INFORMATION PROCESSING LANGUAGE V MANUAL

Section II. Programmers' Reference
Manual

A. Newell

F. M. Tonge

E. A. Felgenbaum

G. H. Mealy
Mathematics Division
The RAND Corporation

N. Saberit¢
B. F. Green, Jr,it#
A. K. Wolfeae

31 March 1960

K P-1918 Comstlim dopey, A-M- /

\

#Consultant to the Mathematics Division of

The RAND Corporation
##The University of Pittsburgh
#33t],incoln Laboratory

Reproduced by

The RAND Corporation ®© Santa Monica e California

The views expressed in this paper are not necessarily those of the Corporation

THE RAND CORPORATION
Copyright © 1960

P-1918
111

SUMMARY

This section of the manual sets out the complete rules for IPL-V.
Section I%* gives an introduction and simplified account of the language
and should be read before trying to use this section. IPL-V is currently
coded for several computers. Detalls of operation and the IPL-V inter-
pretive systems for each machine are given in later sections of the IPL-V
manual, The rules in Section II are common to all versions, and any
program constructed according to these rules will be accepted on any of

the object machines.

#The RAND Corporation paper, P-1897, " Information Processing Language V
Manual Section I. The Elements of IPL Programming.'

INFORMATION PROCESSING LANGUAGE V MANUAL P=1918
SECTION II: PROGRAMMER'S REFERENCE MANUAL

This section of the manual sets out the complete rules for IPL-V.
Section I gives an introduction and simplified account of the language and
should be read before trying to use this section., IPL-V 1s currently coded
for several computers. Details of operation and the IPL-V interpretive
systems for each machine ere given in later sections of the IPL-V manual.
The rules in Section II are common to all versions, and any program
constructed acoording to these rules will be accepted on any of the object

machines.

GENERAL DEFINITIONS

IPL LANGUAGE

IPL is a formal language in terms of which information can be stated
and processes specified for processing the information. IPL allows two

kinds of expressions: data list structures which contain the information

to be processed; and routines which define information processes. A
complete progrem consists of & set of data list structures and the set of
routines that define the processing to be done.

IPL COMPUTER

No computer currently available can process the IPL language directly,
but any general purpose digital computer can be made to interpret this
language by writing a specilal program in the language of that computer.

Such a program is called an IPL-V Interpretive system. The interpretive

system interprets IPL expressions as equivalent expressions in the language
of the particular computer, and causes the computer to carry out IPL
processes., When & computer is running with the IPL interpreter system,

its main storage has two major sections, one containing the IPL

interpretive system, and the rest, called the total available space, in

P-1918

2
which IPL programs and data may be stored. The particular computer
together with the interpretive system is known as the IPL computer. The
total available space is the "storage'" of the IPL computer.

The interpretive system consists of several parts:
(1) A loader, for loeding IPL programs into the available space from cards

or tape.

(2) A set of primitive processes, for manipulating IPL expressions.

(3) An interpreter, for executing the instructions in the IPL routiner

(4) A monitor, for providing debugging information.

IPL SYMBOLS

IPL is a system for manipulating symbols. The IPL computer
distinguishes three types of symbols--regional, internal, and local. It
keeps track of the type of each symbol being used, and will behave
differently in some cases, according to the type of symbol encountered.

To the programmer, & regional symbol 1s a letter or punctuation mark
followed by a positive decimal integer no greater than 9999; e.g., A 1,
*#12, R3496. Regional symbols are the programmer's stock of gymbols. An
internal symbol 1is a positive decimal integer. Internal symbols are the
computer's stock of symbols, and will generally not be used by programmers.
Inside the computer--that 1s, except for input and output--internal and
reglional symbols are treated identically. Each symbol corresponds to a
particular storage address. However, there are means to tell regional and
internal symbols apart, i1f needed.

Local symbols are used to connect lists and list structures. Their
identity is transitory--they are erased, generated, and changed at will by

the IPL computer. To the programmer a local symbol is a 9 followed by a
positive decimal integer no greater than 9999; e.g., 9-1, 9-34, 9-123.

P-1918

The 9 takes the place of the letter in the regional symbols. The use of
local symbols will be explained in the discuassion of list structures.

All symbols are printed out in the same form as they are input:
regionals are printed in the letter-numbers form; internals are printed as

decimal integers; and locals are printed as integers prefixed by a 9.

S8TANDARD IPL WORDS

All IPL expressions, both data list structures and routines, are
written in terms of an elementary unit, called the IPL word. Each word
occupies a single cell of the total available space in the IPL computer.

A standard word consists of four parts: P, Q, SYMB, and LINK, P and Q are

called the prefixes of the word. Q is the designation prefix and P is the

operation prefix (for routines) or the data type prefix (for date list

structures). BEach prefix is an octal digit--i.e., it may take on the
values O, 1, ..., 7. Its meaning depends on whether it occurs in routines
or data, SYMB is an IPL symbol, and is called the symbol of the word.
LINK is also an IPL symbol.

SPECIAL IPL WORDS: DATA TERMS

Different formats are necessary to represent integers, floating point
numbers, alphabetic characters, etc. Words containing such information

are called date terms, and have three parts: P, Q, DATA. P end Q are

prefixes, and DATA contains the special datum. The Q prefix is always 1,
indicating that the word is a special data term, The P prefix specifles
the type of data. (Q=1 is also used in routines with a different
meaning; program and date are kept separate by context.)

THE CODING FORM

To put IPL words into the IPL computer, they must first be coded and

P-1918

punched into cards. The cards can then be read by the interpretive system.
The cards are prepared from the standard coding form, one card per line,
each card representing one IPL word (See Figure 1). For standard IPL
words, the columns leabelled NAME, P, Q, SYMB, and LINK are used. Type is
O or blank, Sign (+-) is irrelevant (but see INITIAL LOADING), end all
other columns are ignored by the IPL computer. (Certain columns are
excluded from use.) P and Q may each contain any digit from O through 7.
Blank is regarded as O. For data lists, P and Q are always blank (or O)
unless the word is a data term. NAME, SYMB and LINK may contain any IPL
symbol., If LINK is left blank, the IPL computer automatically fills in
the address of the next cell, represented by the next line on the coding
sheet, This is also true for SYMB. However, 1f the next line has a
regional or internal symbol as NAME, the blank LINK or SYMB 1s taken as &
termination symbol O,

NAME, SYMB, and LINK each occupy five columns. The first (leftmost)
column holds the region character--i.e., the letter for regions, or 9 for
local symbols. The other four columns hold the four digit integer
associlated with the symbol. The integer may be located anywhere within
the field in counsecutive digits. For example, Al, A1 A 1, and AOCOQOl,
sre a8ll instances of Al. Likewise, 910, 9 10 and 9-10 are all instances
of the local symbol 9-10, as long as the 9 occurs in the leftmost column.
The exact rules for writing legitimate IPL symbols in NAME, SYMB, and

LINK are the following:

P-1918
5

~-Regional and local symbols must have their initial character in the
leftmost column of the field (columns 43, 51, end 57 respectively).
Internal symbols may start anywhere in the field, except that if

the initial digit is "9", that digit cannot be in the leftmost
column.

-Except for the character in the leftmost column, all non-numeric
characters and blanks are ignored.

-The numeric part of the symbol may occur anywhere in the field with
any spacing. The field is scanned, and the digits are accumulated
as they are found and composed into a number.

[N @]) | '
P-1918 ~o ‘ | -
6 o ~ o ' ! -
- oI -
reS N0 o
0 o
~ .
*~m P
Q ~oy ! | 1
g e ! N
8 = | } -
A , e
Ww |o® i | o
o |©¥ h
Q |own “'
| o)
+
o
o
o
t~
g ; [
(@] = -
: <
> [ap?
_AN
o -
S o)
N=-0Z -
e}
: o
o i :
<
T >
79 I-
(&) i
P)
—-—— ‘-‘w
S :
(& | 3
| Lo}
’ T
1
> o
. o
-l = mo | o
a = ~NOY -
o ~ P~ -
8 0 N W | o
Q- = (oo :
=
w N -
s |~ -
= (Vo N
3 |v: :
~NO o
"‘D o
-) -
—v .
-) -
-a o~
o
@
. ®
Z M~
0
E
Q
§ o<
e a2}
Q. | -

Figure 1.

P~1918

DATA TYPE CODE P

The format for data terms is shown in Figure 2. Data terms have been
defined only for P from O to 3. The other four values, 4 through 7, are
available for private use (see sections on the machine systems).

CELLS

Each IPL word resides in a cell in the IPL computer (that is, a
register in the total available space). We say a cell contains the word,
also that the cell contains a symbol; i.e., the SYMB part of the word.
Alternatively, we refer to SYMB as the symbol in a cell. LINK is also a
symbol, but this is referred to as the link in a cell.

AVAILABLE SPACE

Since each IPL word resides in a cell in the IPL computer, during a
run the routines and data list atructures.require a certain amount of the
total available space--that is, of the total set of cells. At any moment
during & run there is a set of cells which is not part of any routine or
data list structure. This set is called the avallable space at that
moment. It is the stock of cells out of which new list structures can be
constructed. The available space 1s continually depleted as new structures
are built, but continually replenished as o0ld structures are no longer
needed and are erased-~-i.e., the cells composing them returned to
available space. All the available space is on a list, named H2, and

called the available space list. The mechanics for transferring cells to

and from avallable space will be described later.

LIMITS ON THE NUMBER AND TYPES OF STRUCTURES

All data list structures and routines are built up from the

avallable space, and any cell may be used for any purpose in such

-4

B R

JANNNANINNA T 374dWVX T

- INWAEG] IVEHANT §

AVIDP ¢ = &

N 1d1) TEANdWVYX

- AVWRO] IVHINIH

AVOIHIWONVYHATWY g = n_

OPxST°'- TSEAAWUYR T

.lh‘ﬁtvauMﬂ .a
(s 52 9Ivz =7 by Wunjos ui

lu.ﬂ.u(l\,_.«,& UY 05~ 97 05+

..:.O\Q WUM UDAd 29 Ju3uodxT)

- ANV WHS] IVNEINID

INIPd ONILVGId T=d

m A T SANAWYX]

ST

— VW #[TTHENTE

Km..wmurz_ avwWiD3d o

Ommuomva_Omwh.wnvmmuo
€22222222222 it viit bt

SINIWNOD

.OZ, uiajqeid

1awo4bouiy

133HS ONIQOD A-T1dl

Figure 2

P-1918

éonatructions. Consequently, as long as cells are available construction
can continue. No separate limits exist on how many date list structures,
storage cells, symbols, and so on, can be used. The only limit is in the
total amount of available space.

AUXILIARY STORAGE

The storage that holds the interpretive system and the aveilable

spaece is called the main storage. Access is also possible to secondary

storages--fast auxiliary storage and slow auxiliary storage--when

available on the object machine.

CELL NAMES

Access to a word requires access to the cell that holds the word, and

this requires that the cell have & known IPL name. The name of a cell is

the IPL symbol that represents the machine address of the cell. All
cells in use have names, either regional, local, or internal. The cells
in available space are not considered to have names since only when they
are taken for a specific use is the name determined. On the coding sheet
putting a symbol in the NAME field specifies that the word on that liupe
will be in the cell named. In essence, cells are named by writing a
symbol for NAME. The programmer need name only those cells he wishes to
refer to explicitly; hence NAME is left blank in most instances.

HEADS, LIST CELLS, TERMINATION CELLS

Cells are used to construct the verious structures in IPL., There are

three kinds of cells: heads, which start structures; list cells, which

form the bodies of structures; and termination cells, which mark the end

of structures. (Data terms occur in heads.) We will need these

distinctions in giving the conventions for each type of structure. A

P-1918

10
termination cell contains the word OO0 00000 00000, and the symbol that names
it is called a termination symbol. The symbol O is a termination symbol,
and is used by the programmer in preference to other termination
symbols. Hence, it is referred to as the termination symbol. The need
for other termination symbols arises from the delete processes (see
DELETE). Any cell containing O--i.e., SYMB = O--is called empty. (O is an
internal symbol.)

STORAGE CELLS

A storage cell is one whose purpose is to hold symbols. A storage
cell is created simply by giving a cell a regional name and putting the
termination symbol, O, for LINK. SYMB is then the symbol contained in the
cell; it may be put in initially by writing in the symbol on the coding

sheet, or the cell may be left empty and a symbol put in during processing.

Examples

NAME PQ SYMB LINK
The empty storage cell, Al: Al 0 0
The cell, A2, containing B3: A2 B3 0

Any cell may function as a storage cell (assuming it is not being used in
some other capacity).

PUSH DOWN LISTS FOR STORAGE CELLS

Associated with each storage cell is a system for storing symbols

contained in the cell. This system is a data list, called a push down

1ist. The storage cell is the head of the list, and the cells used in the

storage system are list cells. The symbol currently in the storage cell
may be put onto the push down list, so that the cell can be used for
another purpose, and then recovered at a later time. The system is a

"last-In-First-Out" system (LIFO); that is, the symbols ere recovered from

P-1918
11

storage in the inverse order of their entry. The most recently preserved
symbol 1s the first one recovered. The system 1s fully specified by the

operation for putting symbols in storage, preserve or push down, and the

operation for recovering symbols from storage, restore or pop up.

PRESERVE To preserve a storage cell is to put a copy of the symbol
contained in the cell on the push down list assoclated with
the cell. The operation leaves the symbol still in the cell.

RESTORE To restore a storage cell is to move into the cell the symbol
most recently put on the assoclated push down list of that cell.
The symbol occurrence in the cell Just prior to restoring is lost,
and the symbol moved from the push down list is no longer on the
list.

P-1918
12
Examples: Iet the storage cell W3 contain the symbol 85:
NAME PQ SYMB LINK
W3 S5 0]

If W3 1is preserved, then a copy of 85 goes into storage, while W3
continues to hold 85:

W3 55
S5 0

If another symbol, Bl, is now put into W3, we have:

w3 Bl
S5 0

If W3 18 preserved again, we have:
w3 Bl
Bl
85 0
And 1f another symbol, G3, 1is put into W3, we have:
W3 G3
Bl
85 0
If W3 is restored, then:

W3 Bl
S5 0

And if W3 is restored sgain:
W3 55 0

After two preserves followed by two restores, W3 is brought back

to the original condition; and similarly for any number of preserves

followed by the same number of restores.
Each cell, then, really consists of a stack of symbols. The one on top
is accessible, and the others are in storage in the order in which they
are put in the stack. There is no limit to the number of symbols that
may be stored in a push down list; it is always possible to add another

as long as some avallable space remains in the IPL system.

P-1918
13

DATA LIST STRUCTURES

The data list structure is the IPL expression that contalns the data

to be processed. The total data for a program will be given as a set of
data list structures. Each data list structure is made up of date lists,
which in turn are made up of IPL words. (Routines are also list structures,

but satisfy different conventions.)

DATA LISTS

A data list is a sequence of cells contelning IPL words whose order

1s defined by the rule: the LINK part of the cell contalns the name of the
next cell in the list. The first cell in a list--the cell which does not
have its name as the LINK of any cell of the list--is the head of the list.
All other cells of the list are list cells. Cells containing date terms
(cells with Q = 1) are slso heads, and are treated as special cases of
data lists. The following rules apply to all regular data lists:

-Only names of list cells can occur as the LINK of a cell.

-Only names of heads can occur as the SYMB of a cell.

-The name of each list cell occurs once and only once as LINK
(this is equivalent to making lists linear, without cycles).

-The LINK of the last cell in a list is a termination symbol.

A 1list with O for the LINK of the head is called an empty list.

To create a data list write down a symbol in the NAME field of some
line. This symbol is the name of the list, and the cell corresponding to
it is the head of the list. (Thus the same symbol names both the list
and the head cell.) Write down the IPL words of the list in successive
lines of the coding sheet. These lines are the list cells, and they
occur in the list in the order they appear on the coding sheet. No names

are given to the list cells (NAME left blank) and the LINKs of all cells

P-1918
1k

but the last one are also left blank. The public termination symbol, O,

is written for LINK of the last cell.

Examples: NAME PQ SYMB LINK
The list with name L1, contalning Ll Sl

the symbols S1, S5, 512 and ST in S5

that order: (the first symbol s12
occurs in the head here; conventions ST 0

for heads will be given presently).

The list with name 9-5, containing 9-5 A5
the symbols A5 and 9-3. 9-3 O

The termination symbol, O, 1s used, although any other termination symbol
1s perfectly legal. The latter would require an additional cell, and thus
take extra space without any compensating gain.

NAMING LIST CELLS

The IPL computer will assign an internal name to any cell that is not
explicitly named by the programmer. The programmer may give names to list
cells by using local symbols. (Using regional symbols would start a new
1ist, in effect.) The IPL computer interprets a blank SYMB or LINK in a
cell as referring to the next cell, and the name of this next cell is
filled in. This occurs properly either when the next cell has a blank
NAME or a local symbol for NAME. If the next cell has a regional name,

the blank SYMB or LINK is taken as the termination symbol, O.

Example: NAME PQ SYMB LINK
The usual reason for naming Ll 0 9-1

data list cells is to break 9-2 S2 9-3

the sequential order on the 9-1 Sl 9-2

coding sheet: 9-3 S3 0

DESCRIBABLE LISTS

It is possible to associate with a list a description list, similar

in concept to a function table, which can contain information about the

P-1918
15

list being described. The SYMB of the head is reserved for the name of the

description 1list. A list with the head so reserved is called describable.

If a list is describsble, descriptive information can be added to it or
requested about it, at any time during processing, by means of a set of
processes, J10 - J15. Since the head of a describable list 1s reserved,
the first symbol on the list is in the first cell after the head, the
second symbol is in the second list cell after the head, and so on. Lists
that use the head for any other purpose are called non-describable. If
no information has been associated with a describable list, then there
will exist no description 1list. However, the head is still reserved, and
hence is empty. (The list in the previous example has no description list
associated with it but has a reserved head.)

POLICY ON DESCRIBABLE LISTS

The basic'processes (the J's) assume that data lists are describable
whenever this is relevant to their operation. In the manual we will
assume a list to be describable, unless explicitly stated otherwise.

ATTRIBUTES AND VAIUES

The informetion that can be assoclated with a describable list is in

the form of values to specified attributes. Suppose L1l is a describable

list, and Al is some attribute, say the number of symbols on a list. Then
the value of Al for Ll is some symbol, say N3. This can be expressed in
mathematical notation as AL(Ll) = N3. Any symbol at all may be used

as an attribute, no matter what its other functions in the total program
might be. The value of an attribute is always a single symbol. However,
any symbol may be the value--for example, the name of a data term, the

name of & list, or the name of a list structure~-so that there is no

P-1918

16
restriction at all on the kind of information that can effectively be the
value of an attribute. Only a single value 1s possible for a given
attribute, but it is always possible for the value of an attribute to be
the name of a list of "values,'" thus achieving the effect of multivalued
sttributes. The usefulness of descriptions stems from the generality of
what constitutes an attribute or a velue. Any number of attribute values
may be assoclated with a describable list.

DESCRIPTION LISTS

A description list 1s a list that contains alternately the symbols for

attributes and their values. The attribute symbol occurs first, followed
by its value for the list the description list 1s describing. Description
lists are themselves describable, so that the first attribute symbol occurs
in the first list cell, its value in the second list cell, the next
attribute symbol in the third, and so on. The same symbol cannot occur
more than once as an attribute on the description list.

CREATING DESCRIPTION LISTS

Processes exist to create, modify, interrogate and erase description
1ists during processing (see J10 to J15). Such lists can also be created
on the coding sheet prior to loading. A local name is written for SYMB of
the head of the list to be described. The description list is defined in
the same manner as any other list: its name is written for NAME on some
line (the same symbol as occurred in the head of the main list); the head
of the description list is made blank since the description list is
describable; then follow the attributes and values in sequence on the

coding sheet; the final value has a termination symbol for LINK. (No other

list

list

DATA

P-1918

17
structures may intervene on the coding sheet between the describable
and the description. See DOMAIN OF DEFINITION OF LOCAL SYMBOLS.)
Examples: NAME PQ SYMB LINK
The describable list, L1, Ll 0
with no descriptions: Sl

S2

S3 0
L2 described by the attributes L2 9-0
Al and A2 with values V1 and S1
V2 respectively: S2

S3 0

9-0 0

Al

V1l

A2

Ve 0
LIST STRUCTURES

that

data

A list structure is & set of lists connected together by the fact

the names of some of the lists occur on other lists in the set. A

list structure is characterized by the following conditions:

-Al1 the component lists are data lists (hence linear--that is, not
re-entrant).

-There is one list, called the main list, that has a regional name
(internal, if created by the IPL computer).

-All lists, except the main list, have local names, and are called
sublists.

-All local names that occur in the list structure--that is, as SYMB
of some cell--name lists that belong to the list structure.

-No cell belongs to more than one list (no merging of lists).

-The name of each component list except the main 1list occurs at
least once on some list of the list structure; it may occur many
times.

~-The main list is always describable; the sublists may either be
describable or non-describable.

P-1918
18

A data 1list structure is thus a fairly simple form of list structure--many
complicating ways of linking lists together having been excluded. It is
not the simplest, which would be a tree, since it is possible for the name
of & sublist to appear in several places in the structure. Data terms are
included in the definition, as are storage cells since they are also data
1ists. The name of & list structure is the neme of its main list. (Thus
this symbol does triple duty as the name of a 1list structure, list and
cell.) Not all symbols occurring in a list structure refer to other lists
in the structure: if they are regional or internal symbols their referents
cannot belong to the same list structure. Thus there can be complicated
cross references between a set of data list structures.

DOMAIN OF DEFINITION OF LOCAL SYMBOLS

The domain of definition of a local symbol is a list structure,

Within a single list structure a local symbol can be the name of only one
data list--that for which it occurs as NAME. All occurrences of a local
gymbol within a 1list structure are understood to refer to this data list.
However, there is no connection between the local symbols in one list
structure and those in another (which is why they are called local). Thus
the symbol 9-1 will stand for many things in a total program.
Contrarivise, & regional symbol, like Al, or an internal symbol, like
1622, always stands for the same object throughout the total program. Om
the coding sheet the occurrence of a regional or internal symbol for NAME
marks the start of a list structure. All local symbols that occur after
this line belong to this list structure, until another regional or internal

NAME occurs.

P-1918
19

LEVELS

It is often convenient to refer to the lists of a data list structure
as having levels. The main list has the highest level, and a sublist is
one level below its superlist--i.e., the list on which its name occurs.
(It is possible for the name of a list to occur on several lists at
di fferent levels.) If numbers need to be assigned to levels, the main
list is assigned level 1l and increasing positive integers are used for

successively lower levels.

P-1918

20
Examples: NAME PQ SYMB LINK
A single list can be a data Ll 0
list structure: S1
82
83 0
A single data term can be a B5 21 BILL
data list structure:
A list of lists can be a data 1.2 0
list structure. (The spaces 9-1
between lists are for clarity)
in the manual; no such spaces 9-3 0
need occur on the coding
sheet): 9-1 0
81
82
83 0
9-2 0
83
81
82 0
9-3 0
82
83
81 0
A 1list of numbers can be a L3 0
list structure. In the 9-3
example, two of the numbers N3
belong to the structure and 9-1 0
the other, N3, does not:
9-1 1 15
9-3 -1 19
A list can have multiple L4 0
occurrences of sublists, as 9-1
well as mutual references 9-1 O
and self references:
9-1 0
9-2 O
9-2 0
9-1

9-2 O

P-1918
21

NAME PQ SYMB LINK

If the name of the main list, L5 0
which is internal or regional, L5
appears in the list structure L5
it is treated like any other LS 0o

regional or internal symbol.
The example, L5, is a simple

list.
The algebrelc expression, X0 0
(X3+X%2) - (X3-X4) can be written 9-1
as a list structure where the .
sublist arrangement indicates 9-2 O
the parenthetical structure.
We have used +, -, and ° in- 9-1 X1
stead of admissible IPL symbols +
to make the correspondence X2 0
clear.

9-2 X3

X4 0

OTHER LIST STRUCTURES

Other kinds of list structures besides data list structures are
possible end useful--e.g., circulaer lists, in which the "last" cell links
to the "first" cell. The programmer is free to invent and use any such
structures he desires, but he is then responsible for being aware of their
special nature. Almost any kind of structure can be loaded in the computer
(see INITIAL LOADING). We have defined the class of date list structures,
in order to provide useful processes which take into account their

particular conventions--e.g., copy and erase an entire data list structure.

ROUTINES AND PROGRAMS

The IPL expressions used to specify information processes are
generally similar to their data counterparts, but differ in detall.
Corresponding to the word of data is the instruction, to the data list is

the program list, and to the data list structure is the routine.

P-1918
22

PRIMITIVE PROCESSES

A primitive process is one that can be directly performed by the

computer without further IPL interpretation; i.e., one that is coded
directly in machine language. IPL symbols can name primitives. Most of
the basic processes (the J's) are primitives, and it is possible to add
primitives to the langusge (see the sections on machine systems for
details).

INSTRUCTIONS

The IPL word that specifies an information process is called an

instruction. It always has the staendard form: PQ SYMB LINK. The process

to be done is designated by PQ SYMB, while the LINK, as usual, designates
the next cell in a list. The P and Q codes are entirely different from
the data P and Q codes. They denote operations to be carried out rather
than types of symbols and data. (The information that SYMB is regional,
internal, or local is lost in an instruction, but is not needed for
interpretation.) The definitions of P and Q, given presently, completely
define the process designated by an instruction.

PROGRAM LISTS

A program list is a sequence of cells containing instructions, whose
order is defined by the following rule: the LINK of a cell is the name of
the next cell in the list. The first cell in a list is the head; all others
are list cells. The head contains an instruction, 8o no program list is
describable. In interpretation, the program list gives a sequence of
instructions to be carried out in the order of the list. Almost anything
is possible with program lists: they may be reentrant, or merge. They may

have regional symbols as LINKs, and names of list cells as SYMB. These

P-1918
23

various possibilities are governed by the interpretation of the P and Q
code.

ROUTINES AND PROGRAMS

A routine is a list structure characterized by the following conditions:
-Some of the lists are program lists.

-There is one program list, called the main list, that has a regional
name.

-All lists, except the main list, have local names and are called
sublists (and initiate local subroutines).

~All local names that occur in the list structure as SYMB of some
cell name lists that belong to the list structure.

-The name of each sublist occurs at least once on some list of the
1ist structure; it may occur many times.

-The mein list 1s not describable (since it is & program list).

Local symbols follow the same rules for the domain of definition given in

connection with data list structures. It is also possible to talk about
the levels in e routine in the same manner as with data list structures.
Each routine specifies & process. A routine is executed when this
specified process is carried out by the IPL computer. This implies that
the subroutines out of which the process is composed are also executed (as
reqpired). A program is the set of routines that specifies a process in
terms of primitive processes. The routine first executed is at the
highest level. The routines of the program are all routines required in
the execution of this top routine, taking into account that routines
require other routines for their execution,

DATA IN ROUTINES

Normally, routines consist purely of program lists. However, it is

gometimes convenient to include various kinds of data along with the

P-1918
2L

routine, such as constants, storage cells, and 80 on. BSince data list
structures are handled differently from program lists on inmput (P and Q are
treated differently), i1t is necessary to indicate which cells are to be
interpreted as data. A + or - in the Sign column is used for this, and
every cell to be interpreted as data must be so marked. (The + or -
contributes to the data only in the case of numeric data terms, as defined
earlier; in all other cases it has no effect.)

SAFE CELL

A storage cell 1s called safe over & routine if that routine leaves

the symbol in the cell (and the push down 1list) the same as it was prior
to the execution of the routine, except as modification is explicitly
required by the definition of the routine. If there is no guarantee that
the contents of the storage cell will remain unmolested, the cell is

called unsafe over the routine. A routine can use a safe cell, as long as

it returns the cell to the original condition. Safe cells are useful in
IPL because the preserve and restore operations make it easy to use a
storage cell and then return it to an earlier condition. From the point of
view of the using routine, a safe cell 1s one it can put a symbol in,
execute a subroutine, and expect to £ind the symbol still in the cell
afterwvards.

INPUTS AND OUTPUTS OF ROUTINES, HO

A routine can have a set of operands, called the input symbols. It
can also produce a set of symbols as outputs. It may also modify
existing data list structures, either those designated by input symbols,
or those inplicit in the construction of the routine. The number of inputs

or outputs is unlimited. They are always symbols, but these symbols cen

P-1918
25

name list structures (either data or routines), so that the types of inputs
and outputs are completely general.
All inputs for a routine are placed in a special storage cell, HO,

called the coomunication cell. If there are multiple inputs, they are

placed in the push down list of HO in a sequence determined by the
definition of the routine., All outputs from e routine are also placed in
the communication cell, HO, If there are multiple outputs, they are placed
in the push down list of HO in & sequence determined by the definition of
the routine. In the IPL-V manual we will let (0), (1) ..., represent,
respectively, the symbols in HO eand its push down list. They will serve as

names for the inputs and outputs. The communication cell is safe over all

routines., In connection with inputs this means that a routine must remove

(vefore it terminates) all the input symbols from the communication push

down list. The outputs, of course, are explicitly required to be in HO at
the end of processing. (Of course, routines can be defined with any input-
output conventions the programmer desires. The above ones are used by the
basic processes (the J's), and means are provided to make them easy to use

generally.)
EXPLICIT STATEMENT OF INPUTS AND OUTPUTS

The safety of HO implies that a routine must remove all its input
symbols from HO. Its outputs, of course, are to be left in HO. In order
to avoild confusion we adopt the policy of explicitly stating all inputs and
outputs., For example, if a routine leaves one of its input symbols in HO,
this is to be stated explicitly as one of the outputs.

TEST CELL, HS

The result of many processes involves a binary distinction-- & "yes"

P-1918

26
or "no," For example, a process may be a "test" whose purpose is to make
a binary choice, or it may produce an output where there is no guarantee
that the output can be produced, so that a binary indication, "yes, the

" or "no, the output was not produced," is needed as

output was produced,
well as the output symbol in those ceses where it can be produced. A

special storage cell, H5, called the test cell, is used for this binary

information. It cen contain either of two special symbols, "+," which
stands for yes, or "-," which stands for no. The + and - are symbols used
only in the manual. In the computer, J4 is the symbol for + and J3 for -.
These are, respectively, the names of the basic processes that set HS5 4 or
-. The test cell is safe over the basic processes (the J's); that is, if
a J-process does not set H5 as part of its definition, then H5 will be the
same after performance of the process as it was before. (This means that

conditional transfers may be delsyed after the decision has been made and

recorded in H5, as long as only J's which do not set H5 are performed.)

P-1918
27

THE DESIGNATION OPERATION, Q, AND THE DESIGNATED SYMBOL, 8

In instructions the Q prefix specifies an operation, called the

designation operation, whose operand is SYMB. The result of performing

the designation operation on SYMB is a new symbol, S, called the

designated symbol of the instruction. We give below all eight values of Q.

The first five Q's Q = 0, 1,..., 4 are normally the only ones that appear
on the coding sheet.
Q= 0 8 = the symbol in the instruction itself--i.,e., SYMB,

Q=1 8= the symbol in the cell named in the instruction--i.e., in
SYMB.

Q= 2 8 = the symbol in the cell whose name is in the cell named in
the instruction--i.e., in the cell named in SYMB.

Q =3 Trace this program list (otherwise equivalent to Q = 0).
Q=4 Continue tracing (otherwise equivalent to Q = 0).

Q=5 BSYMB is the address of a primitive--i.e., of a machine language
subroutine,

Q=6 Routine is in fast auxiliary storage.

Q =7 Routine is in slow auxiliary storage.

Examples: NAME Pq SYMB LINK
Given the memory situation: Bl Cl 0
Cl D1 0

For the three instructions below
wve get the following designated

symbol:
S = Bl 0 Bl
S=Cl 1l Bl
8 = D1 2 Bl

P-1918
28

THE OPERATION CODE, P

The P prefix specifies an operation, called simply the operation of

the instruction, whose operand is the designated symbol, S. The result
is an action related to the set up, execution, and clean up of routines.
The eight operations are:

P= O EXECUTE S. S is assumed to name a routine or a primitive; it

is executed--i.e., the process it specifies is carried out--
before the next instruction is performed.

P=1 INPUT S. HO is preserved; then a copy of S is put in HO.

P=2 OUTPUT TO S. A copy of (0) is put in cell 8; then HO is
restored.

P = 3 RESTORE 8. The symbol most recently stored in the push down
list of S is moved into 8; the current symbol in S is lost.

P =4 PRESERVE S. A copy of the symbol in S is stored in the push
down list of S; the symbol still remsins in 8.

P =5 REPLACE (0) BY S. A copy of 8 is put in HO; the current (O)
is lost.

P=6 COPY (0) IN 8. A copy of (0) is put in S; the current symbol
in S 18 lost, and (0) is unaffected.

P =7 BRANCH TO S IF H5 -. The symbol in H5 1s always either + or -.
If H5 is 4, then LINK names the cell containing the next
instruction to be performed. (This is the normal sequence.)
If H5 is -, then S names the cell containing the next
instruction to be performed.

Thus, P = 0 1s used to execute subroutines; P = 1, 2, 5, and 6, are used
to transfer symbols to and from the communication cell, HO; P = 3 end L
are used in connection with safe cells; and P = 7 1s a centralized
transfer of control.

Examples:

At the right we give small segments

of program lists--i.e., sequences of

instructions. Below we give a verbal
statement of the action.

NAME

It tekes two instructions to put the
symbol in WO into the cell Wl. The
first instruction, 11WO, inputs the
symbol 1WO to HO, and the second,

20Wl, moves the symbol into cell Wl.

It is desired to execute a process,
P15, which takes two inputs and
produces one output. The inputs are
to be 'L1' and the symbol in WO; and
the output is to be in Wl. 10Ll
inputs 'L1l' to HO, pushing the symbol
in HO down, so it 1is not destroyed.
11WO0 inputs the symbol in WO to HO,
again pushing down. Then P15 is fired:
it removes the two symbols Jjust put in
HO, and places its own output there.
20Wl takes this output from HO and
puts it in W1 (destroying the symbol
in W1). HO is left as it was at the
beginning.

It 1s desired to put (0) into Y5, but
without destroying the symbol already
there. Hence, 20Y5 1s preceeded by
40Y5, which preserves Y5.

It is desired to replace a symbol in the
cell named in W1l by the symbol in the
cell named in WO. 12WO brings the
symbol into HO, and 21Wl puts it in
lWl-~-i.e., in the cell named in Wl.
Notice that HO is left Just as it was
before the two operations were per-
formed.

A process whose name is in Y2 is fired

with input from WO. Assume it has one

output. This is put into W1l by 60W1,

which also leaves it in HO so that J2

can test if it 1s equal to S5. The

result of J2 is either a + or - in H5.

T709-1 transfers control to the part

of the program list starting at 9-1

if H5 is -. If H5 +, then control 9-1
proceeds down the list.

Process P30 is fired on an input from
WO. WO 1s restored by 30WO to bring
it back to its previous condition.

P-1918
29

PQ SYMB LINK

11 WO
20 Wl

10 L1
11 WO

P15
20 W1

Lo Y5
20 Y5

12 WO
21 Wl

11 WO
1Y2
60 W1
10 S5

J2

70 9-1

LN 2 BN

P30
30 WO

P-1918
30

INTERPRETATION

The interpretation of a program consists of generating a sequence of
primitives according to the lists in the program, and executing each
primitive in turn. The part of the IPL-computer that carries this process

out is called the interpreter. The process consists of a cycle of operations,

which we define in two ways: first, as & series of rules, from the most
generally applicable to the most special; second, as a step-by-step
sequence of interpretive actions, similar to a flow diagram.

CURRENT INSTRUCTION ADDRESS CELL, Hl

Execution of a routine in a program involves executing its subroutines.
While executing & subroutine it is necessary to remember the current
location in the higher routine, so that when the subroutine 1ls finished,
interpretation can proceed from the correct instruction in the higher
routine. The hierarchy of in-process subroutines is necessarily unlimited,
since a subroutine can be composed of other subroutines of unknown

composition. A speclal storage cell, H1l, called the current instruction

address cell or CIA, is used to mark locations in the hlerarchy of

inprocess routines. The symbol in Hl is the address of the current
instruction; the symbol one down in the push down list is the address of
the instruction in the routine one level up; the next symbol down is the
address of the instruction in the routine two levels up; and so on. (The

programer never uses Hl; it is used solely by the interpreter.)

P-1918
31

RULES OF INTERPRETATION

1.

2.

S

T.

An instruction is interpreted by first applying Q to SYMB to get
8 and then applying P to 8 to get the action.

Generally, the instructions in a program list are interpreted in
the order of the list. Control advances.

In case P = 7 the sequence may be broken (if HS5-), but control
remains at the same level and continues along the list from the
cell with name S. Control branches.

A process designated in a program list 1s executed by remembering
the address of its instruction in H1 (with a preserve), and then
interpreting its program list--i.e., the list whose name is the
designated symbol--starting with the instruction in the head.
Control descends a level.

A primitive procesé designated in a program list is executed by
transferring machine control to the machine language subroutine
corresponding to the primitive process; no descent occurs.

Interpretation of a program list terminates with a LINK = O, the
end of the list; or with LINK = name of a routine, in which case
this routine is executed as the last process of the program list.
(Termination is also achieved by branching to & O or the name of
a routine via P = 7.)

Upon termination of a program list, control ascends a level, and
interpretation proceeds in the program list that contained the
name of the program list Jjust finished, from the point at which
it was executed (H1 is restored). If Hl is empty, the computer
halts.

If the routine of a designated process 1s in auxiliary storage,
it is brought into main storage, and interpretation proceeds.

P-1918
32

THE INTERPRETATION CYCLE

START: Hl contains the name of the cell holding the instruction to
be interpreted.

INTERPRET Q

- Q= 0, 1, 2: apply Q to SYMB to ylield S; go to INTERPRET P.

- Q =3, 41 execute monitor action (see MONITOR SYSTEM); take
8 = SYMB; go to INTERPRET P.

- Q = 51 transfer machine control to SYMB (executing primitive);
g0 to ASCENDO

-~ Q= 6, T: bring routine in from auxiliary storage; put
name of auxiliary region in Hl, go to INTERPRET Q.

INTERPRET P
- P= 0: go to TEST FOR FRIMITIVE. _
-P=1,2, 3, 4 5, 6: perform the operation; go to ADVANCE.
- P= T: go to BRANCH.

TEST FOR PRIMITIVE: Q of S
- Q= 5: transfer machine control to SYMB of S (executing
primitive); go to ADVANCE.
- Q # 5t go to DESCEND.

ADVANCE: interpret LINK
- LINK = 0: termination; go to ASCEND.
- LINK ¥ 0: LINK is the name of the cell containing the next
instruction; put LINK in Hl; go to INTERPRET Q.

ASCEND: restore H1 (returning to HL the name of the cell holding the
current instruction, one level up); restore suxiliary region
if required; go to ADVANCE.

DESCEND: preserve Hl: put S into H1 (H1 now contains the name of the
cell holding the first instruction of the sub program list);
go to INTERPRET Q.

BRANCH: interpret sign in H5
- H5 - : put S as LINK (control transfers to S); go to
ADVANCE.,
- H5 + : go to ADVANCE,
Figure 3 gives a schematic picture of the connections between the parts of

the interpretive cycls.

Q:6,7

P-1918
33

'ﬁ' Get routine from

auxiliory storage

INTERPRET Q
-
Q:=5 Q:=0,1,2 Q=3,4
Transfer Take monitor action
to $:=Q(SYMB)
primitive $=SYMB
INTERPRET P
P=1,2,3,4,5,6 P=7 P=0
TEST FOR -
Execute P BRANCH PRIMITIVE
H5- H5+ +
Take S Tror;:fer
as LINK primitive
* LINK=0 1
ASCEND ADVANCE
LINK#O

FIG. 3

.f DESCEND

P-1918
3k

TALLY OF INTERPRETATION CYCLES, H3

The interpreter counts the number of cycles executed by tallying 1
into H3 every time an ADVANCE occurs. H3 is an integer data term. It is
set to zero at the beginning of a run by the loader. It 1s available to
the program during running--that is, it can be copied, reset to 0 at
various points in the program, and so on. It provides a useful measure of

the amount of processing done.

BASIC SYSTEM OF PROCESSES

The system of prefixes, P and Q, the interpreter, and the rules for
constructing list structures, are essentially the grammar of IPL. In order
to construct useful programs it is necessary to add a set of basic
processes for manipulating symbols, lists, description lists, list structures,
and special format words. The system provided here is general purpose, in
that any process can be accomplished with it. It is focussed on list
manipulation, however, with the consequence that arithmetical processes
are inefficient in comparison with their machine code counterparts. The
system consists of a set of storage cells with special functions (some of
which have already been described), and a set of basic information processes.
Some of the basic processes are primitives; some are elementary IPL routines
included to complete the repertoire.

SYSTEM REGIONS (EXCLUDED FROM OTHER USE)

The regions Hdddd, Jdddd, and Wdddd are used by the system, and no

new symbols in these regions may be defined by the programmer.

P-1918

SYSTEM CELLS

The following cells have special functions. They are all storage

cells and safe, except H3 and Wll, which are integer data terms.

HO
H1
H2

H3
HU4
H5
wo

to
L

Wlo

W1l

W13

Wik

Wl5

W16
W17
w18

Wl9

Communication cell.

Availsble space list; never used by programmer, except to count
with J126.

Tally of interpretation cycles executed; an integer data term.
Current esuxiliary routine cell; never used by programmer.
Test cell; safe only over J's.

Ten cells for common working storage (see WORKING STORAGE
PROCESSES and GENERATOR PROCESSES).

35

Current instruction address cell (CIA); never used by programmer.

Random number control cell; holds the name of integer data term

used to produce random number in J129 and J16.

Remainder of integer division; an integer data term (see J113)

See MONITOR SYSTEM FOR W12 through W15, W23, W29.

Monitor start cell; holds name of routine executed at start of

trace (@=3).

Monitor end cell; holds name of routine executed at return to

Q=3 point.

Monitor terminate cell; holds name of routine executed at

slgnalled termination.

Monitor save cell; holds name of routine executed at signalled

save for restart.
See INPUT-OUTPUT for W16 through W22, w2k, wes.

Input mode cell; holds name of integer determining input mode,

Qutput mode cell; holds name of integer determining output mode.

Read unit cell; holds name of integer determining unit used by

J140.

Write unit cell; holds name of integer determining unit used by

Jik2,

P-1918

w20
wel

wa22

We3

walk

w25

W26

W27
w28

W29

Print unit cell; holds name of integer determining unit for J150's.

Print column cell; holds name of integer determining print column.

Print spacing cell; holds name of integer determining line and

page spacing.

Post mortem cell; holds nsme of list determining information to

be printed on post mortem dump.

Print line cell; holds name of present print line.

Entry column cell; holds name of integer determining entry

position in print line.
See ERROR TRAP for W26 through W28.

Error trap cell; holds name of list, in description list form,

of trap symbols and associated processes.

Trap address cell; holds CIA at the time of the trap.

Trap symbol cell; holds symbol indicating cause of trap.

Monitor point address cell; holds name of cell holding

instruction with Q = 3.

P-1918
37

GENERAL PROCESSES, JO to J9

In this and following sections we give the definitions of the basic
processes, accompanied by whatever general explanations are appropriate.
Note that sll outputs are explicitly named, and that only these outputs
remain in HO after completion of a routine. We include definitions of
some terms with a circumscribed meaning.

TEST A test is a process whose only result is to set H5 + or -. Its
definition is of the form: "TEST X" where X is sny statement. If X is
true, then H5 is set 4; 1f X is false, then H5 is set -. Any number of
inputs is permissible.

FIND A find is a process with a single symbol as output, but where it is
uncertain whether the output can be produced (can be found). If the output
is produced it is put in HO, and H5 1s set 4. If the output 1is not
produced, there 1s no output in HO, and H5 is set -. Any number of inputs
is permissible.

MOVE In normal computing one never destroys the information in the

originating location when reading it into a new place; i.e., readouts are
"non-destructive." In IPL, with the operation of restore, a "destructive"
read becomes useful. Thus, move means to put in the newly designated
place, but not to leave in the original place. If a symbol is being moved
from a storage cell, then the cell is restored; if a list structure is

being moved to auxiliary storage, then it is erased in main storage.

P-1918

J3
Jh
J5

J6

J9

NO OP. Proceed to the next instruction.

EXECUTE (0). The process, (0), is removed from HO, HO is
restored (this positions the process's inputs correctly), and
the process is executed (as if its name occurred in the
instruction instead of 'J1').

TEST IF (0) E (1). (The identity test is on the SYMB part only;
P end Q are ignored.)

SET H5-. The symbol in H5 is replaced by the symbol J3.
SET HS +. The symbol in H5 is replaced by the symbol Jk.

REVERSE H5. If H5 +, it is set -; if H5 is -, 1t is set +.

REVERSE (0) AND (1). Permutes the symbol in HO with the first
symbol down in the HO push down list.

HALT, PROCEED ON GO, The computer stops; if started again it
interprets the next instruction in sequence.

RESTORE HO. (Identical to 30HO, but can be executed as LINK.)

ERASE CELL (0). The cell whose name 1s (0) is returned to the

available space list, without regard to the contents of the cell.

DESCRIPTION PROCESSES, J10 to J16

As described earlier in the section on DATA LIST STRUCTURES, there

are processes for manipulating descriptions and description listis.

For all

of them the name of the describable list 1s input, and not the name of the

description list. The name of the description list is found in the head

of the describable list, and, whenever created by these processes, is a

local symbol.

(This allows the description list to be erased automatically

whenever the list is erased as & list structure--see J72.)

J10

FIND THE VALUE OF ATTRIBUTE (0) OF (1). If the symbol (0) is on
the description list of list (1) as an attribute, then its
value--i.e., the symbol following it--is output as (0) and H5
set +; 1if not found or if the description list doesn't exist,
there is no output and H5 set -. (J10 is accomplished by a
search and test of all attributes on the description list.)

Ji13

J1k

J15

J16

P-1918
39

ASSIGN (1) AS THE VAIUE OF ATTRIBUTE (0) OF (2). After Jl1l the
symbol (1) 1s on the description 1list of list (2) as the value
of attribute (0). If (0) was already on the description list,
the old value has been removed, and (1) has taken its place; 1if
the o0ld value was locel, it has been erased as a list structure
(J72). If (0) is & new attribute, it is placed at the front of
the description list. Jll will create the description list
(with a local name), if it does not exist (head of (2) blank).
There is no output in HO.

ADD (1) AT FRONT OF VALUE LIST OF ATTRIBUTE (0) OF (2). The
value of (0) is assumed to be the name of a list. The symbol,
(1), is inserted on the front of this list (behind head, as in
JsuS. If the attribute is not on the description list, it is
put on and a list is created as its value (with a local name).
As in Jl1, if the description list doesn't exist, it is created.

ADD (1) AT END OF VALUE LIST OF ATTRIBUTE (0) OF (2). Identical
to J12, except that (1) is iuserted at the end of the list,
rather than the front.

ERASE ATTRIBUTE (0) OF (1). If the symbol (0) exists on the
description list of list (1) as an attribute, both it and its
value symbol are removed from the list. If either is loecal, 1t
is erased as a list structure (J72). If (0) is not an
attribute on the description list of (1;, nothing is done. (In
all cases the description list is left.

ERASE ALL ATTRIBUTES OF (0). The description list of list (0)
1s erased as a list structure (J72), and the head of (0) is put
blank.

FIND ATTRIBUTE RANDOMLY FROM DESCRIPTION LIST OF (0). All the
attributes on the description list of list (0) that have
positive numerical data terms as values (integer or floating
point) are taken as a population from which a random selection
is made with relative weights given by their values. Thus 1if
there are attributes A, with values Ny > O then:

i
Ny
Probability of AJ being selected =
2. M
ell 1

The output (0) is the attribute symbol selected, and H5 is set
+. If there are no positive numerical data terms on the
description 1list, there is no output and H5 is set -. The
random number used in J16 1s generated as in J129, and is
therefore controlled by W1O.

P-1918

CENERATOR HOUSEKEEPING PROCESSES, Jl7 to J19

GENERATORS

Repetitive operations can be handled in IPL by means of loops,
utilizing the conditional branch, Jjust as in normal programming. They can

also be handled by means of generators. A generator is a process that

produces a sequence of outputs and applies to each a specified process.

The process that the generator applies is called the subprocess of the

generator, and is anrinput. Thus, the generator is assoclated with the
kind of sequence it produces, and will apply any process whatsoever to
these outputs. The only thing a generator knows about the subprocess 1is
the name of its routine, plus a convention allowing the subprocess to
control whether or not the generator will continue to produce outputs of
the sequence. .This latter convention is necessary if generators are to be
used conditionally--e.g., to search for a member of a sequence with certain
properties.

What mekes generators different from all the other processes considered
so far, is that two contexts of information--that of the generator, and
that of the subprocesses and superprocess--must coexist in the computer at
the same time. Hence, the strict hierarchy of routines and subroutines is
violated, and special pains have to be taken to see that information
remains safe, and that each routine is always working in its appropriate
context. To see this, define the context of a routine to be the set of
symbols in the working storages that it is using. We will assume that any
routine using m+l symbols of information, stores these in WO through Wn,
rather than some arbitrary subset of W's. The routine that uses a

generator, which we will call the superroutine, has a certain context.

P-1918
L1

The subprocess is in the same context as the superroutine. The generator

18 VYeing used to provide a sequence of information to be processed in the
routine using the generator, and the subprocess 1s simply that part of the
superroutine that does the processing. In general it needs access to all
the symbols in the context of the superroutine. It is given a name only
to communicate to the ggnerator vhat processing to do. The generator has
an entirely different context in order to produce the sequence. The
purpose of the generator 1s to separate the processing that goes into
producing & sequence from the processing that is to be done to the sequence.
There 1s an alternation between generator and subprocess which is both an
alternation of control and an alternation of context: to produce an
element of the sequence, the generator must be in control, and its context
should occupy the W's; and to process the element the subprocess must be
in control, and the context of the superroutine should occupy the W's.
Thus, vhenever the generator fires the subprocess, it is necessary to
remove the context of the generator from the W's, thus revealing the prior
context, which is that of the superroutine. At the termination of the
subprocess the context of the generator must be returned to the W's
(pushing down the W's, of course).

To handle the special housekeeping assoclated with generators, three
routines are provided: J17 is used at the beginning of a generator to set
up the housekeeping, J18 1s used to fire the subprocess, and shuffles the
contexts back and forth, and J19 is used at the end of a generator to

clean up the housekeeping structures.

P-1918
42

J17

J18

J19

GENERATOR SETUP. Has two inputs:

(0) = Wn, the highest W that will be used for working storage--
e.g., (0) = W6, if cells WO through W6 will be used.

(1) = the name of the subprocess to be executed by generator.

J17 does three things (and has no output):

-Preserves the cells WO through Wn;

-Stores Wn and the name of the subprocess in storage cells,
and preserves & third cell for the output sign of H5 (these
three storage cells are called the generator hideout);

-Obtains the trace mode of the superroutine (Q one down in
Hl); and records it in one of the hideout cells (see
MONITOR SYSTEM).

EXECUTE SUBPROCESS. Hes no input. It does six things:

-Removes the symbols in WO through Wn, returning the
previous context of symbols to the top of the W's;
-Stacks these symbols in one of the hideout cells;

-Sets the trace mode of the subprocess to be that of the
superroutine (see MONITOR SYSTEM);

-Executes the subprocess;

-Returns the symbols of the generator's context from the
hideout to the W's, pushing the W's down;

-Records HS5, the communication of the subprocess to the
generator (see J19), in one of the hideout cells.

GENERATOR CLEANUP. Has no input. Does three things:

-Restores WO through Wn;

-Restores all the cells of the hideout;

-Places in H5 the recorded sign, which will be + if the
generator went to completion (last subprocess communicated

+), and - if the generator was stopped (last subprocess
communicated -).

P-1918
43

GENERATOR CONVENTIONS

We can now summarize the conventions for the use and construction of

generstors.

-In the superroutine the generator is executed like any other routine.
Its inputs are placed in HO:
50; is always the neme of the subprocess;

1), (2), ..., define the kind of sequence to be produced.

~-8tart the generator routine by doing J17: input (1), the subprocess,
is already in place; do a 1lOWn, where Wn is the highest working cell
to be used, for input (0).

-Produce the first member of the sequence, and put it in HO as input
to the subprocess. The member may be given by any number of symbols,

(0), (1),

-Fire the subprocess by executing J18. At the time of execution the
generator's symbols caennot be stacked up more than one deep in the
W's or J18 will fail to clear the context.

-The subprocess operates in the context of the superroutine, taking
as input the symbols provided by the generator, above. Thus the
symbols in the W's are the ones placed there by the superroutine,
or by one of the earlier execu:.ions of the subprocess. Likewise, the
subprocess can put symbols in the W's (or HO), which are then
avallable to later executions of the subprocess, or to the
superroutine after the termination of the generator.

-The subprocess sets H5 upon termination: + if the generator 1s to
produce the next member of the sequence; - if the generator is to
terminsate.

-Within the generator, after executing J18, if H5 is + produce the
next member of the sequence. If there are no more members, clean up
and quit with J19, which will pop up the W's and set H5 for output.
If H5 is -, then immediately clean up and quit with J19.

-There is no output from the generator to the superroutine except HS,
vhich is 4 if the generator went to completion--i.e., produced all
members of the sequence--and is - if the generator was terminated.
J19 sets this output.

-There is no restriction on the nesting or cascading of generators:
a generator may use other generators as subroutines; and a generator
can be in the form of a subprocess operating on the output of another
generator. (The subprocess of a generator is part of its context, so
that J18 always fires the subprocess of the generator currently in
context,)

-If the generator is in main storage, the subprocess to it may have
either a regional or local name. If the generator is in auxiliary
storage, the subprocess to it must have a regional nasme (see
AUXILIARY STORAGE PROCESSES).

P-1918

WORKING STORAGE PROCESSES, J20 to J59

Storage cells can be created at will by the programmer, and can be
used either as permanent or temporary storage for any purpose the
progremmer desires. The only advantage in using the W's lies in the
following forty processes for manipulating them, together with their
built-in use in the gengrator processes.v

J2n MovE (0), (1), ..., (n) INTO WO, W1, ..., Wn RESPECTIVELY. Ten

routines, J20 - J29 that provide block transfers out of HO into
working storage. The symbols currently in WO to Wn are lost.

J3n RESTORE WO, W1, ..., Wn. (Ten routines, J30 - J39)

Jin PRESERVE WO, W1, ..., Wn. (Ten routines, J4o0 - J49)

J5n PRESERVE WO, W1, ..., Wn, THEN MOVE (0), (1), ..., (n) INTO WO,
Wl, ..., Wn, RESPECTIVELY. (Ten routines, J50 to J59, combining
Jin and J2n.)

LIST PROCESSES, J60 to J10L4

PRESERVE AND RESTORE AS GENERAL LIST OPERATIONS

The preserve and restore operations were defined earlier for storage
cells. We describe below the mechanics underlying them. It can be seen
that these operations can apply to any list, given the name of a cell in
the list: preserve will insert an additional cell with the same PQ SYMB as
the given cell, and restore will replace the contents of the given symbol
with the contents of the following cell, and remove the following cell

from the list, thus performing a deletion.

P-1918

NAME PQ SYMB LINK

To the right we are given, initially, H2 0 1000
the avallable space list, H2, and a 1000 0 1050
cell, WO, with a list proceeding from 1050 0] 1020
its LINK: 1020 0 coee

13[0) B2 500

500 Cl 505
505 c2 coee

If we preserve WO, then a word is H2 0 1050
obtained from avallable space and 1050 o 1020
inserted in the list following WO, 1020 0
with a copy of SYMB of WO:
Notice that all words in the list WO B2 1000
except WO remained unchanged, and 1000 B2 500
that all the conditions for preserve 500 Cl 505
are satisfied. Note also that the 505 c2 coee
amount of processing is independent
of how many items are on the list.
If we now put into WO a new SYMB, DI, WO Dl 1000
we get (with no change in the H2 1000 B2 500
list): 500 C1 505
505 c2 caee
Restoring WO reverses the operation, H2 0o 1000
deleting the cell next after WO, 1000 0 1050
putting it back on the available 1050 0] 1020
space, but putting its SYMB in WO: 1020 0 cese
wo B2 500
500 Cl 505
505 c2 coas
Restoring WO again yields: _ H2 0 500
Notice that cells are returned on 500 0 1000
the front of the available space 1000 0 1050
list, H2, so that the amount of 1050 0 1020
processing required is independent 1020 0 cose
of the size of avallable space.
wo Cl 505
505 c2 ceee

LOCATE

A locate produces an output which is the name of the cell contailning
the desired symbol. Since there is no guarantee that the symbol is

locatable, H5 is set + if it is, and - 1f it 1s not located. 1In the

P-1918

46
negative case en output is still produced: in the locate processes in the
basic system, J60, J61, J62, the output is the name of the last cell in the
1list.

INSERT

In an insert two symbols are designated, either directly as inputs or
as the result of prelimipary processing by the insert processes: a symbol
in a list cell, and & symbol that is to be inserted in the list relative to
the first symbol. A new cell from avallable space is put in the list to
hold the new symbol, which is then located in the appropriate relationship
to the symbol alreedy in the list. There are no outputs in HO.

NAME PQ SYMB LINK

Consider the mechanics for two

relationships: insert before and
insert after. Suppose the symbol

to be inserted is Al, the symbol in 900 +see 1000
the 1list i1s Bl, and its list cell 1000 Bl 910
is 1000: 910 cose seve

In both cases we start by preserving

1000: 900 «eee 1000
1000 Bl 1010
1010 Bl 910
910 vese eess

For insert before, we put Al in 1000: 900 eees 1000
1000 Al 1010

1010 Bl 910

910 e e O O [3K BN N J

For insert after, we put Al in 1010: 900 cees 1000
1000 Bl 1010
1010 Al 910
910 LN B N [N BN N]

Notice that the symbols bear the
appropriate relationship of before and
after, but not necessarily the cells.
Given the name of a cell, there is no
way to insert a cell in front of 1it,
since the cell that links to it is
unknown.

P-1918

DELETE
In a delete a symbol in a list is designated, either directly as input

or as the result of preliminary processing, end it is desired to remove
this symbol from the list, reducing the number of list cells by one. H5 is

set - for sppropriate special cases; e.g., 1f the symbol designated for
deletion does not exist. Otherwise it is set +.

NAME PQ SYMB LINK

Suppose the designated symbol 1s 900 +eees 1000
Al and it is in list cell 1000: 1000 Al 910
910 Bl 920
920 cses eoue
Then deletion is accomplished by 900 eees 1000
restoring 1000: 1000 Bl 920
920 evee seee

Notice that it is the cell after

1000 that 1s removed. It is not
possible to remove a cell knowing only
the name of the cell, since the name
of the cell linking to it is unknown.

Suppose, however, that cell 1000 was 900 eses 1000
the last cell in the list: 1000 Al 0
Then, it 1s not possible to remove 900 «ees 1000
the next cell, which is O, the 1000 0O 0

‘termination symbol. Instead, 1000 is
made into a private termination cell.
This is the only way to make cell 900
the last cell in the list. H5 is set -
to indicate that we have deleted the
last symbol.

POLICY ON PRIVATE TERMINATION CELLS

Private termination cells are introduced to allow deletion of final

symbols on lists. They occur in no other way. They can gradually
accumulate during processing, using up space. Consequently, J60, the
process which locates the next symbol on a list, automatically returns
private termination cells to available space. substituting the termination

symbol, 0. (J60 can do this, since when it detects a termination cell 1t
still has esvailable the name of the previous cell.) Any J's that use J60

as a subroutine will also have this feature (see sections on machine systems).

P-1918
L8

ERASE

ST ————

To erase a structure of any kind is to return all the cells comprising
it to available space. There is no output in HO.
cory

To copy a structure of any kind i1s to produce a new set of cells from
avallable space and link them together isomorphically to the given structure.
All the cells of the new set will contain exactly the same symbols as their
correspondents, except those that contain symbols used to link the structure
together; e.g., local nemes in list structures. These contain the names of
the coples of the corresponding lists. The name of the new structure 1is
the output, (0).

LIST PROCESSES

J60 LOCATE NEXT SYMBOL AFTER CELL (0). (0) is the name of a cell.
If e next cell exists (LINK of (0) not a termination symbol),
then the output (0) is the name of the next cell, and HS is
set + If LINK is a termination symbol, then the output (0) is
the input (0), which is the name of the last cell on the list,
and H5 18 set -.

If the next cell is a private termination cell, J60 will work as
specified above, but in addition the private termination cell
willl be returned to available space and the LINK of the input
cell (0) will be changed to hold O.

No test is made to see that (0) is not a data term, and J60 will
attempt to interpret a data term as a standard IPL cell.

J61 LOCATT LAST SY:0L O LIST (0). (0) 1s essumed to be the name
of a cell in a 1list (either a head or list cell; it makes no
difference). The output (0) is the name of the last cell in
the 1ist, and H5 set + If there 1s no cell after (0), then
the output (0) is the input (0) and HS is set -.

J62 LOCATE (0) ON LIST (1). A search of list with name (1) is made,
testing each symbol against (0) (starting with cell after cell
(1)). 1f (0) is found, the output (0) is the name of the cell
containing it and H5 set +. Hence, J62 locates the first
occurrence of (0) if there are several. If (0) is not found,
the output (0) is the name of the last cell on the list, and HS
set -.

J63

J6h

J65

J66

J67

J68

J69

JT70

J7d

P-1918
kg

INSERT (0) BEFORE SYMBOL IN (1). (1) is assumed to name a cell

in & 1ist. A new cell is inserted in the list behind (1). The
symbol in (1) is moved into the new cell, and (0) is put into
(1). The end result is that (0) occurs in the list before the
symbol that was originally in cell (1). There 1is no output in
HO.

INSERT (0) AFTER SYMBOL IN (1). Identical with J63, except the

symbol in (1) is left in (1), and (0) is put into the new cell,
thus occurring after the symbol in (1). (If (1) is a private
termination symbol, (0) is put in cell (1), which agrees with
the definition of insert after.)

INSERT (0) AT END OF LIST (1). Identical with J64, except that

the location of the last cell is obtained first, prior to
inserting.

INSERT (0) AT END OF LIST (1), IF NOT ALREADY ON IT. Identical

with J62 followed by Jok, if (0) is not found. If (0) ie found,
J66 does nothing.

REPLACE (1) BY (0) oN LIST (2) (FIRST OCCURRENCE ONLY). J62

followed by putting (0) in the cell occupied by (1). This only
replaces the first occurrence of (1). If (1) doesn't occur on
list (2), J67 does nothing.

DELETE SYMBOL IN CELL (0). (O) names & cell in a list, The

symbol in it 1s deleted by replacing it with the next symbol
down the list (the next cell is removed from the list and
returned to available space, so that the list is now one cell
shorter). HS is set+unless (0) is the last cell in the list

or a termination cell. Then H5 is set -. Thus, H5 - means that,
after J68, (0) is a termination cell.

DELETE SYMBOL (0) FROM LIST (1) (FIRST OCCURRENCE ONLY). J62

is executed, followed by a delete if (0) is found. H5 is set +
1f (0) deleted, and set - if (0) not on list.

DELETE LAST SYMBOL FROM LIST (0). A J61, followed by a delete

if 1ist (0) was not empty. HS5 is set +if there was a last
symbol, and set - if list (0) was empty.

ERASE LIST (0). (0) is assumed to name a list. All cells of

the list-~-both head and list cells--are returned to available
space. (Nothing else is returned, not even the description list
of (0) 1f it exists.) There is no output in HO. If (0O) names
& list cell, the cell linking to it will be linking to
available space after J7l, a dangerous but not always fatal
situation.

P-1918
50

Jre

J73

JTh

J75

J76

J77

J78

ERASE LIST STRUCTURE (0). (0) is assumed to name a list

structure or s sublist structure. List (0) is erased, as are
all lists with local names on list (0), and all lists with locel
names on them, and so on. Thus, description lists get erased,
since they have local names. If the list is on auxiliary
storage (Q of (0) = 6 or 7), then the list structure is erased
from sauxilisry, and the head, (0), is also erased. J72 works
for lists in both main and auxiliary storage.

CcoPY LIST (0). The output (0) nemes a new list, with the

identical symbols in the cells &s are in the corresponding cells
of 1ist (0), including the head. If (o; is the name of a list
cell, rather than a head, the output (0) will be a copy of the
remainder of the list from (0) on. (Nothing else is copied, not
even the description 1list of (0), if it exists.) The nam: is
local if the input (0) is locel; otherwise it is internal.

COPY LIST STRUCTURE (0). A new list structure is produced, the

cells of which are in one to one correspondence with the cells
of 1list structure (0). All the regional and internal symbols in
the cells will be identical to the symbols in the corresponding
cells of (0), as will the contents of data terms. There will be
new local symbols, since these are the names of the sublists of
the new structure. Description lists will be copled, if their
names are local. If (0) is in auxiliary storage (Q of (0) = 6
or 7), the copy will be produced in main storage. In all cases,
1list structure (0) remains unaffected. The output (0) names the
new list structure. It 1s local if the input (0) is local; it
is internal otherwise.

DIVIDE LIST AFTER LOCATION (0). (0) is assumed to be the name

of a cell on a list. A termination symbol is put for LINK of
(0), thus making (0) the last cell on the 1list. The output (0)
pames the remainder list: a new blank head followed by the
string of list cells that occurred after cell (0).

INSERT LIST (0) AFTER CELL (1), AND LOCATE LAST SYMBOL, List

(0) is assumed to be describable., Its head is erased (1if local,
the symbol in the head 1s erased as a list structure). The
string of 1list cells is inserted after cell (1): LINK of cell
(1) is the name of the first list cell, and LINK of the last
cell of the string is the name of the cell originally occurring
after cell (1). The output (0) is the name of the last cell in
the inserted string end H5 is set +. If list (0) has no list
cells, then the output (0) is the input (1) and H5 is set -.

TEST IF (0) IS ON LIST (1). Assumes (1) is the name of a cell

on & 1ist. A search is done of all cells after (1); HS5 is set
+ 1f (0) is found, and set - if not.

TEST IF LIST (0) IS NOT EMPTY, HS is set - 1f LINK of (0) is &

termination symbol, and set + 1f not.

J79

J100

Jl0l

P-1918
51

TEST IF CELL (0) I8 NOT EMPTY. HS is set - if SYMB of (0) is O,

and set + otherwise.

FIND THE nth SYMBOL ON LIST (0), 0£n<9. (Ten routines, J80-

J89.) BSet H5 + if the nth symbol exists, - if not. Assumes
liet (0) describable, so that J81 finds symbol in first list
cell, etc. J80 finds symbol in head; end sets HS - if (0) is
& termination symbol.

CREATE A LIST OF THE n SYMBOLS (n-1), (n-2), ..., (1), (0),

0L n< 9. The order is (n-1) first, (n-2) second, ..., (0) last.

The output (0) is the name (internal) of the new list; it is
describable. J90 creates an empty list (also used to create
empty storage cells, and empty data terms).

GENERATE SYMBOLS FROM LIST (1) FOR SUBPROCESS (0). The

subprocess named (0) is performed successively with each of the
symbols of list named (lgeas input. The order is the order on
the list, starting with the first list cell. HS5 is safe over
the generator: The sign of HS left by the subprocess at one
occurrence will exist at the next occurrence (it must be + to
keep the generator going).

GENERATE CELLS OF LIST STRUCTURE (1) FOR SUBPROCESS (0). The

subprocess named (0) is performed successively with each of the
names of the cells of list structure named (1) as input. The
order (called print order) is as follows:

1. List (0) is generated first.

2. All cells of a list are generated in contiguous sequence,
starting with the head.

3. After a list has been generated, the sublists of the list
structure that occur on the list are generated in the order
they occur on the list.

k. Lower level sequences of sublists occur after the higher
level sequence is finished, and are not interpolated.

5. Each list 1s generated only once, at the first opportunity.

The name of the cell 1s output to the subprocess as (0). HS is
set + 1f the cell is the head of a list (so that J10l is
starting to generate & new sublist). In this case J10l has
already marked the sublist processed (J137), so that the head
contains the processed mark and a blank symbol. The original
contents of the head are one down in the list, and will occur
as the next cell to be generated. In case the cell output to
the subprocess is a list cell HS5, is set -.

J10l has avallable the name of the next cell to be generated
prior to executing the subprocess (which determines how
manipulations of the list structure by the subprocess will
affect generation).

P-1918
52

J101 cleans up the processing marks that it puts in the 1list
structure, returning the list structure to its original state
(except es modified by the subprocess). Structures whose names
have been put by the subprocess in the blank heads created by
marking processed are not erased by the generator.

J101 will move in list structure (0) if it is on auxiliary.

J102 GENERATE CELLS OF TREE (1) FOR SUBPROCESS (0). The subprocess
named (0) 1s performed successively with each of the names of
the cells of the tree nemed (1) as input. A tree is a data list
structure in which each sublist appears once and only once. The
cells of each sublist are generated before going on with the
superlist; the cell containing the name of the sublist occurs
immediately after the sublist and ell its sublists are generated.
HB5 is set + to the subprocess if input (0) is the head of a new
sublist, and is set - otherwise. (Nothing is marked processed,
since there is no need to keep track of multiple occurrences.)
The name of the next cell to be generated is found before the
cell is presented to the subprocess--i.e,, it 1s possible to
erase & tree with J102.

J102 will move in list structure (0) if it is on auxiliary.

AUXILIARY STORAGE PROCESSES, J105 to J109

There are two types of auxiliary storage--fast and slow--and two
‘separste auxiliary storage systems--one for data list structures, and the
other for routines.

AUXILIARY STORAGE FOR DATA LIST STRUCTURES

The system for data list structures is patterned after a file drawer.
The file holds data list structures. A list structure can be filed in
suxiliary storage (it is the programmer's decision whether in fast or slow
storage). When filed, the structure is no longer in main storage, and all
the space it used is made available (except the head--see below). The
programmer must be aware of when he has filed a list structure in auxiliary,
gsince most of the processes do not check for this. Thus, doing a J60,
which locates the next symbol, on the name of filed list structure can only
lead to chaos. The system determines where a list structure shall be

filed, and records this information in the control word for the list

P-1918
o3
structure. This is kept in the head of the 1list structure--i.e., in the
cell whose name is the name of the list structure. Thus, a list structure
has the same name throughout a run, no matter how often it is shuffled
between main and auxiliary storage: when it is in auxiliary, the cell of
the name holds the control information to get the llist structure back,

A filed 1list structure may be moved back into main storage, in which
case it 1s no longer filed, and no trace of it remains in auxiliary. This
can be done any time the name of the list structure is encountered, since
the head holds the control informstion that locates 1t in suxiliary. It
1s also possible to copy or erase list structures in suxiliary using the
regular list processes, JT7hk and J72. Thus, the repertoire of processes
for handling auxiliary storage of data list structures consists of the

following processes:

J72 ERASE LIST STRUCTURE (0). (See definition in LIST PROCESSES.)

J74 COPY LIST STRUCTURE (0). (See definition in LIST PROCESSES.)

J105 MOVE LIST STRUCTURE (0) IN FROM AUXILIARY. The control word in
cell (0) determines the location of the list structure,
including whether it 1s in fast (Q = 6) or slow (Q = 7) storage.
The list structure is returned to main storage, using words from
available space, and the head replaced by the head of the list
structure, so that the list structure is identical to itself
prior to filing (except that different list cells are used).

HS 1s set +. If the list structure (0) was already in main
storage (Q # 6 or 7), J105 does nothing and H5 is set -. The
output (0) is the input (0).

J106 FILE LIST STRUCTURE (0) IN FAST AUXILIARY STORAGE. Creates a
copy of 1list structure (0) in & unit of the fast storage (the
system selects unit and the space within the unit). Erases
the list structure in main storage, except for head. Creates
control word (Q = 6) and places it in the head. There is:mo
output. (If there is no space in the fast auxiliary, it is
filed in the slow auxiliary.)

J107 FILE LIST STRUCTURE (O) IN SLOW AUXILIARY STORAGE. Identical to
J106 except uses slow auxiliary storage (Q = 7). (If there is
no space in the slow suxiliary, an error signal occurs.)

P-1918
5l

J108 TEST IF LIST STRUCTURE (0) IS ON AUXILIARY. Sets H5 + if (0) is
on either fast or slow auxiliary, and H5 - in all other cases.

AUXILIARY STORAGE FOR ROUTINES

The system for routines is used by the interpreter to bring in routines

for execution. It consists of an auxiliary block into which all routines

stored in auxiliary (either fast or slow) are copled, and executed. All
routines to be stored in auxiliary are assembled into this block during
loading, so that no further assembly is needed to execute them once they
have been brought in (see INTERPRETATION). Since all auxiliary routines
use the same block, if an auxiliary routine uses an auxiliary routine, the
copy of the higher one in main storage 1s destroyed when the lower one is
called in. It is necessary to bring the higher auxiliary routine back into
main storage again when the lower is finished. This leads to a "two call"
system, in which every routine requires two reads from auxiliary storage:
one to bring the routine in, and one to bring back its predecessor in the
auxiliary block. It 1s necessary to use a storage cell, the current

auxiliary routine cell, H4, to keep track of the routines in the auxiliary

block, since the nesting of auxiliary routines is unlimited. The symbols
stacked in H4 are names of the control words, so the routines can be
called back. These considerations lead to the following restrictions:

-There is a fixed upper limit to the size of an auxiliary routine,
given by the size of the block. However, this block can be set
arbitrarily for each run (see type 3: BLOCK RESERVATION CARDS).

-No auxiliary routine shall modify itself during execution. If it did,
the call back from auxiliary would not be the same as the initial--
and now modified--copy read in from auxiliary. (There are other
reasons for not allowing self-modification--e.g., recursions.)

P-1918
55

-Subprocesses used with generators in suxiliary must be independent
routines--1.e., have regional names--so that every time the generator
executes the subprocess it can be brought in from auxiliary. If the
subprocess were a sub-list-structure of the superroutine (with a
local name), then when the generator was brought in from auxiliary it
would destroy the copy of the superroutine--and with it, the
subprocess--and chaos would result when the generator tried to
execute the subprocess (see GENERATORS).

Routines cannot be created or manipulated during processing, so there are
no routines for moving rbutines from main storage to auxiliary or vice

versa.

CONTROL OF AUXILIARY UNITS

Both fast and slow auxiliaries are repacked when full or inefficient
(see sections on machine systems). Thus the location of a list structure
in auxilisry is variable. This means that coples of the control words
have no validity, and hence should never be used by the programmer. It
- also means that the programmer has no control over which auxiliary units

are used (see INITIAL LOADING).

ARITEMETIC PROCESSES, J110 to J129

All the input and output symbols in this section are the names of
numeric data terms. Most operations admit only integers (P = 0, @ = 1) or
floating point numbers (P = 1, Q = 1), but some admit any data term. In
the arithmetic operations, if all factors are integers, then the result
will be an integer. If either factor is floating point, the result will
be a floating point number. Note that the prior nature of the cell holding
the answer is immaterial. Thus, for example, J90 1s used to create new
result cells, even though it does not create data terms. None of the
factors are affected by the operations, unless they are also named as the

result. Any illegal operation--overflow, divide check, etc.--produces an

error condition (see ERROR TRAP).

P-1918

J110

Jiz2l

Jiz2

Jiz3

J12k

(1) + (2) —> (0). The number named (0) is set equal to the

algebraic sum of the numbers named (1) and (2). The output (0)
1s the input (0); i.e., the result.

(1) - (2) —> (0). The number (0) is set equal to the algebraic
difference between numbers (1) and (2). The output (0) is the
input (0).

(1) x (2) — (0). The number (0) is set equal to the product
of the numbers (1) end (2). The output (0) is the input (0).

(1) / (2) — (0). The number (0) is set equal to the quotient
of the number (1) divided by the number (2). The output (0) is
the input (0). If division is integer division, then the
remainder is the data term, W1l (consequently, the remainder is
unsafe over divisions).

TEST IF (0) = (1). Tests identity, including prefixes, of any
two data terms, named (0) and (1). Hence will always give H5 -
if an integer 1s tested against a floating point.

TEST IF (0) > (1).
TEST IF (0) £ (1).

TEST IF (0) = 0.

TEST IF (0) > 0.

TEST IF (0) £ O.

COPY (0). The output go; names a new cell contaeining the
1dentlcal coutents to (0). The name is local 1f the input (0)
18 local; otherwise it is intermal.

SET (0) IDENTICAL TO (1). The contents of the cell named (1)

is placed in the cell (0). The output (0) is the input (0).

TAKE ABSOLUTE VALUE OF (0). The number (0) is modified by
setting its sign 4. It is left as the output (0).

TAKE NEGATIVE OF (0). The number (0) is modified by changing
its sign--i.e., by multiplication by -1l. It is left as the
output (0). (Zero is signed; J123 takes zero into minus zero,)

CLEAR (0). The number (0) is set to be O. If the cell is not
a date term, it is made an integer O. If a number, its type,

integer, or floating point, is unaffected. It is left as the

output (0).

J125

J126

Jla7

J128

Jl29

P-1918
o7

TALLY 1 IN (0). An integer 1 is added to the number (0). The

type of the result is the same as the type of (0). It is left
as the output (0).

COUNT LIST (0). The output (0) is an integer data term, whose

value is the number of list cells in list (0) (i.e., it doesn't
count the head). If (0) = H2, J126 will count the available
space list. This is the only place where H2 can be used safely
by the programmer.

TEST IF DATA TYPE (0) = DATA TYPE (1). Tests if P of cell (0)

is the seme as the P of cell (1). (Assumes (0) and (1) are data
terms, hence, uses P of data term representation, which is not
the same as P of instructions--see sections on machine systems.)

TRANSLATE (0) TO BE DATA TYPE OF (1). The output (0) 1s the

input (0), translated according to the data type of data term
(1). This translation is not defined for all data terms. It
will float integers (P = 0 to P = 1) end fix floating point
numbers (P =1 to P = 0). It can be expanded to include other
P's--gsee sections on machine systems.

PRODUCE RANDOM NUMBER IN RANGE O TO (0). The output (0) is a

new number chosen from the uniform distribution over the interval
O up to number (0) (the endpoint (0) is excluded;. It is an
integer or floating point number according to (0). It is
produced by first generating a random number in the interval O
up to 1, and then multiplying this number by (0). The random
fraction is generated by multiplying the number named in storage
cell W10 by a fixed number and taking the low order digits.

This new number is returned to W10 to become the factor in the
next random number generated. Thus, starting W10 with a
specified integer leads to a fixed sequence with randqﬁl»w- af
properties, which can be repeated. Different random sequences,
such as are needed in statistical replication, are generated by
starting W10 with different initial numbers.

Note that if the input is the integer n, the selection is from
the n integers, 0, 1,, n-1, each with probability 1/n.

P-1918

DATA FPREFIX PROCESSES, J130 to J139

The reason for defining the data list structure as a unit of
information is to allow processes that work for the list structure as a
whole. We have processes like J72, erase a list structure; J74, copy a
1ist structure; and J140, read a list structure into the computer. One
erase process is sufficient to cover almost all possible types of data.
It is desirable to be able to construct edditional higher IPL routines
that also work for list structures. To do this requires the ability *to
detect and manipulate the three kinds of symbols: regional, internsl, and
local. This is possible (for data only) since the Q prefix is used
internally to encode the symbol type with each occurrence. Upon loading
date list structures (see INPUT-OUTRUT), the following coding tekes place:
SYMB 1s regional.

Word is data term.

SYMB is local.

Unassigned.

SYMB is internal.

Word is data term (same as Q = 1),

List structure is in fast auxiliary storage.
List structure is in slow auxiliary storage.

W O DOODODOLOO
R unouu

i

© ~I0\WUMFEFWNKHO

For all standard IPL words, and as assigned
for data terms.

The only velues of Q and P that appear externaliy are those connected with
data terms. We give the others here to make it clear whatx processes are
being performed with the date prefix processes; details can be found in

the sections on machine systems.,

RECURSIONS

Besides the processes implied above, it 1s necessary to be able to
work on all parts of the list structure--e.g., in an erase, every cell

must be erased. The basic technique in processing list structures is

P-1918
59

recursion. Since a list structure is recursively defined, the kind of

operations that can be defined for a list structure involve defining what
is to be done to each list of the structure and then recursing through the
structure. That is, the total process has the form:

-Do whét you have to to this list;

-Find all the local names on this list;

-Do the total process to each sub-list-structure

defined by these local names.
Eventually, all the lists in the list structure get processed and the
recursion will stop; the recursive character of the routine and the fact
that all connections in the structure are marked by local names assures
this. Since, however, the name of a list can occur in many places in a
1ist structure, there must be some device for avoiding multiple processing
of the same list if this 18 not desired (and it must not be allowed for
1ist structures which allow the name of a list to appear on one of its
sublists). For example, in erasing & list of lists which consists of three
occurrences of the same sublist--e.g., Ll: 9-1, 9-1, 9-l--the sublist, 9-1,
must be erased only once, not Just as a matter of efficiency, but because

chaos will result if an erased list is erased.

MARKING A LIST FROCESSED

The solution provided in the basic system to keep track of multiple
processing is & technique for marking a 1list "processed": J137 (taking the
name of a list as input) preserves the list, makes the head blank
(Q =4, SYMB= 0), and marks it with P = 1. Since throughout the rest of
the data, P= 0, it is possible to detect if the sublist has elready been
processed by testing whether P = 1 (J133). The mark can be removed and
the list returned to its initial condition by a restore. The blank head

can hold temporary information relevant to each sublist during a list

P-1918

60
gtructure process. For example, a new temporary description list could be
put in the head. It would not get mixed up with the normal description
1list, which 1s one down in the push down list. Of course, this temporary
description list must be cleaned up at the end, say by J15.

It is possible to avold some of the problems of keeping track of list
structure by using J10l, the generator of the cells of a data list structure.
J101 uses the device of marking processed--every sublist 1s marked processed
when first presented--but much of the mechanics is buried in J1Ol, and
need not be repeated by the subprocess that uses 1it.

J130 TEST IF (0) IS REGIONAL SYMBOL, Tests if Q = O in HO.

J131 TEST IF (0) NAMES DATA TERM., Tests if Q@ = 1 or 5 in the cell
whose name is (0).

J132 TEST IF (0) IS LOCAL SYMBOL. Tests if Q = 2 in HO.

J133 TEST IF LIST (0) HAS BEEN PROCESSED, Tests if P = 1 (and
Q# 1 or 5) in the cell whose name is (0). It will only be l
if 1ist (0) has been preserved and P = 1 put in its head by
J137. This means list (O) has been processed.

J134 TEST IF (0) IS INTERNAL SYMBOL. Tests if Q = I in HO.

J136 MAKE SYMBOL (0) LOCAL. The output (0) is the input (0) with
Q = 2. Since all copies of this symbol carry along the Q value,
if a symbol is made local when created, it will be local in ell
1ts occurrences.

J137 MARK LIST (0) PROCESSED. List (0) is preserved, its head made
blank (q = &, SYMB = 0), and P set to be 1. Restoring (0) will
return (0) to its initial state. This will work even with data
terms. The output (0) is the input (0).

J138 MAKE SYMBOL (0) INTERNAL. The output (0) is the input (0) with
Q = k. Best considered as "ummake local symbol."

P1918
61

INPUT-OUTPUT CONVENTIONS

Input and output comprise several pleces: initial loading; translation
from one representation to another; reading data list structures during
running; writing data list structures created during running so they can
be reloaded; printing; and monitoring the running program. All of these

utilize common conventions about format and designation of units.

EXTERNAL TAPES (BCD TAPES)

It is possible to use tapes for input and output, rather than the
on-line card readers, punches, and printers. 8uch tapes are called

external tapes, to distinguish them from the tapes used for auxiliary

storage. An external tape is functionally identical with a deck of cards
outside the IPL computer. It consists of a sequence of independent list
structures (and machine language code, if it 1s being used for initial
load). It canAbe removed from a computer and put on again at a later time.
External tapes are not generally compatible accross different types of
machines (but see sections on machine systems for details). Tapes can be
used as intermediate storage, since tapes written by the wrlte processes
can later be read back in by the read processes. An external tape can

hold information in any of the representations defined below.

INPUT-OUTPUT UNIT CODE

The units used for input and output are named by small integers as

follows:

0 The "normal" value for an installation. This will depend on the
operating system being used at the installation and the kind of
machine. It will include on-line card read and punch for some

signal from the console.

1-10 External tapes. The connection between these names and physical
units is again dependent on the machine and the installation.

The sections on the machine system should be consulted for more information.

P-1918
62

INPUT-OUTPUT REPRESENTATION MODE

The information being input and output is in one of several modes,
each of which has an integer code:

0 = IPL sgandard (one IPL word per card, as represented on the coding
sheet).

= IPL compressed (about 7 IPL words per card).
= TPL binary (about 20 IPL words per card).

)

>= Machine language for various object machines. See sections on
machine systems for further details.

~N O\ Fw N

/

IPL COMPRESSED REPRESENTATION

See sections on machine systems for information.

IPL BINARY REFPRESENTATION

(See sections on machine systems for further information.) The
information is put on the card in column binary, although the notation used
is as 1f it were row binary:-~e.g., 9L is the 36 bit word in the left half
of the 9 row of the card. The 9 row is special:

9LP = 6 (= 7 if wish to ignore checksum).

LD = v + 5008, where v = word count and is at most 22.

9LA = sequence number of card in deck.

9R = checksum = (9L) + (8L) + ... + (v'*P information word).

All the v information words, starting with 8L end working back, are

consldered one long string of bits. The string is divided up into units
by the following heading code and convention:

Heeding code (bits)

O = end of list.

10 = IPL word: followed by Q LINK P SYMB NAME.
1l = data term: followed by Q P DATA NAME.

P and Q each coded into 3 bits.

NAME, SYMB, LINK, each coded into 1 bit (<0) if blank; or into 6 bit
region plus 15 bit relative number if not blank.

DATA 18 coded into 30 bits.

P-1918

READ AND WRITE PROCESSES, J140 to J146

These are processés that allow the input and output of data list
structures during running, under the control of the program. Only data
list structures, not routines, can be input or output by these processes.
The form of the data list structures is identical to that of initial
loading, and may be in any of the three modes of representation: IPL
standard, IPL compressed, or IPL binary (if possible for the object machine).
A safe storage cell, W16 for reading and W17 for writing, determines the
mode. The symbol in the cell is the name of the integer data term giviné
the code stated earlier. The list structures are handled independently,
and not as blocks (as in initial loading), and no header cards are used.
No translation, assembly listing, or direct input to auxiliary (all inputs
being to main storage) is possible. The unit to be used must be selected,
and safe storage cells, W18 for read and W19 for write, are used for this.
The symbol in the cell names the integer data term giving the unit (see
INPUT-OUTPUT UNIT CODE).

J140 READ LIST STRUCTURE TO (0). A 1list structure on cards (or
external tape) in any of the admissible forms (IPL, compressed,
binary) is read into main storage, its name input to (0), and
HS5 set 4. Blank records are treated as end-of-list-structure
marks. If the first record read by J140 is blank, it is
1gnored. If there is no 1list structure (card hopper empty or
end of file) then there is no input and H5 is set -. Internal

symbols are assumed to already exist in the IPL computer:
internal symbol 1345 is assigned address 1345.

P-1918
6l

Jlk1

J1h2

J1hh

J1ks

J1h6

READ A SYMBOL FROM CONSOLE. Inputs a symbol or data term from

the console into HO. Sets H5 + if there is an input, and - if
there is not. An input data term is put in a new cell and given
an internal name.

The console conventions depend on the particular machine, and
the sections of the manual on machine systems should be
consulted for the exact definition of J1lil.

WRITE LIST STRUCTURE (0). (0) is essumed to name a list

structure. 1t is punched (or written on external tape) in any
of the admissible forms (IPL, compressed, IPL binary). Regional
symbols are converted back to external form, adddd; internal
symbols are converted directly--address 1345 to symbol 1345;

and local symbols are expressed as 9dddd, where the dddd are
small integers that start with O for each list structure. The
order of writing is that of J101, so that all the symbols of a
list are written consecutively. Thus there is no need for

local names for list cells-~i.e., no link is needed except for
0, the termination symbol.

REWIND TAPE (0). The external tape named by the data term (0)

is rewound.

SKIP TO NEXT TAPE FILE. The external tape named in W18 is

positioned past the next end of file mark.

WRITE END OF FILE. The end of file mark is written on the

external tape named in W19.

WRITE END OF BLOCK. A blank record (eppropriate to mode 1W1T)

is written on the external tepe named in W19. (See INITIAL
LOADING for use of blank records.)

MONITOR SYSTEM, J1L7 to J1L49

Three kinds of facllitles are available for monitoring the running

program and controlling it. First, it is possible to take a "snap shot"

of the program to see what it is doing. Second, it 1s possible to get

P-1918

"post mortem" information after a program has stopped. Third, it is

possible to trace the program, printing information on each instruction as

it 18 executed. The sections of the manual on machine systems should be

consulted on the conventlions for using the console to accomplish the

features described below.

MONITOR POINT, Q = 3

Any instruction with @ = 3 is called a monitor point in the program.

As far as execution of the program 1s concerned it is treated as Q = 0.

However, when it is encountered, the interpreter takes the following

monitoring action:

It

-It turns the trace on, also marking that a monitor point has occurred.

-It pushes down the safe storage cell W29 and stores the current
instruction address (the name nf the cell holding the instruction
with @ = 3) as 1W29.

-It checks the console for the following signals:

-Terminate the program for restart (see SAVING FOR RESTART): it
executes the routine named in the safe storage cell, W15, and
then continues with the program. Terminating this routine with
J166 accomplishes the terminate for restart.

-Terminate the program: it executes the routine named in the
safe storage cell, Wll, and then continues with the program,
Terminating this routine with J7 accomplishes the program
terminate.

-External trace mode: no trace, selective trace, full trace.

-If nelther of the terminates occur, it executes the routine
named in the safe storage cell, W12, and then continues the
program.

-When the program list in which Q = 3 occurred 1s finished--i.e.,
when the marked routine is finished--it executes the routine
named in the safe storage cell, W13.

-It then pops up W29 and continues with the program.

is normal to mark a routine by putting the monitor mark in the head.

P-1918
66

SNAPSHOTS

The four cells, W12, W13, Wli, and W15, hold four routines, called
snapshot routines. As seen above, they will be executed under various
conditions associated with the monitor points, Q = 3. There is no
restriction to the routine that could bve executed, although the normal use
is to print out various lists to see how the program is progressing. The
snapshot for W15 must end with J1i6 to make the program terminate for
restart, and the snapshot for W1k must end with J7 to stop the program.

POST MORTEM DUMP

In the event the program stops from some intermal error, it is
possible to print out information about the terminating condition of the
machine, The routine that does this 18 self contained, and is therefore
normally unaffected by whatever error stopped the IPL program. It is
executed manually from the console. W23 is used to select the information
obtained. The dump routine varies with machine, and the sectlions of the
menual on each machine system should be consulted for details.

TRACING

There are two trace modes, "on" and "off." In addition there are

three externally imposed conditions: no trace, in which the trace mode is

"of " no matter what is indicated internally; selective trace, in which

the trace mode 1s as indicated internslly; and full trace, in which the

trace mode is "on" no matter what is indicated internally. If the trace

mode is on, then for each instruction the following information is printed:

P-1918

~-Level number, counting down from the initial routine as level 1.
-CIA, the current instruction address (the symbol in H1).

-Test signal, the contents of H5 (+ or ~) prior to execution.
-Ingtruction being executed, PQ SYMB LINK (the contents of CIA).
-8, the designated symbol.

-(0), the symbol in HO prior to execution.

-The contents of cell (0), printed in appropriate form (data term or
PQ SYMB LINK).

-H3, the number of interpretation cycles since H3 was last reset. (H3
will include one count for each line of trace that would have
printed had full trace been on.)
The format is as follows:
&———1level CIA—H5 P Q SYMB LINK S (0) CONTENTS H3
The level and CIA are indented according to the level, modulo the printing
4
1ntegRal availsble. The symbols are translated back into IPL representation
(this 1s not possible on all machines). The Q of (0) is printed, indicating

whether the symbol is internal or local.

TRACE MARKS

The trace mode is carried by a mark in Hl. This mark encodes whether
the trace mode is on or off, and also whether a monitor point occurred. On
selective trace, the interpreter consults this mark each cycle (after
INTERPRET Q but before INTERPRET P) and if it reads on, prints the trace
information. This mark is governed by the occurrence of Q =3, and Q = k4,
in the instructions of the program. Both of these are treated as Q = 0 in
determining the designated symbol. The following rules describe their

function:

P-1918
68
«-If ¢ @ = 3 is encountered, set trace on.
-If the trace is on, it remeins on as we advance along & program list
(always at the same level)--i.,e., the trace mark propagates down a
list.

-When the program descends a level, the trace is always off, a priori
--i.e., the trace mark does not propagate down levels.

-If a Q = Ui is encountered, the trace mark i{s set to equal the trace
mark one level up--i.e., the trace is propagated down a level by
Q = k.

~-In ascending Hl is restored and the trace mark of the higher level
egain becomes operative.

These rules mean the following: putting Q = 3 in the head of a program list
will cause that list to be traced., Putting Q = U4 in the head of a program
1list will cause that list to be traced, if the program list calling upon
1t is tracing. Hence, putting Q =L in the heads of all local sublists of
a routine makes the routine & tracing unit: all instructions of the routine
will trace if Q@ = 3 in the head of the routine; the whole routine will
trace conditionally 1f Q = U4 is put in the head; and none will trace if

Q ,l-. 3 or 4 in any instruction.

The Q's can be written in the routines at the time of coding by the
programmer. Since @ = 3 and 4 are equivalent to Q =0, they can often be
put in without adding space to the system. If the head of & routine does
not have Q = 0, then an additional instruction, say with SYMB =JO, is
necessary. 8ince the routines that are traced are changed often, it 1is
desirable to specify the Q's at the beginning of each run, without
permanently marking the routines. This can be done by means of three IPL

processes

P-1918
69

J147 MARK ROUTINE (0) TO TRACE. If Q=0, 3, or 4, in cell (0),
chenges Q@ to be 3. If not, preserves (0), and places the
instruction 03 JO in cell (0).

J148 MARK ROUTINE (0) TO PROPAGATE TRACE. Identical to J1U7 except
uses Q =k,

J149 MARK ROUTINE (0) NOT TO TRACE. If Q=3 or 4, in cell (0), puts
Q = 0; uniess BYMB 1s also JO, in which case J149 restores (0).
If Q 7‘:3 or 4, does nothing.

PRINT PROCESSES, J150 to J161

Two classes of printing processes are provided, those for printlng IPL
units of data (symbols, lists, list structures, data terms) and those for
composing and printing a line of information. Each of the printing
processes is related to:

~the unit that will print, given by the integer data term named in
the safe storage cell W20. (B¢e INPUT-OUTPUT UNIT CODE.)

-the column in which the leftmost character of the format will print,
glven by the integer data term named in the safe storage cell W2l.
The columns run from 1 at the far left of the page to 120 at the
right. The entire format of 37 spaces must fit onto the page,
independent of whether particular fields are going to print or not.
If the column number shifts the format too far to the right or left,
the format will print at the rightmost or leftmost possible position.

-the line spacing that will occur between a line and the previous
printing, given by the integer data term named in the safe storage
cell W22. The spacing code is the following:

O if spacing is suppressed--i.e., print on the same line;
1l if start printing on the next line;

2 if skip one line before starting to print;

3 if skip to next page, and start printing at the top.

Not all the object machines have the full flexibility, so the sections on

machine systems should be consulted.

P-1918
T0

PRINTING IPL UNITS OF DATA

J150 PRINT LIST STRUCTURE (0). The contents of all the cells of the
date list structure named (0) are printed. Regional symbols are
translated to the form adddd; internsals are printed as the
decimal integer corresponding to the address; and local symbols
dre translated to the form 9dddd , where dddd are small integers
starting with O for each list structure. All data terms are
translated to their external form.

Bach 1list of the list structure is printed in an uninterrupted
vertical column, so that neither LINK nor the NAME of any list
cell is ever printed. If the SYMB names a data term, then this
data term is printed to the right on the same line. If the
NAME is a local name (which can occur only in printing the head
of a sublist), its corresponding address is printed to the left,
The local name, 9dddd, bears no relation to this address. The
full format is shown below. (Column 1l corresponds to the
column specified by the integer data term named in W21.)

-column: | 12345 | 67 | 89111 111 | 11112 |2222 | 2222233333333
012] 345 67890 | 1234k | 5678901234567

addr. NAME PQ| SYMB PQ DATA
of if SYMB names
NAME data term

if

local

The lists of the list structure are printed in the order of J1Ol.

J151 PRINT LIST (0). The contents of all the cells of the list
nemed (0) are printed in an uninterrupted vertical column. The
format is the same as that of J150, except that local symbols
are not translated to form 9dddd; but instead their addresses
are printed, and the Q =2 identifies them as locals.

J152 PRINT SYMBOL (0). The symbol (0) is printed. The format is
the same as J150, where (0) is placed at SYMB, and if it names

a data term, this is printed to the right. Locals are handled
as in J151.

J153 PRINT DATA TERM (0) WITHOUT NAME OR TYPE. (0) is assumed to
neme a data term (if not, nothing is printed and the designated
spacing occurs.) The DATA part of the data term is printed in
1ts location in the format of J150, but neither (0) nor the PQ
of the data term is printed. This process, in connection with
the suppression of spacing, allows alphanumeric characters to
be placed along a line in any pattern.

P-1918
T1

LINE PRINTING

In addition to the output unit, left margin, and line spacing controls

glven previously, line printing is controlled by:

-the current print line, named by the symbol in the safe storage cell
W2k, Print lines are reserved during loading (see TYPE 3: BLOCK
RESERVATION CARDS), when the symbol naming the line and the size of
the line are specified. All print lines start with column 1; the
specified line size determines the right margin of the line.

~-the current column at which information will be entered in the current
print line, given by the integer data term named in the safe storage
.cell W25. Information can be entered either left-justified--1W25
specifying the position of the first character of the field being
entered~-or right-Jjustified--1W25 specifying the position of the last
character of the field. After an entry, 1W25 is set to the next
column following the last character of the field entered, and H5 is
set 4. If the entire field cannot be entered because it would
exceed the line size, no information is entered, 1W25 is left

unchanged, and H5 18 set -,

Symbols are entered on the print line in compact form; that is, as Al,
B1O, etc. Data terms are entered according to the following rules:

Integers: Leading zeros are eliminated. Plus signs are not entered,
but minus signe are. Examples: "00273" entered as "273"
(3 columns); "-01050" entered as "-1050" (5 columns).

Floating Point: The entire number i1s entered, signed value followed
by signed exponent. gnly minus signs are entered.
Examples; . .505135x10°" entered as "505135 05" (9 columns);
", 1hx10-16 entered as "140000 -16" (10 columns).

Alphenumerict: Tralling blanks--that is, blanks that follow some
non-blank character and are not followed by some non-blank
character--are eliminated. Example: "_A_F " entered as
" A F" (4 characters);"___.. " entered as "_____ " (5
characters.)

All Other: The entire value of the data term is entered as a ten
digit octal integer. Example: "0000567234" entered as
"0000567234".

J154 CLEAR PRINT LINE. Print line 1W24 is cleared and the current
entry column, 1W25, is set equal to the left margin, 1W2l.

J155 PRINT LINE. Line 1w2h is printed, according to spacing control
1W22. The print line is not cleared.

P-1918
T2

J156 ENTER SYMBOL (0) LEFT-JUSTIFIED. Symbol (0) is entered in the
current print line with its leftmost character in print position
1W25, 1W25 is advanced to the next column after these in which
(0) is entered, and HS is set +. If (0) exceeds the remaining
space in the print line, no characters are entered, 1lW25 is not
advanced, and H5 is set -.

J157 ENTER DATA TERM (0) LEFT-JUSTIFIED. DPata term (0) is entered
in the current print line with its leftmost character in print
position 1W25, 1W25 is advanced, and H5 set +. If (0) exceeds
the remaining space, no entry is made and H5 1s set -.

J158 ENTER SYMBOL (0) RIGHT-JUSTIFIED. Symbol (0O) is entered as in
J156, except that 1W25 names the print position of the last
character of the field. If entry i1s possible, 1W25 is advanced
end H5 set +; if not, HS5 is set -.

J159 ENTER DATA TERM (0) RIGHT-JUSTIFIED. Data term (0) is entered
as in J157, except that 1W25 names the print position of the
last character of the field. If entry is possible, 1lW25 is
advanced and H5 set 4; if not, HS5 is set -.

J160 TAB TO COLUMN (0). (0) is taken as the neme of an integer data
term. Current entry column, 1W25, is set equal to 1W2l + (0).

J161 INCREMENT COLUMN BY (0). (0) is taken as the name of an integer
data term. Current entry column, 1W25, is set equal to 1W25 -+

(0).

In addition to lines composed using these primitives, complete

headings end partial lines can be specified at loading (see TYPE 3: BLOCK

RESERVATION CARDS).

INITIAL LOADING

To use IPL, the computer must first be turned into an IPL computer by
loading the IPL interpretive system, either from cards or tape. Then the
IPL computer must load the user's program into the total available space.
This requires a deck of cards (or external tape) containing the IPL words,
as well as some special cards to identify the program and to define the
regional symbols that are used in the program. These special cards are
called type cards, and they are identified by a non-zero digit in the

TYPE column (column 41). The cards that have been described up till now

P-1918
73
have all been type O cards (TYPE may be left blank on type O cards). The

following additional types are recognized.
TYPE 1: COMMENT CARDS.

All columns (except 41) are avallable for anything the programmer
wishes to write. Comment cards are listed on the assembly listing, but
have no other effect on the loading process.

TYPE 2: REGION CARDS

All the regional symbols with the same initial letter constitute a
region. Fach region is translated into an interval of addresses in the
computer. For example, the R region might correspond to addresses 1000 to
1018: then RO would correspond to 1000, Rl to 1001, and R18 to 1018. The
interval for each region must be specified at loading time by a type 2 card.
One type 2 card i1s used for each region. The first symbol of the regionc-
e.g., R or RO--is put in the NAME field, SYMB is left blank, and the
number of cells in the interval is put in LINK. The IPL computer assigns
the next block of contiguous cells avallable in the loading process to this
region. Thus the origin is assigned arbitrarily. There is normally no
need to know the origin, since all regional symbols are translated back
into the letter-number form for output. However, for some purposes it may
be desirable to specify the origin. This is done by placing the address
of the origin in SYMB., The origin can also be specified in terms of
another region, provided the other region 1s first defined. See the

sections on machine systems for further details.

P-1918

h

Examples: TYPE NAME PQ SYMB LINK
Ten symbols for the M region 2 MO 10
MO to M9:

Starting the M region at 2 MO 1000 10
address 1000:

Making MO synonymous with 2 MO B37 10
B37

There are 36 possible regions: AB ... Z +-/=., $* (end).
Three regions, H, J, and W, have already been permanently specified for the
baslic system. The regions are all part of the IPL computer. All the
regional symbols that are not actually used during loading--1i.e., do not
occur e&s some NAME, SYMB, or LINK on the coding sheet--are made part of
the available space for the IPL computer at the end of the loading, and
thus lose their regional character. All regional symbols mentioned (in
SYMB or LINK) but not defined (in NAME) are blank. If the exact limits of
intervals are specified, then the intervals corresponding to different
regions may overlap and need not be contiguous. If origins are assigned
by the IPL computer, the regilons are adjacent and disjoint.

TYPE 3: BLOCK RESERVATION CARDS:

It is necessary to reserve blocks of space for various purposes, and
sometimes desirable to set a number of regional symbols to be blank without
mentioning them, say for later input. Type 3 cards are used to accomplish
this. They fit the same format as type 2 cards: SYMB indicates the base,
if appropriate; and LINK indicates the size of the block (NAME is always

blank). Q is used to indicate the purpose of the block, according to the

following table:

P-1918
75

Q = O Reserve regional symbols. If SYMB is A5 and LINK is 10, then
A5 through Allk inclusive are set blank, and will not be put
back on available space. The symbols reserved must have
previously been covered by & type 2 card.

Q=1 Reserve print line. SYMB is the reglonal symbol naming the
line. LINK is the number of words to be set aside for the
print line. (These words are taken from available storage,
not from the region. See sections of the manual on machine
systems for details of how SYMB refers to the line, and of how
many characters are stored per word in a particular machine.)
If P is not O or blank, the immediately following record is a
Hollerith record to be loaded into the block starting with
column 1 into the first character position and continuing to
the end of the block.

Q =2 Reserve primitive block. Space can be provided with known
addresses to hold addlitional primitives. See the sections of
the manual on the machine systems.

Q =3 Reserve auxiliary routines buffer. This space is used by all
the routines on auxiliary storage. Its size limits the
maximum size of a routine on auxiliary. See AUXILIARY STORAGE.

Q = L4 Specify avaeilable space. If this card is absent from the
loading deck, or if it is present with LINK blank, all the
avallable space possible will be assigned, includlng all the
unmentioned and unreserved regional symbols. If LINK 1s
specified, only that much space will be provided, and all in
one continuous block if possible. In any event, various
scraps of space (ummentioned symbols, interstices between
regions, etc.) will be put on the end of available space.
This 1s often useful in debugging.

TYPE 4: LISTING CARDS

Type 4 cards represent printed output from computers which must
output via cards and therefore require a way of distinguishing printed
output (J150's) from punched output (J142). They are generated by the
computer, and not by the programmer. If input, they are listed on the
assembly listing, but have no other effect on loading.

TYPES 5, 6, AND 7: HEADER CARDS

Data or routines are loaded in a series of separate blocks, each of

which is preceded by a header card that governs the loading process.

P-1918
76

The input deck may be in several modes: IPL standard (one word per
card); IPL compressed; IPL binary; or one of the machine codes., It may
also come from one of several input units: tapes or the card reader. It is
possible to specify an output during initial loading, which serves the
purpose of translating from one form, such as IPL standard, to another,
such as IPL binary, for gubseqpent use. An assembly listing is usually
produced during loeding, to indicate the machine location assigned to each
IPL word in order to facilitate debugging. This may be suppressed, if
desired.

The block may countaln routines or data, and it is necessary to specify
which, as the P and Q codes are treated differently. Also, the block may
go into main storage (type 5), or to one of the auxiliary storages (type 6
for fast, type 7 for slow). In the latter case, it is necessary to
specify the units available to the auxiliary system, although it is not
necessary (or possible) to specify what units are used for what list
structures.

Finally, a header card 1s used to specify that loading has finished,
and to indicate where the program starts.

The codes for these various items of information are glven in the

following table:

P-1918
7

TYPE: Type of storage to be used:

main storage
fast auxilisry

y,
6
7 = slow auxiliary

Fp

NAME: Name of storage unit:

Blank for main storage (type 5)
See sections on mschine systems for designation of auxiliary
storage units on the various object machines (types 6 and 7).

P: Input mode:

0 =IPL standard (1 word per card)
1 = IPL compressed
2 = IPL binary

G5e= Machine language for various object machines. See sections on
machine systems for detalls.

Qe Type of input:

O = Routines. Internal symbols are considered pure symbollcs.
Undefined internal symbols (internal symbols not in the internel
symbol table) are assigned equivalents from availadble space.

1 = Data list structures. Internal symbols are considered pure
symbolics. Undefined internal symbols are assigned equivalents
from avallable space.

2 = Routines. Internal symbols are considered pure symbolics. The
internal symbol table 1s reset (thus undefining all internal
symbols) and undefined internal symbols are assigned equivalents
from avallable space.

3 = Data list structures. Internal symbols are considered pure
symbolics. The internal symbol table is to be reset and

- undefined internal symbols are to be assigned equivalents from

| availsble space.

| 4 = Routines. Internal symbols are considered machine addresses
(and so no equivalent need be assigned).

5 = Data list structures. Internal symbols are considered machine
addresses.

P or Q blank are interpreted as P or Q = O.

SYMB: Input unit:

0 = "normal" for installation. May be left blank.
1-10 for external tapes

If SYMB contains a regional symbol, loading terminates and the
program begins at the named routine.

P-1918
78

LINK: Output mode: of form bbbed

b = blank (columns 57-59)
c = 0 or blank if assembly listing desired.
1 or any other character, if assembly listing to be
suppressed.
d = 0 or blank if no output desired
1 if output in IPL compressed.
2 if output in IPL binary
All other input-output modes are illegal.
The output unit is the one given in W19,
Each block of IPL compressed or IPL binary output ends with a
blank)record appropriate to that mode (see ALTERNATE INPUT
UNITS).

TYPE 9: FIRST CARD

The very first card of a program to be loaded must be a type 9 card.
Except for the type designation, a type 9 card is treated like a comment
card (type 1) and may be used to identify the program. The use of type 9
cards allows several programs to be stacked on an external tape for batch
execution.

ALTERNATE INPUT UNITS

As indicated on the type 5, 6, or 7 header card, it is possible to
read a block of input from an input unit other than the primary one. The
unit on which the first type 9 card 1s read is the controlling unit. If
any header card read on that unit refers to any other input unit (in SYMB),
the block that would follow that header card 1s read from the alternate
unit. The header card on the controlling unit completely specifies the
block-~-input mode, type of input, destination in storage, output mode and
unit. Discrepancy between the header and the actual information on the
alternate input unit causes s loading error. The block on the alternate
unit is terminated by a blank record or by a header card, at which time
the next record on the controlling unit is read. Any non-type O cards on

the alternate unit, except header cards that terminate blocks, are treated

as type 1 cards.

P-1918
9

ASSEMBLY LISTING

As indicated on the type 5, 6, or 7 header card, it is possible to
obtain an assembly listing of the program being loaded. This consists of
a replica of the cards being input alongside the machine locations they
correspond to with the assembled contents in decimal. The assembly listing
of type O and 1 cards can be suppressed for any block by a signal in the

LINK of the header card. Other type cards are printed under all conditions.

LOADING DECK

The IPL deck for initial loading consists of the following parts in

order:

1. Ome type 9 card.

2. All type 2 cards with exact limits, if any, in any order.

3. All type 3 cards with exact limits, if any, in any order.

k. All type 2 cards giving only region size, if any, in any order.

5. All type 3 cards giving only block size, if any, in any order.

Only regions and blocks defined by these cards (plus the H, J and
W regions) exist for the IPL computer this run. The type 2 and 3
cards with exact limits must go first to insure that their cells
wvill be available.

6. Blocks of data and routines, in any order.

Each block is preceded by an appropriate type 5, 6, or 7 card.

For IPL standard and IPL compressed cards, the end of the block
is signalled by the next type 5, 6, or 7 card. For binary and

maechine modes, a special termination signal is required in the

last card (see machine systems for details).

The input unit that initiates loading--the one containing the

type 9 card--becomes the controlling unit. If a type 5, 6, or T
card indicates that the block is to come from another input unit
(SYMB of the type card), then after the block is through loading,
the next type card is picked up from the original controlling unit.

T. A final type 5 card with a regional symbol for SYMB to terminate
loading and start the program.

Any violation of this order will result in an on-line printed
error message.

P-1918

80
(It may be noted that the process of loading en IPL program is a one-pass
symbolic assembly, hence the need to define symbols before loading the
data and routines.)

In loading type 0O cards, the IPL computer assigns locations from
available space to local symbols. A list of local symbol definitions is
kept. The list 1s cleared whenever a regional or internal symbol is

encountered in NAME (the start of a new list structure), and at the end of

the loading process.

Internal symbols are likewise assigned locations from available space
and thus redefined. A list of internal symbol definitions is kept. This
list is cleared upon the appropriate signal from a header card, and at the
end of the loading process. The programmer knows the correspondence of
input symbols and their redefinitions only by means of the assembly listing.
Any subsequent output of internal symbols will be in terms of thelr
redefinitions.

Regional cells may be defined more than once in the loading sequence.
The latest occurring definition is the effective one. (This is often

useful in meking corrections.)

INPROCESS LOADING

More routines and data can be loaded during interpretation of an IPL
program. All options as to mode, unit, etc., available during initial
loading are present during inprocess loading. No new reglons or blocks can
be specified during inprocess loading. (Not all object machines have full

flexibility, so the sections on machine systems should be consulted.)

P-1918
81

J165 LOAD ROUTINES AND DATA. More routines and date are read, with
the input unit specified by 1Wl8 as the controlling unit, The
loed deck consists of header cards (type 5, 6, or T) each
followed by a block of routines or data (except when an alternate
input unit is specified) and terminated by a type 5 card with &
regional SYMB. The routine named as SYMB on the final type 5
card 18 taken as the next routine to be interpreted. If there
are no routines or data, interpretation continues with the
instruction following J165.

SAVE FOR RESTART

A primitive process is provided that allows a running program to be

terminated at any point, reed out on tape or cards, and restarted again by

reading the tape or cards back into the machine. This process may be
externally executed at a monitor point (see MONITOR SYSTEM) or may be put
in the program at any point.

J166 SAVE ON UNIT (0) FOR RESTART. The entire contents of main
storage 1s written onto a single external tape (or punched on
cards, according to the unit named by data term (0).) Auxiliary
storage is also saved in some form. Identification of the
auxiliary units and external tepes being used by the IPL
computer are printed out. Then the program stops. If the
specified auxiliery units and external tapes are provided, and
the tape (deck) is input under control of & one card loader
(specified for each machine system), the program will commence
at the instruction following J166. (See sections on machine
systems for more details.)

J166 does not save external tepes. The programmer saving for restart
must provide routines to record the position of external tapes before

executing J166 and to reposition those tapes where continuing after restart.

An additionsl primitive 1s provided for use in repositioning tapes:

J167 SKIP LIST STRUCTURE. A single list structure on cards or
external tape (as specified by 1W18) in any of the admissible
forms--IPL, compressed, binary--(as specified by 1Wl6) is
skipped over, and H5 set +. A blank record is treated as an
end-of-1list-structure mark. Immedistely subsequent blank
records are ignored. If there is no list structure (card
hopper empty or end of file), then H5 is set -. J167 behaves as
does J140O, except that the structure is not entered into storage.

It is anticipated that "save for restart” will be used to provide a

fast-loading version of checked-out routines, to which additional routines

to be debugged can be added by "load more routines and data.”

P-1918
82

ERROR TRAP, J170

Many different error conditlioms can occur during processing by the
IPL computer--for example, multiple definition of local symbols within a
list structure during loading, specifying other than a data term as operand
for an arithmetic process. These conditions cause a system error trap to
occur. The action taken upon trapping depends on the routine currently
assoclated with the particular error condition. (See sections on machine
systems for the normal error conditions and assoclated trapping actions.)
When an error condition occurs, the following steps take place:
~The safe storage cell W27 is preserved and the CIA at the time of the
trap i1s stored as 1W27. This is the name of the instruction word
designating the trapped process, except for primitives executed as
links, when it is the name of the primitive.

-The safe storage cell W28 is preserved and the symbol associated with
the trapping condition, the trap attribute, is stored as 1W28.

-The description list of W26 (that is, the list 1W26) is searched (as
in J10) for the trap attribute. If the trap attribute exists as an
attribute of W26, its value names the routine to be executed as the
trapping action. That routine is executed. If no value is associated
with the trap attribute, the routine-.-associated with the attribute
'{internal zero' (the symbol'O') is executed as the trapping action.

If no value 1s associated with 'internal zero', no trapping action
is taken,

The trapping action is executed as a subprocess of the trapped
process--that 1s, as though it were designated directly in the
trapped process. Because HO, H5, and the W's are not disturbved by
. the error trap mechanism, the trapping action can repeat the trapped
process under its own control if desired. If the trapping action is
marked with Q=4, it will trace conditionally.,

| -When the trapping action terminates, W27 and W28 are restored and
| interpretation continues with the process following the trapped
| process.

P-1918
83

The standard description list form of W26 allows any trapping action
to be modified or disebled by assigning a different value to the trap
attribute, Also, additional trap ettributes and associated actions can

be added., A primitive process is provided to take trapping action at any

point in the program.

J170 TRAP ON (0). JL70 preserves W27 and W28, stores the appropriate
CIA in W27 and (0) in W28, searches the description list of W26
for the attribute (0), and executes as & subprocess of the
process designating J170 the routine named by the assoclated
value. If (0) is not en attribute of W26, the routine
associated with 'internal zero' is executed. If 'internal zero'
18 not an attribute of W26, no trapping action is taken. J170
then restores W27 and W28 and terminates.

T

(Urs (1) eee

ALTERNATE INPUT UNITS
ARITHMETIC PROCESSESs J110-0129

ASSEMBLY LISTING

ATTRIBUTES

AUXILIARY STORAGE .

AUXILIARY STORAGE PROCESSESy J105=J109
AVAIALABLE SPACE

BLOCK RESERVATION CARDSs TYPE 3
CELLS

CELLSs HEAD

CELLSy LIST

CELLSy NAMES

CELLSs PRIVATE TERMINATION

CELLSs SAFE

CELLS» STORAGE

CELLSy SYSTEM

CELLSy TERMINATION

CIA CELLs H1

CODING FORMy EXAMPLE

CODING FORMs USE OF

COMMENTS CARDSy TYPE 1

COMMUNICATION CELLy HO

COPY

CURRENT INSTRUCTION ADDRESS CELLSs H1
DATA IN ROUTINES .

DATA LIST STRUCTURES

DATA LIST STRUCTURESs AUXILIARY STORAGE FOR
DATA LIST STRUCTURESs RULES FOR

DATA LISTs RULES FOR

DATA PREFIX PROCESSESs J130-J139
DATA TERMS

DATA TERMSs EXAMPLE

DATA TYPE CODEy P

DELETE
DESCRIBABLE LISTS

DESCRIPTION LISTS

DESCRIPTION LISTS

DESCRIPTION PROCESSESs J10-J16
DESIGNATED SYMBOL»s S

DESIGNATION OPERATIONs ©

ERASE

ERROR TRAPy J170

FIND |

FIRST CARDs TYPE 9

GENERATOR CONVENTIONS

GENERATOR HOUSEKEEPING PROCESSESs J17-J19

GENERATORS

P-1918

P-1918

86
GENERAL PROCESSESs JO=-J9 37
HEADER CARDSs TYPE 59 69 7 75
HEADS OF LISTS 9
HOy COMMUNICATION CELL 24
Hls CIA CELL _ 30
H2s AVAILABLE SPACE LIST 7
H3s INTERPRETATION CYCLE TALLY 34
H5s TEST CELL 25
INITIAL LOADING 72
INITIAL LOADING DECKs ORDER OF 79
INPROCESS LOADINGs J165 80
INPUT=OUTPUT CONVENTIONS 61
INPUT-QUTPUT REPRESENTATION MODE 62
INPUT=QUTPUT UNIT CODE 61
INPUTS OF ROUTINES 24
INSERT 46
INSTRUCTIONS | 22
INTERNAL SYMBOLS 2
INTERPRETATION | 30
INTERPRETATIONy CYCLE 32
INTERPRETATIONs FLOWCHART 33
INTERPRETATIONs RULES OF 31
INTERPRETIVE SYSTEMs IPL=-V 1
IPL BINARY REPRESENTATION 62
IPL COMPRESSED REPRESENTATION 62
LEVELSy DATA LIST STRUCTURE 19
LEVELSs ROUTINE ' 23
LIST CELLS 9
LIST PROCESSESy J60-J104 44
LIST STRUCTURESs DATA 13
LIST STRUCTURESs DATA © 17
LIST STRUCTURESs OTHER 21
LIST STRUCTURESs ROUTINE 2%
LISTING CARDSs TYPE 4 75
LISTSs DATA 13
LISTSs DESCRIBABLE 14
LISTSs DESCRIPTION 14
LISTSs DESCRIPTION 16
" LISTSs PROGRAM 22
LISTSy. PUSH DOWN 10
LOADINGs INITIAL . 72
LOADINGs INLTIALs ORDER OF 79
LOADINGs INPROCESS 80
LOCAL SYMBOLS 2
LOCAL SYMBOLSs DOMAIN OF 18
LOCATE 45

LINE PRINTING . 71

MARKING PROCESSED

MONITOR POINTs Q=3

MONITOR SYSTEMs J147-J149

MOVE

OPERATION CODE,s P

OUTPUTS OF ROUTINES

P, DATA TYPE CODE

Py, OPERATION CODE

POP UP

POST MORTEM DUMP

PRESERVE

PRESERVE

PRIMITIVE PROCESSES

PRINT PROCESSESy J150-J161

PRIVATE TERMINATION CELLS

PROCESSESy ARITHMETICy J110~J129
PROCESSESs AUXILIARY STORAGEs J105-J109
PROCESSESs BASIC SYSTEM OF
PROCESSESs DATA PREFIX, J130-J139
PROCESSESy DESCRIPTION,s J10-J16
PROCESSESy ERROR TRAPs J1T70
PROCESSFSy GENERALs JO-JO

PROCESSFESs GENERATOR HOUSEKEEPINGs J17-J19
PROCESSESs INPROCESS LOADINGy J165
PROCESSESy LISTy J60-J104

PROCESSESs MONITOR SYSTEMs J147-=J149
PROCESSESs PRINT$J150~J161
PROCESSESs RFEAD AND WRITEs J140-J146
PROCESSESs SAVE FOR RESTARTs J166=J167
PROCESSESs WORKING STCRAGEs J20-J59
PROGRAM LISTS

PROGRAMS

PROGRAMSs RULES FOR

PUSH DOWN

PUSH DOWN LISTS

Qs DATA

Qs DESIGNATION OPERATION

READ AND WRITE PROCESSESs J140-J146
RECURSIONS

REGION CARDS,s TYPE 2

REGIONAL SYMRBOLS

RESTORE

RESTORE

ROUTINES

ROUTINESs AUXILIARY STORAGE FOR

ROUTINESs DATA IN
ROUTINESs INPUTS AND OQUTPUTS

59
65
64
37
28
24

28
11
66
11
44
22
69
47
55
52
34
58
38
82
37
40
80
44
64
69
63
81
44
22
21
23
11
10
58
27
63
58
73

11
44
21
54
23
24

P-1918

P-1918

ROUTINESs RULES FOR
Sy DESIGNATED SYMBOL

SAFE CELLS

SAVE FOR RESTARTs J166-J167
SNAPSHOTS

STORAGE CELLS

SYMBOLS

SYMBOLSs TERMINATION

SYSTEM CELLSs LIST OF

SYSTEM REGIONS

TALLY OF INTERPRETATION CYCLESs H3
TAPESs EXTERNAL (BCD)

TERMINATION CELLS

TERMINATION CELLSs PRIVATE
TERMINATION SYMBOLS

TEST

TEST CELLy HS'

TRACE MARKS

TRACING

TRAP, ERROR

TYPE. CARDS |

VALUES OF ATTRIBUTES

WORDS» STANDARD AND SPECIAL IPL
WORKING - STORAGE PROCESSES, J20~J59

23
27
24
81
66
10

10
35
34
34

61

47
10
37
25
67
66
82
72
15

44

SHORT LIST OF BASIC PROCESSES

PI1918

* means sets H5

JoO
Jl
*Je
*J3
*J}
*J5

J6
7
J9

*J10
J1ll

Ji2
J1l3

J14
J15
*J16

Jl
*J1l
*J19

J2n
J3n
Jin
J5n

*J60
*J61
*J62
J63
J64
J65
.J66
J6
*J6
*J69
*J70
J71
J72
J73
JT4
J75

*J76

*J?‘
*JT
*J 9
*Jon
Jon

*J100
*J101

*J102
J103
J104

*J105
J106
J107

*J108
J109

J110
Jlll
J1l12
J113

No operation

Execute (0) after restoring HO
TEST (0) = (1)

Set H5 -

Set H5 +

Reverse sense of H

Reverse (0) and (1

Halt, proceed on GO

Restore HO

ERASE cell (0)

PIND value of attribute (0) of (1%

Assig? 1) as value of attribute (0O)
of (2

Add (1) at front of value list of
attribute (0) of (2)

Add (1) at end of value list of
attribute (0) of (2)

ERASE attribute (0) of (1)

ERASE all attributes of (0O)

FIND attribute of (0) randomly

GEN set up: context (0), suppr. (1)
Execute subprocess of GEN
GEN clean up

MOVE (0)-(n) to WO-Wn

Restore WO-Wn

Preserve WO-Wn

Preserve WO-Wn; MOVE (0)-(n) to
WO-Wn

LOCATE next symbol after cell (D)
LOCATE last symbol on list (0)

LOCATE (0) on 1list (1)

INSERT (0) before symbol in cell (1)
INSERT (0) after symbol in cell (1)
INSERT (0) at end of 1list (1)

INSERT

0) at end if not on list (1;

Replace (1) by (0) on 1ist (2) (1st

DELETE symbol in cell (O)

DELETE (O) from 1ist (1) (lst)

DELETE last symbol from 1ist (O)

ERASE 11ist (o%

ERASE 1ist structure (0)

COPY 1ist (0)

COPY 1list structure (0)

Divide 1list after location (0O); name
of remainder is output (O ,

INSERT 1ist (0) after (1), LOCATE
last

TEST 1f (0) 1s on 1ist (1)

TEST if 1list so is not empty

TEST if cell (0) is not empty

FIND the nth symbol on 1list (O

Create 1list of n symbols, (n-1) to

(0)

GEN symbols on list (1) for gog

GEN cells of list structure (1
for (0)

GEN cells of tree (1) for (0O)

File list structure (0) in fast aux,

MOVE 1list structure O§ in from aux.
File list structure (0) in slow aux.

TEST if 1ist structure (0) is on aux.

leave
leave
leave
leave

[AVIIS AV I V)
T
\4
loNe;
- w w w

OO0OO0O0

= b e
N+

*J114

*#J115
*J116
*J11
*J11
*J119
J120
Jl21

Jl22
Jli23

J124
Jl25
J126
*J127

J128
J129

*#J130
*J131
*J132
*J133

*J134
J135
J136
J137

J138
J139

*J140

*J141
J142
J14
J14
J145
J146

J14
J14

J149

J150
Jlm
J152
Ji153

J154
J155
*J156
*J157

*J158
*J159

J160
J161
J162
J163
J164

J165
J166
*J167
J168
J169

J170

89

TEST 1f (0) = (1
TEST 1f (0) > (1
TEST 1f (0) ¢ (1
TEST if (0) = O
TEST 1f (0) > O
TEST 1f (0) < O
copy (0)

Set (0) identioal to (1),
leave (0)

Take absolute value of (0),
leave (0)

Take negative of (0),
leave (O)

Clear (0), leave (0)

Tally 1 in 20;, leave (0)

Count 1list (O

TEST if data type (0) =
data type lx

Translate EO to be data
type of (1 .

Produce random number
between O and (0)

TEST 1f (0) 18 regional symbol
TEST if (O) names data term
TEST i1f (O) 1s local symbol

TEST if 1ist (O) has been
processed
TEST if (0) is internal symbol

Make (0) local, leave (O)

Mark list ;0) processed,
“leave (O

Make (0) internal, leave (O)

Read 1ist structure to (0)

Read symbol from console to (O)
Write 1ist structure (0)

Rewind tape (O)

Skip to next tape file

Write end of file

Write end of block

Mark routine §Og,to trace

Mark routine (0) to propagate
trace ,

Mark routine (0) to not trace

Print list structure (0)

Print 1ist (0)

Print symbol (0)

Print data term (0) w/0 name
or type

Clear print line

Print line

Enter symbol (0) left-Jjustified

Enter data term (0) left-
Justified :

Enter symbol (0) right-justified

Enter data term (O) right-
Justified

+ Tab to column (0)

Increment column by (0)

Load routines and data
Save on unit (0) for restart
Skip list structure

Trap on (0)

Piol8
90

IPL INSTRUCTION: PQ SYMB LINK

P 18 operation code
P=0 Execute S
Pwl Input S (after preserving HO
P=2 Output to S (then restore HO
Pn3 Restore (pop up) S
P=4} Preserve (push down) S
P=5 Replace (0O) by 8
P=6 Copy (0) in S
P=7 Branch to S if H -
Q is designation code
Q=0 S=SYMB ,
Q=1 S=symbol in cell named SYMB
Qw2 S=symbol in cell named in cell
named SYMB
Q=3 S=SYMB; start selective trace
Q=4 S=SYMB; continue selective trace
SYMB 18 symbol operated on by Q
LINK is address of next instruction
(0 for end of routine)

SYSTEM STORAGE CELLS

HO Communication cell

Hl Current instruction address cell
H?2 Avallable space 1list

H3 Tally of interpretation cycles
H4 Current auxiliary routine cell
H5 Test cell

WO-W9 Common working storage
W10 Random number control cell
W1ll Integer division remainder
W12 Monitor start cell (Qm3)
W13 Monitor end cell (Q=3)

W14 Monitor terminate cell

W15 Monitor save for restart cell
W16 Input mode cell

Wl Output mode cell

Wl Read unit cell

W19 Write unit cell

W20 Print unit cell

W21 Print column cell

W22 Print spacing cell

W23 Post mortem dump cell

W24 Print line cell

W25 Print entry column cell
W26 Error trap cell

we Trap address cell

w2 Trap symbol cell

W29 Monitor point address cell

IPL DATA: PQ SYMB LINK

Q=0 Standard 1list cell
P 18 irrelevant
SYMB is symbol
LINK 18 address of next list cell
(O for end of 1ist)
Q=1 Data term
+ PQ SYMB LINK
Decimal integer 1l dddd dddd
Floating point 1l d4dddd 4 +ee
Alphanumerical 21 aaaasa -
Octal 31 ddddd ddddd
TYPE CARDS

0 (blank) Routines and data
1 Comments
2 Region definition

NAME=regional symbol
SYMB=origin (i1f given)
LINK=size

3 Block reservation

Q=0 Reserve regional symbols
Q=1 Reserve print line

Q=2 Reserve primitive block

Q=3 Reserve auxiliary buffer
Q=4 Specify avallable spaoce

4 Listing cards

5 Main storage header

6 Fast auxiliary storage header
7 Slow auxiliary storage header

NAME=name of storage unit

P =input mode
P=0 IPL standard
P=l IPL compressed
P=2 IPL binary

Q =type of input
Q=0 Routines; internals symbolic
Q=1 Data; internals symbolic
Q=2 Routines;: internmals symbolic;

reset internal symbol table
Q=3 Data; internals symbolic;

reset internal symbol table
Q=4 Routines; internals absolute
Q=5 Data; internals absolute

SYMB=input unit
O = "normal" for installation
1-10 = external tapes

Regional SYMB names first routine

terminate loading)

LINK=output mode (of form bbed)
b=blank (columns 57-59)
c=non-zero if assembly listing
d=]1 output in IPL compreased
d=2 output in IPL binary

9 PFirst card

SHORT LIST OF BASIC PROCESSES

PI9i8

* means sets HH5

Jo
J1
*J2
»
o)
'I‘J 5
J6
J7
J8
Jo

*J10
Jll

Jl2
Jl3

J14
J15
*J16

Jl
*J1
*J19

J2n
J3n
Jin
J5n

#J60
*J61
*J62
J63
b (3
J65
J66
J6
»J6
*J69
*J70
J71
J7e
J73
JT7h
J75

*J76

*J7
lJ?
*J79
*J6n
Jon

*J100
*J101

*J102
J103
J104

*#J105
J106
J107

*#J108
J109

J110
J11ll
Jllz
J113

No operation

Execute (0) after restoring HO
TEST (0) = (1)

Set H5 -

Set H5 +

Reverse sense of H

Reverse (0) and (1

Halt, proceed on GO

Restore HO

ERASE cell (0)

FIND value of attribute (0) of (1)

Assig? 1) as value of attribute (0)
of (2

Add (1) at front of value list of
attribute (0) of (2)

Add (1) at end of value 1list of
attribute (0) of (2)

ERASE attribute (0) of (1)

ERASE all attributes of (0)

FIND attribute of (0) randomly

GEN set up: context (0), suppr. (1)
Execute subprocess of GEN
GEN clean up

MOVE (0)-(n) to WO-Wn

Restore WO-Wn

Preserve WO-Wn

Preserve WO-Wn; MOVE (0)-(n) to
WO-Wn

LOCATE next symbol after cell (O)
LOCATE last symbol on 1list (O)

LOCATE (0) on 1ist (1)

INSERT (0) before symbol in cell (1)
INSERT (0) after symbol in cell (1)
INSERT (0) at end of list (1)
INSERT

0) at end if not on l1list (1;

Replace (1) by (0) on list (2) (1st

DELETE symbol in cell (0)

DELETE (O) from 1ist (1) (1st)

DELETE last symbol from list (O)

ERASE 1ist (o¥m

ERASE 1ist structure (0)

COPY 1ist (0)

COPY 1ist structure (0)

Divide 1ist after location go); name
of remainder is output (O

INSERT 1ist (0) after (1), LOCATE
last

TEST if (0) 1s on 1list (1)

TEST if 1list 20 is not empty

TEST 1if cell (O) is not empty

FIND the nth symbol on 1list (O

Cr?age 1ist of n symbols, (n-1) to
0]

GEN symbols on list (1) for éog

GEN cells of 1list structure (1
for (0)

GEN cells of tree (1) for (O)

File 1list structure (0) in fast aux.

MOVE 1list structure (0) in from aux.
File 1list structure (0) in slow aux.

TEST if 1ist structure (0) is on aux.

1) + (2)—>(0), leave (O
1) - (2)—>{(0), leave (O
1) x (2)—>(0), leave (O
1) / (2)—>(0), leave (O

*#J114
*J115
*J116
*#J11
*J11
*J119
Jl20
Jl2l

Jl22
J123

J1l24
Jl25
J126
*J127

J128
J1l29

*J130
*J131
*J132
*J133

*J134
J135
J136
J137

J138
J139

*J140
*J141
Ji42
J143
J1iky
J145
J146

J147
J148

J149

J150
J151
Jl52
J153

J1s4
J155
*J156
*J157

#7158
*J159

J160
J161
J162
J163
J164

J165
J166
*J167
J168
J169

J170

9l

TEST if

TEST 1if

TEST if

TEST if

TEST if

TEST if

COPY (0)

Set (0) identical to (1),
leave (0)

Take absolute value of (0),
leave (0)

Take negative of (0),
leave (O)

Clear (0), leave (0)

Tally 1 in 20;, leave (0)

(yeye

é

0

efoRoNeoJ oo
AV EAVI

Count 1list (O

TEST if data type (0) -
data type lx

Translate
type of

Produce random number
between O and (0)

20 to be data
1

TEST if (O) is regional symbol
TEST if (O) names data term
TEST if (O) is local symbol

TEST if 1ist (O) has been
processed
TEST if (0) 18 internal symbol

Make (0O) local, leave (0O)

Mark list ;0) processed,
leave (O

Make (0) internal, leave (0)

Read 1ist structure to (0)

Read symbol from console to (0)
Write list structure (0)

Rewind tape (0)

Skip to next tape file

Write end of file

Write end of block

Mark routine %O to trace

Mark routine (0) to propagate
trace

Mark routine (0) to not trace

Print 1ist structure (0)

Print 1list (0)

Print symbol (O)

Print data term (0) w/o0 name
or type

Clear print line

Print line

Enter symbol (0) left-justified

Enter data term (0) left-
Jjustified

Enter symbol (0) right-justified

Enter data term (0) right-
Justified

Tab to column (0)

Increment column by (O)

Load routines and data
Save on unit (0) for restart
Skip 1list structure

Trap on (0O)

Piol8
92

IPL, INSTRUCTION: PQ SYMB LINK

P 18 operation code
P=0 Execute S
P=l Input S (after preserving HO
P=2 Output to S (then restore HO
P=3 Restore (pop up) S
P=4 Preserve (push down) S
P=5 Replace (0) by S
P=6 Copy (0) in S
P=7 Branch to S if H5 -
Q is designatlion code
Q=0 S=SYMB
Q=1 S=symbol in cell named SYMB
Qw2 S=symbol in cell named in cell
named SYMB
Q=3 S=SYMB; start selective trace
Q=4 S=SYMB; continue selective trace
SYMB is symbol operated on by Q
LINK is address of next instruction
(0 for end of routine)

SYSTEM STORAGE CELLS

HO Communication cell

Hl Current instruction address cell
H2 Available space 1l1list

H3 Tally of interpretation cycles
H4 Current auxiliary routine cell
H5 Test cell

WO-W9 Common working storage
W10 Random number control cell
Wll Integer division remainder
W12 Monitor start cell (Q=3)
W13 Monitor end cell (Q=3)

Wl4 Monitor terminate cell

W15 Monitor save for restart cell
W16 Input mode cell

Wl Output mode cell

Wl Read unit cell

W19 Write unit cell

W20 Print unit cell

W21 Print column cell

W22 Print spacing cell

W23 Post mortem dump cell

W24 Print line cell

W25 Print entry column cell
W26 Error trap cell

w2 Trap address cell

w2 Trap symbol cell

W29 Monitor point address cell

IPL DATA: PQ SYMB LINK

Q=0 Standard list cell
P 1is irrelevant
SYMB is symbol
LINK 18 address of next list cell
(O for end of 1list)
Q=1 Data term
+ PQ SYMB LINK
Decimal integer 1l dddd dddd
Floating point ‘11 ddddd 4 +ee
Alphanumerical 21 aaaaa -
Octal 31 ddddd ddddd
TYPE CARDS

0 (blank) Routines and data
1 Comments
2 Region definition

NAME=regional symbol
SYMB=origin (i1f given)
LINK=size

3 Block reservation

Q=0 Reserve regional symbols
Q=1 Reserve print line

Q=2 Reserve primitive block

Q=3 Reserve auxiliary buffer
Q=4 Specify available space

4 Listing cards

5 Main storage header

6 PFast auxiliary storage header
7 Slow auxiliary storage header

NAME=name of storage unit

P =input mode
P=0 IPL standard
P=] IPL compressed
P=2 IPL binary

Q =type of input
Q=0 Routines; internals symbolic
Q=1 Data; internals symbolic
Q=2 Routines; internals symbolic;

reset internal symbol table
Q=3 Data; internals symbolic;

reset internal symbol table
Q=4 Routines; internals absolute
Q=5 Data; internals absolute

SYMB=input unit
O = "normal" for installation
1-10 = external tapes

Regional SYMB names first routine

terminate loading)

LINK=output mode (of form bbed)
b=blank (columns 57-59)
c=non-zero if assembly listing
d=1 output in IPL compressed
d=2 output in IPL binary

9 PFirst card

