BCC model. 
We can show this as a byproduct of the following development which also 
characterizes relations between the additive and the BCC models (and hence also 
to the CCR models). 

Reference to the constraints in the right-hand problem of (15) shows that they 
can also be written 

s 

2 M-ryrJ-u0 

1 > J j = 1, n , (20) 
m 

2 
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where this division by 2 ¡̂Xy does not alter the sense of the inequality because 

positive values for the denominator are guaranteed by the condition vx > 1 for all 
i, which every solution must satisfy. Comparison shows that the constraints in 
(20) are in the same form as the ones displayed in (14). Using the transformations 
in (10) brings the two together in all respects with the e conditions for positivity 
also being satisfied a fortiori by any solution to (20) which is subjected to this 
transformation. 

From the duality relations of linear programming, which are applicable to the 
dual pair in (15), we have 

s m ni s 

0 ^ 2 S r + + X s - ^ £ VjX i o - 2 |xryro + u0 (21) 
r = I i = I x —I r = l 

with equality holding between the solution values of these two problems only for 
an optimal pair. The expression on the right of (21) therefore always satisfies 

s 

2 M - r y r o - u o 

J I l «5 1 . ( 2 2 ) 
in 

2 v j x i o 
i — I 

Noting that this is in the same form as the functional used in the objective of (14), 
we can again proceed via the transformations in (10) to extend this correspon-
dence by identifying these results with the same variables as in (14). This is 
accomplished without altering the limit to solutions on the right in (22)—which 
is also the same limit value for the maxima attainable in (14). 

To complete this development, we observe that the optimal choices of s r + , 
s," are not altered if these terms are all multiplied by € > 0 in the objective 
stated for the left-hand problem in (15). This multiplication replaces the condi-
tions v4, jxr ^ 1 with v i t p.r > e, all i and r, in the problem on the right so that, 
combining this result with (20) and (22), we obtain the model depicted in (14) in 
all detail. It follows that a DMUC found to be efficient in (15) will also be found 
to be efficient in (12) and vice versa. The same holds for inefficiency: i .e. , 
DMUC will be characterized as inefficient by the BCC ratio form if and only if it 
is characterized as inefficient by the additive form. See Ahn, Charnes and 
Cooper (1989) for a fuller development of these and other relations between 
different DEA models. 

Various byproducts of the thus demonstrated relations are available if wanted. 
It may be desired, for example, to employ ratio efficiency values rather than 
sums of the slack deviations from efficiency. Reference to (22) shows how this 
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may be done after an optimum has been achieved with full efficiency being 
obtained if and only if the resulting ratio is equal to unity. 

Finally, contacts with other disciplines provide further opportunities for both 
use and research. For instance, as demonstrated in Charnes, Cooper, Golany, 
Seiford and Stutz (1985) these additive models are directly related to goal pro-
gramming in a form that also gives direct access to the activity analysis models of 
economic theory as described in Chapter IX of Charnes and Cooper (1961). 
Therefore, as described in Bowlin (1984), results from such efficiency analyses 
can be extended beyond the evaluation of individual DMUs by means of goal 
programming models in which these efficiency adjusted results can then be used 
for budgetary purposes in which resource reallocations between efficient DMUs 
may be used to improve the performance of a total system. 

VII. EXTENDED ADDITIVE MODELS 

In many applications, it may be necessary to consider inputs and outputs which 
are exogenously fixed and hence cannot be varied at the discretion of the manag-
ers of different DMUs. For example, the number of successfully completed 
sorties represents an output which entered into the efficiency evaluations of the 
maintenance activities in U.S. Air Force wings as described in Charnes, Clark, 
Cooper and Golany (1985). The possible number of successful sorties is evi-
dently dependent on weather. Thus weather, although a variable beyond the 
control of management, must nevertheless be taken into account in effecting 
efficiency evaluations in bases that are located in places that are as different as 
southwest Texas and northern Alaska. 

Banker and Morey (1986) have provided one way of taking nondiscretionary 
variables like weather into account in BCC and CCR ratio models. Here we shall 
provide another recently developed approach, as given in Charnes, Cooper, 
Rousseau and Semple (1987), for use with additive models. This approach, as 
will be seen, also extends the class of additive models in other ways as well. 

In addition to preserving the conditions for Pareto-Koopmans efficiency2 0 for 
use in their evaluations, these 4Extended additive models" also make it possible 
to deal with thresholds and ceilings when they need to be taken into account. As 
an illustration of thresholds and ceilings that can bear on modeling for manageri-
al use we turn first to a statistical model used in a Department of Defense 
sponsored study which recommended reducing the budgeted amount of Marine 
Corps recruitment advertising. The resulting budget would have fallen below the 
threshold that is needed for any national TV advertising to be undertaken. The 
unavailability of any TV advertising, in turn, would have made it necessary for 
the Marine Corps to revise other parts of its recruiting activities in ways that were 
not reflected in the statistical model that had been employed.21 See Charnes, 
Cooper and Golany (1986a, 1986b) for a critique.22 
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Ceilings may also need to be considered. For instance, it is a practice in the 
Tactical Air Command to conserve fuel by halting further sorties of fighter 
aircraft at an Air Force base when a target number of sorties is attained. This 
needs to be taken into account in efficiency evaluations, while also allowing for 
continuance of maintenance activities and the training of mechanics which are 
also important outputs. See Charnes, Clark, Cooper and Golany (1985). 

All of these considerations, and more, are taken into account explicitly in the 
following extended additive model: 

m a x , ? , i b + 1 , fci 
subject to 

- y r o = - 2 yrj + sr-
(23) 

n 
x i o = 2 XjjXj-f s -

j = l 

i = 2 Xj 

s: 7ryro ^ 

0 < Sj~, s r
+ , \ j ; for i = 1, . . . , m; r = 1, s; j = 1 n. 

The pj parameter values are fixed by the modeler somewhere in the range of 
zero to one in accordance with considerations that may be clarified by writing the 
condition for the ith constraint as follows: 

n n 

x i o = 2 x y + s r < £ XSj + x i o . (24) 

Now for Pi = 0 these expressions will be satisfied only for s4 = 0. This condi-n 
tion must also hold at an optimum in which case we have xiw = 2 and « 
no penalty is incurred for the thus indicated consumption of x i o which was 
entirely non-discretionary. Turning to Pj = 1 the completely discretionary case 
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n 

comes into play with any positive slack values s f * = xiH Xjj X? to be re-

flected in the objective if it is part of an optimum solution ' 

Finally, lor 0 < 0, < 1 we can rewrite (24) as 

n 
c - P , ) x t o s 2 X y X j ( 2 5 ) 

vaiuchon°r £ ? ,hH C O m b T r 0 n , h e r i g h t m u s t ec"ual o r the threshold 
value on the left. Hence, the threshold on the left is taken into account by the 
expression on the nght when it designates the efficient amount of the i* input 

S milar reasoning applies to the 7 r choices. These range from 0 to 1. For cach 
such 7r choice we obtain for the r»' output, 

" n 
> r o = j ? l ~ s r + s 2 y r j Xj i r y r o . (26) 

The reasoning is analogous to the input case. Allowance being made for subtrac-
•on rather than the addition of positive slack, the reversal of the i n e j u a . i t n 
26 changes the threshold characterization into a ceiling for the outputs to which 

the inequality yr y m > sr
+ is applied. 

J J ^ ' r T 1 0 t h e
u

f u n c , i o n u s e d f o r t h e ^ject ive in (23) where the vertical 
t ; ; " th

T
e

h
terrns ^ denominator mean that an absolute (positive) value is 

to be used. This implies that the maximization is oriented toward relative goal 
deviations and, because of the way the goals are stated in the denominator the 
resulting value is independent of the units of measurement u s e d . " 

VIII. CONCLUSION 

The d.Herent types of DEA models that have been presented do not exhaust this 
topic. Others are also available-such as the multiplicative models presented in 
Charncs, Cooper, Seiford and Stutz ( I 9 8 3 ) _ w h i c h can be regarded either as 
providing alternatives to those discussed in the preceding sections or as providing 
new possibilities in which combinations of different DEA models can be used 
See Banker and Maindiratta (1986) for an example of how multiplicative and 
BCC models may be joined. 

DEA continues to be an active area of research in its own right so that still 
other possibilities are likely to become available. It thus seems better to turn to 
topics dealing with actual uses of DEA in place of further development of 
underlying concepts and available DEA models. The three following papers 
provide examples that can help to supply possible study strategies 
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When actual managerial uses are a study objective it is generally advisable to 
start with the kinds of information that management customarily uses in its 
evaluations. This can help to facilitate managerial understanding of study results 
and it can also make it easy for managers to participate in initial formulations and 
subsequent evaluations of study results. 

One way this can be accomplished is illustrated in the second paper in the 
following collection which deals with a study of possible uses of DEA in evaluat-
ing the performance of electric cooperatives in Texas. Much of the work underly-
ing this study was taken from Thomas (1986), in which, as a member of the 
Texas Public Utility Commission (and subsequently its chairman) Dr. Thomas 
was very much interested in improved approaches that could be used to evaluate 
utility performance. One reason for this interest is that a relatively recent statute 
in Texas requires management (efficicncy) audits to be performed periodically 
for electric cooperatives in Texas. This statutory requirement helped to guide the 
study choices of inputs and outputs as well as choices of the tests that might be 
used for evaluating DEA. Inter alia, this led to comparisons with results from 
field audits that had been conducted at individual DMU (=individual electric 
cooperative) levels as well as comparisons with other evaluative devices such as 
the REA (Rural Electrification Administration) ratios and regressions that were 
discussed in the opening two sections of our paper. 

The need for guidance in allocating audit resources also led to the development 
of a suitable means for obtaining a ranking of the 75 electric cooperatives in 
Texas for Commission use in directing its field audits. This was accomplished, 
as indicated in the article, by providing a transformation of all inefficiencies, 
including lost revenue opportunities, into dollar terms. This way of effecting the 
rankings makes it possible to deal with slack and scale as well as technical 
inefficiencies and can also make allowances for the different comparison sets that 
may enter into these efficiency evaluations. These developments in DEA there-
fore illustrate the use of managerial know-how not only in selecting data but also 
in providing openings into new problem areas and possible new uses of DEA that 
might otherwise have been overlooked by adherence to an initial study design. 

The first paper in the series that follows provides an example of a different 
strategy which was accomplished in two different stages as follows. The first 
stage took advantage of a study that was already under way by staff of the Sclcct 
Committee on Higher Education (SCOHE) which had been tasked by the Texas 
legislature to study the performances of state institutions of higher learning 
(IHLs) in Texas. Members of this staff kindly supplied help and advice in 
selecting inputs and outputs (as well as the choices of DMUs) so that results from 
DEA could be readily compared with those obtained by Commission staff in 
studies which were employing other methods of analysis. See Ahn (1987) for 
further discussion and acknowledgments. A second stage then followed in which 
Victor Arnold was invited to review these DEA results. The opportunity pro-
vided by Dr. Arnold's completion of his duties as Director of SCOHE was also 
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used to invite Dr. Arnold to bring his already acquired know-how to bear in the 
endeavors that led to the paper that now appears in the following collection— 
which reports on the use of DEA in evaluating the performance of state IHLs in 
Texas.24 

The third paper in the following series, in which Richard Clarke appears as a 
coauthor, provides an example of yet another approach which took advantage of 
Dr. Clarke's experience as a functioning U.S. Air Force officer, as well as his 
responsibilities for research in logistics when he was on the faculty at the U.S. 
Air Force Institute of Technology at the Wright Patterson AFB. This paper is part 
of a larger study which deals with vehicle maintenance activities in the Tactical 
Air Command of the U.S. Air Force. In this study, Dr. Clarke was able to take 
advantage of an opportunity that was provided by an Inspector General's report 
which criticized the efficiency measures that were then being employed. In the 
example reported here, the orientation is more toward "scientific testing" rather 
than "actual use" in that this part of the study is directed to providing a new 
approach for testing for the presence of "organizational slack"—a concept that 
plays a prominent role in the modern literature of organization theory. The 
discussion and developments reported here are, however, only part of a larger 
effort reported in Clarke (1988) in which issues of user attitudes and active 
managerial participation arc also addressed as part of a study on the effects of 
repeated uses of DEA on managerial performance. 

Topics of modeling and testing, as well as opportunities for research and use, 
need to be considered from new standpoints as DEA and its uses are still being 
developed. Familiarity with underlying concepts is advisable along with a 
knowledge of available alternatives (e.g. , alternative models) and their uses and 
interpretations. The same is true of testing and validation procedures. 

We have already indicated how managerial uses (including field audits) can be 
brought to bear in testing and validation. Strong arguments can be made for 
exploiting managerial know-how and experience in interpreting results at indi-
vidual DMU levels, as well as initial and subsequent formulations, especially 
when a use of DEA as a managerial tool represents a study objective. Thus, after 
comparing DEA results with results from the ratio and other analyses used by 
SCOHE, the first paper in the following set concludes with a "window analy-
sis ."2 5 As yet another example of new approaches to testing, such "window 
analyses" can be used to provide a systematic check of stability of the efficiency 
evaluations over different collections of DMUs while also increasing the number 
of degrees of freedom. In addition to providing added protection against degrees 
of freedom deficiencies, such an analysis can be regarded as providing trend 
information which can be identified with the behavior of individual DMUs in a 
form that can also be submitted for review and readily interpreted by managers 
familiar with the performance of these DMUs. 

The uses of comparisons with field audits at individual DMUs was noted 
earlier as a way of checking the results of a DEA study of electric cooperatives in 
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Texas in the second of the following three papers. In addition, correlations 
between DEA and the results of REA regression and ratio analyses were under-
taken in order to see whether (or in what way) DEA might confirm or conflict 
with results from these other analytical approaches. 

This kind of comparative use of DEA and statistical regressions docs not 
exhaust the possibilities for their joint uses. For instance, DEA and statistical 
regression approaches might be joined, as was done by Rhodes and Southwick 
(1986) in their study of the relative efficiency of private and public universities. 
They did this by first applying formula (7) to project all data onto efficiency 
frontiers before undertaking regression estimates from the thus adjusted data. In 
addition to providing new types of uses for regressions by fitting them to effi-
ciency adjusted data, this approach makes it possible to conform to the efficiency 
assumptions of economic theory when studying phenomena such as are associ-
ated with returns to scale. 

In a very different way, the paper on vehicle maintenance, which is the third of 
the following three papers, shows how DEA can be used to identify and repair 
lacunae in the existing literatures of other disciplines. Thus, using a game the-
oretic interpretation of DEA due to Banker (1980), it was possible to notice a 
lacuna in the organization theory literature in that the strategies that might be 
used by managers for accumulating organization slack had been inadequately 
attended to. As explained in the third of the following papers, this was repairable 
by reinterpreting a conjecture by Banker so that it was identifiable with points 
like P, and P4 in Figure 2 where, quite literally, the managers of Air Force 
vehicle maintenance units could accumulate slack while giving an appearance of 
fully efficient behavior. 

No discussions of these game theoretic formulations and their potential uses 
for DEA were provided in the preceding sections of this paper because (a) 
references are available as cited in the third paper in the following series, and (b) 
pursuit of this topic would have lengthened the present paper and carried it into 
numerous deviations. Suffice it to say that Banker's game theory formulation of 
DEA can be shown to be equivalent to the dual pair of linear programming 
problems in (2) without any of the € values. Although this represents a deficiency 
from the standpoint of a DEA analysis, it is of interest that even this deficiency 
was useful in providing opportunities that would not have otherwise been avail-
able in testing for the presence of slack—since a use of the e elements precludes 
any possibility for P, or P4 of Figure 2 appearing to be efficient. At any rate, this 
third paper in the following set shows how DEA can be used not only to test but 
also to locate deficiencies in the current scientific literature—and this includes 
the possibility of empirically testing game theoretic assumptions such as the 
assumption that optimal strategy choices will always be employed. This and the 
other papers that follow can suggest still other such possibilities. 

Although the emphases in the following papers are on management and ac-
counting (including audit) uses, further opportunities may still be opened by 
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remembering that new principles of estimation are being suggested and these 
principles may be used in place of or in conjunction with currently used methods 
in statistics. With DEA, a vehicle is also being provided for extending and 
adapting cost and production theory as constructs from economics as well as 
from programming theory and game theory in management science. As noted in 
the text, efficiency concepts in engineering and the natural sciences are extended 
and joined to those in economics via DEA, and this suggests that the two may 
also be joined for use in a variety of applications that might otherwise be beyond 
the scope of either alone. 

This is as far as the present paper will go but the references that follow can 
suggest additional possibilities for those who want to pursue them. Recent work 
by Banker and his associates have provided a basis for still further possible 
relations in which econometric theory with accompanying statistical tests can be 
brought to bear for use in interpreting DEA. An overview provided by Banker 
appears below, in this same issue, and it is followed by applications of these 
concepts in efficiency evaluations and variance analyses. 
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NOTES 

1. The task is analogous to what is accomplished in industrial standard costing practices except 
that DEA extends its identification of inefficiencies to outputs as well as inputs and it does not require 
recourse to the time, motion and method studies of industrial engineering. 

2. See Charnes, Cooper and Rhodes (1978) for a discussion of what can be done when values 
from theoretically known efficient technologies are available. 

3. See the definition of evidence in sense 2, as given by Kohler's Dictionary for Accountants, 6th 
ed. (in Cooper and Ijiri, 1983). 

4. Comparisons with DEA could also have been employed for this purpose. See Banker, Char-
nes, Cooper and Maindiratta (1987) for a comparison of such regressions with a use of DEA in 
obtaining efficiency evaluations. See also Banker, Conrad and Strauss (1986). Fare, Grosskopf and 
Lovell (1985) provide comprehensive discussions of various approaches to frontier estimation. 

5. A call for papers for an NSF-IC2 Institute sponsored conference to be devoted to new 
managerial uses of DEA (September 2 8 - 2 9 , 1989, in Austin, Texas) resulted in receipt of nearly 60 
abstracts submitted from different countries in a period of only a few months with many of them 
dealing with new or underresearched topics. 

6. Reference is to the "additive" and "CCR" and "BCC ratio forms" of DEA described in the 
sections that follow but not to the multiplicative models and their corresponding ratio forms described 
in Charnes, Cooper, Seiford and Stutz (1983) or Banker and Maindiratta (1986). 
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7. A fully rigorous theoretical development is provided in Banker and Thrall (1988). 
8. The general theory for dealing with non-negative inputs and outputs is given in Charnes, 

Cooper and Thrall (1986, 1988). 
9. € may be interpreted as the reciprocal of the "big M" that is often used in association with 

artificial variables in linear programming problems. See, e .g . , pp. 174 ff. in Charnes and Cooper 
(1961) which includes a discussion of how these values—which arc referred to as "non-Archime-
dcan" values in mathematics—may be treated in simplex tableaux without requiring their values to 
be specified numerically. 

10. Such a code is available from the Center for Cybernetic Studies in The University of Texas at 
Austin, Texas. 

11. In actual use, the computer codes used in DEA take advantage of prior solutions in ways that 
reduce the number of optimizations actually used. 

12. This forms part of the so-called "non-Archimedean theorem" in DEA as given in Charnes 
and Cooper (1985) in that, via the duality theory of linear programming, it follows that all slacks 
must be zero and 6 0 * = 1 in the problem on the left in Eq. (2). 

13. The non-Archimedean c elements in (9) play the same role as was discussed in connection 
with (2). 

14. This test for efficiency—really "Pareto" or "vector" optimality—was first given in Char-
nes and Cooper (1957). See also Ch. IX in Charnes and Cooper (1961). 

15. These lengths are stated in the ( 2 (or Euclidean) metric. See Appendix A in Charnes and 
Cooper (1961). 

16. These lengths are stated in the 1 t metric described in Appendix A of Charnes and Cooper 
(1961). 

17. Recall the discussion of P5 in Figure 1. 
18. See the discussion of these efficiency prices and their uses in Chapter IX of Charnes and 

Cooper (1961). 
19. To be technically correct, these prices need to be stated relative to the output which serves as 

a divisor of x, and x 2 . 
20. See the discussions of (6) and (7). 
21. See the contrast between "control prediction" and the other types of predictions that are 

described in Charnes, Cooper, Learner and Phillips (1985). 
22. A two-stage DEA model for treating advertising as an output in a first-stage, which then 

becomes an input to a second stage, may be found in Charnes, Cooper, Golany, Halek, Schmitz and 
Thomas (1986). 

23. See Charnes, Cooper, Golany, Seiford and Stutz (1985) or Bowlin, Brennan, Charnes, 
Cooper and Sueyoshi (1984). 

24. Another, more academically oriented DEA study of all U.S. Institutions of Higher Learning 
(both private and public) is given in Ahn, Charnes and Cooper (forthcoming, 1989b). See also Ahn 
(1987). 

25. This type of analysis was first reported in Charnes, Cooper, Divine, Klopp and Stutz (1982). 
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