
INFORMATION PROCESSING LANGUAGE V MANUAL
Section II. Programmers' Reference

Manual

A. Newell
F. M. Tonge
E. A. Feigenbaum-fr
G. H. Mealy

Mathematics Division
The RAND Corporation

N. Saber**
B. F, Green, Jr.->HHJ-
A. K. Wolf****

P-1918

^Consultant to the Mathematics Division of
The RAND Corporation

*H«The University of Pittsburgh
###Lincoln Laboratory

Reproduced by

The RAND Corporation • Santa Monica • California

The views expressed in this paper are not necessarily those of the Corporation

THE RAND CORPORATION
Copyright © 1960

P-191S
iii

SUMMARY

This section of the manual sets out the complete rules for IPL-V.

Section I* gives an introduction and simplified account of the language

and should be read before trying to use this section. IPL-V is currently

coded for several computers. Details of operation and the IPL-V inter­

pretive systems for each machine are given in later sections of the IPL-V

manual* The rules in Section II are common to all versions, and any

program constructed according to these rules will be accepted on any of

the object machines.

*The RAND Corporation paper, P-1897, M Information Processing Language V
Manual Section I. The Elements of IPL Programming."

INFORMATION PROCESSING LANGUAGE V MANUAL P-1918

SECTION IIJ PROGRAMMER'S REFERENCE MANUAL 1

This section of the manual sets out the complete rules for IPL-V*

Section I gives an introduction and simplified account of the language and

should be read before trying to use this section, IFL-V is currently coded

for several computers* Details of operation and the IPL-V interpretive

systems for each machine are given in later sections of the IPL-V manual.

The rules In Section II are common to all versions, and any program

constructed according to these rules will be accepted on any of the object

machines.

GENERAL DEFINITIONS

IPL LANGUAGE

IPL is a formal language in terms of which information can be stated

and processes specified for processing the Information. IPL allows two

kinds of expressions: data list structures which contain the information

to be processed; and routines which define information processes A

complete program consists of a set of data list structures and the set of

routines that define the processing to be done.

IPL COMPUTER

No computer currently available can process the IPL language directly,

but any general purpose digital computer can be made to Interpret this

language by writing a special program in the language of that computer.

Such a program is called an IPL-V interpretive system. The interpretive

system interprets IPL expressions as equivalent expressions in the language

of the particular computer, and causes the computer to carry out IPL

processes. When a computer is running with the IPL interpreter system,

its main storage has two major sections, one containing the IPL

interpretive system, and the rest, called the total available space, in

P-1918
2

which IPL programs and data may be stored. The particular computer

together with the interpretive system is known as the IPL computer. The

total available space is the "storage" of the IPL computer.

The interpretive system consists of several parts:

(1) A loader, for loading IPL programs into the available space from cards

or tape.

(2) A set of primitive processes, for manipulating IPL expressions.

(3) An interpreter, for executing the instructions in the IPL routiner

W A monitor, for providing debugging information.

IPL SYMBOLS

IPL is a system for manipulating symbols. The IPL computer

distinguishes three types of symbols regional, internal, and local. It

keeps track of the type of each symbol being used, and will behave

differently in some cases, according to the type of symbol encountered.

To the programmer, a regional symbol is a letter or punctuation mark

followed by a positive decimal integer no greater than 9999; e.g., A 1,

*12, R3^96. Regional symbols are the programmer's stock of symbols. An

Internal symbol is a positive decimal integer. Internal symbols are the

computer's stock of symbols, and will generally not be used by programmers.

Inside the computer that is, except for input and output internal and

regional symbols are treated identically. Each symbol corresponds to a

particular storage address. However, there are means to tell regional and

Internal symbols apart, if needed.

Local symbols are used to connect lists and list structures. Their

identity is transitory they are erased, generated, and changed at will by

the IPL computer. To the programmer a local symbol is a 9 followed by a

positive decimal integer no greater than 9999; e.g., 9-l> 9-3^> 9-123.

P-1918
3

The 9 takes the place of the letter in the regional symbols. The use of

local symbols will be explained in the discussion of list structures.

All symbols are printed out in the same form as they are input:

regionale are printed in the letter-numbers form; internals are printed as

decimal integers; and locals are printed as integers prefixed by a 9.

STANDARD IPL WORDS

All IPL expressions, both data list structures and routines, are

written in terms of an elementary unit, called the IPL word. Each word

occupies a single cell of the total available space in the IPL computer.

A standard word consists of four parts: P, Q, SYMB, and LINK. P and Q are

called the prefixes of the word. Q is the designation prefix and P is the

operation prefix (for routines) or the data type prefix (for data list

structures)* Each prefix is an octal digit i.e., it may take on the

values 0, 1, ,.., 7. Its meaning depends on whether it occurs in routines

or data* SYMB is an IPL symbol, and is called the symbol of the word,

LINK is also an IPL symbol.

SPECIAL IPL WORDS: DATA TERMS

Different formats are necessary to represent integers, floating point

numbers, alphabetic characters, etc. Words containing such information

are called data terms, and have three parts: P, Q, DATA. P and Q are

prefixes, and DATA contains the special datum. The Q prefix is always 1,

indicating that the word is a special data term. The P prefix specifies

the type of data. (Q-l is also used in routines with a different

meaning; program and data are kept separate by context.)

THE CODING FORM

To put IPL words into the IPL computer, they must first be coded and

P-1918
k

punched into cards. The cards can then be read by the interpretive system.

The cards are prepared from the standard coding form, one card per line,

each card representing one IPL word (See Figure l). For standard IPL

words, the columns labelled NAME, P, Q, SYMB, and LINK are used. Type is

0 or blank, Sign (+ -) is irrelevant (but see INITIAL LOADING), and an

other columns are ignored by the IPL computer. (Certain columns are

excluded from use.) P and Q may each contain any digit from 0 through 7.

Blank is regarded as 0. For data lists, P and Q are always blank (or 0)

unless the word is a data term. NAME, SYMB and LINK may contain any IPL

symbol. If LINK is left blank, the IPL computer automatically fills in

the address of the next cell, represented by the next line on the coding

sheet. This is also true for SYMB. However, if the next line has a

regional or internal symbol as NAME, the blank LINK or SYMB is taken as a

termination symbol 0,

NAME, SYMB, and LINK each occupy five columns. The first (leftmost)

column holds the region character i.e., the letter for regions, or 9 for

local symbols. The other four columns hold the four digit integer

associated with the symbol. The integer may be located anywhere within

the field in consecutive digits. For example, Al, A 1 A 1, and A0001,

are all instances of Al. Likewise, 910 > 9 10 and 9-10 are all instances

of the local symbol 9-10, as long as the 9 occurs in the leftmost column.

The exact rules for writing legitimate IPL symbols in NAME, SYMB, and

LINK are the following:

P-1918
5

 Regional and local symbols must have their initial character in the
leftmost column of the field (columns k$, 51, and 57 respectively)*
Internal symbols may start anywhere in the field, except that if
the initial digit is "9", that digit cannot be in the leftmost
column.

 Except for the character in the leftmost column, all non-numeric
characters and blanks are ignored.

 The numeric part of the symbol may occur anywhere in the field with
any spacing* The field is scanned, and the digits are accumulated
as they are found and composed into a number.

V
IP

L
-V

CO

O
IN

G

SH
EE

T
<j\

o>
I

H
* at

f

^r
ob

le
m

 ^

^•"
•O

-JO
-'Q

 O
1 ! '

f.'-
'-'-

.v.
-.-

.v!
.-''

1 '-1
-1 -

--.
-!

:/x
;;v

^i
^v

iv
|

B
K

B
I

^m
mm

W
^-

^S
S

^P
§3

'•'-
• "

 "-
"-"-

" ;
':'.

:-•
 -•

'••
•"

-I

•:-
'•'•

'-'-
'•"

 -•.
•.':

'.•:
"-"

-'•
'-"

•'{

itt
BS

i
' :-

-^
//
:/
r!

f^
-••

:";-
.:-X

->^
:-;>

-;-x
-:5

^
:-

//
!/
/!
;;
/:
i:
//
/;

^/
//

;/
/M

//
//

h

:'S
O

m
-'-

/_-
" i

v
 "

";
'-.

 .-
"-j

ij
jA

'
'•

-•
'•
/.
''*

''
•'•

'*'
-'•

'-':
'*

W
m

m
l

W
///

if'
1

2
3
4

Jo

Pr
og

ra
m

er

C
O

M
M

E
N

TS

[)
O

O
O

I
1

1
1

»
I

«
i

i
1

2
2

2
2

2
2

2
2

2
2

3
3
3
3
3
3
3
3
3
3
4

5
7
8

9
O

I
2

3
4
5
6

7
8

9
O

J

2

3
4

5
6

7
8

9
0

1

2

3
4
5
6

7
8

9
0

! 6
7
8

9
0
1

2
3
4
5
.6

7
8

9
0
1

2

3
4
5
6

7
8

9
0
1

2

3
4
5
6

7
8

.
0

i t i:§ *? •X
i i i i§ 3 x-t r*i*
*

X
; •iv S3 x
l 1 i •X
*. |: f,

~
.

•X
*

p-i? X
"*

,*-
'.- ;i|
:

:X
:"

X
''. 2

N
AM

E

3
4
5
6

7

i i j i i i i i i i

, i

_,
.,.

.

i i

....
.1

...
..

-.

i
,

i
.

i I
3
4

5
6

7

J ! N 8 8

PO 9
0

9
0

D
at

e 1
i

S
Y

M
B

||

LI
N

K

§

5
5

5
5

5:
ife

S

5
5

6
6
$

1
2

3
4

 5
J&

7
 8

 9
 O

1 3

||

,
f

1

|

i
<S

|
!

S

'
Ss

L
'•

5:

x-
'J

;""

$!
i--

s
: ' :

:
;:

||

(
I

-iy

ji

1
>•:

?•
:

?

:S:
S

f:

;X
y

f

i:;;]

|

1
.

1
:•:•

:•;
L

•'
•'
•'
4

L

m
:

?
II

f

_J
 —

—
—

—
—

 ̂ f
l —

 1 —
—

—
—

—
 t

»*x
*1

'.

.
1'

I
.'
.V

.
<

il
i

,
»t

*x

,
'.;.<

;

^
|

i

I

§

li 1
,

i
3
3
4
5
6

7
8

9
0
1

Pa
ge

$3 |

C
O

M
M

E
N

TS

&
 6

6
6

6
6

6
6

7
7
7

£j
 3

4
5
6

7
8

9
0

1
2

x"
i x; 1 | —

—
—

—
—

—
x
l

i •:•:
•

1 s;
i

1 :':";
? i i 1 "*

X
* 1 1 11 I] ll 11

(
2

3
4

5
6

7
8

9
0

*

2

of

1.
D.

7
7
7
7
7
7
7
8

3
4
5
6

7
8

9
0

.,
4
5
6

7
8

9
0

P-1918
7

DATA TYPE CODE P

The format for data terms Is shown in Figure 2. Data terms have been

defined only for P from 0 to 3» The other four values, k through 7, are

available for private use (see sections on the machine systems).

CELLS

Each IPL word resides in a cell in the IPL computer (that is, a

register In the total available space) We say a cell contains the word,

also that the cell contains a symbol; i.e., the SYMB part of the word*

Alternatively, we refer to SYMB as the symbol in a cell. LINK is also a

symbol, but this is referred to as the link in a cell.

AVAILABLE SPACE

Since each IPL word resides in a cell in the IPL computer, during a

run the routines and data list structures require a certain amount of the

total available space that is, of the total set of cells. At any moment

during a run there is a set of cells which is not part of any routine or

data list structure. This set is called the available space at that

moment. It is the stock of cells out of which new list structures can be

constructed. The available space is continually depleted as new structures

are built, but continually replenished as old structures are no longer

needed and are erased i.e., the cells composing them returned to

available space. All the available space is on a list, named H2, and

called the available space list. The mechanics for transferring cells to

and from available space will be described later.

LIMITS ON THE NUMBER AMD TYPES OF STRUCTURES

All data list structures and routines are built up from the

available space, and any cell may be used for any purpose in such

IP
L

-V

CO
DI

NG

SH
EE

T
CD

 0
3

D
at

e
Pa

ge
.

of

1 [i i t i

*!

H
-

fl>

t

'.'.'.
• .•

.;.;.
.•.•

.•.•
.•.•

.•.•
."

j —
—

"

'
~

—

—
—

—
—

—
—

—
 ' —

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
 ' r

>
^;

v"
::v.

;:y
";'.

-::>
;

!'

t
t
S

S
j

C
O

M
M

E
N

TS

j

0
0

0
 C

O
:'0

 0
0
0
!

i
1

1
1

I
I

t
i

!
2

2
2

2
2

2
2

2
2

2
3
3
3
3
3
3
3
3
3
3

*!

>
2

3
^
5

-6
 7

8
9
0
1

2
3
4
5
6

7
8

9
0
1

2

3
4

5
6

7
8

9
0

1
2

3
4

5
6

7
8

9
 O

1

ff
lP

 =
 0

D

E
C

IM
A

L

IN
T

E
G

E
R

S
l-
1

G

E
N

E
T

S
 u

F

^
IW

A
T

-

1

E>
CA

 rA
F

L-
E:

s
:

-
1Z

 ,1
72

B
tt

-g

15

;
••:-

":''.
:-:-

v"'
rv:

/x!

•

S
P

 =
 1

F

L
0

A
T

\N
G

P

^
IN

T

W
I

G
E

N
E

R
A

L.

FC
SF

LM
AT

:
(E

xp
o

n
e

n
t

e
e

H

a
.n

^>
s

fr
om

*
-,

v
,;
;,
v
'
••

:-
,;

r

"
'

->

7

j

"
-^

5O

£o
 -

5
O

.
/2

/i
y

c
^
ia

r^
c
te

^
—

 '

/
f^

n

•
J
-

i
"

"

\
•

:
in

co

lu
m

n
 S

3
 i

s
ta

.K
e.

n
a
s

-
-t 3

.
E

_

.
_,

 _
 r

 .

!
X

./
M

^
V

F
--

E
.S

•

~
.l
_

>
x

l.C
->

• .
-'. -

•'••
'•'•

 •".
-'.•

'..-•
'•:•

'.•'.

—
2

^
..

..
..

..
.

"f
^
f^

f
>C

 *
\
f5

L-
•

•.
'"-

••

j" •
-' •

*
' ̂

^
*••

*
j»

\^

§
f
i:
S

!

§
§

;I
P

=

 2

A
L

P
H

A
N

U
t^

E
R

lC
A

L

;

^
^

G
E

N
E

R
A

L
F^

R
rA

A
T

-
S

'l
lf
fl

E
L*

A
M

iP
L_

E
 -.

IP

L
 H

P
'S

il
J
S

W
H

P

=

3

^
C

T
A

L
.

IS
iS

I
G

EM
EL

FL
AU

 F
b>

FL
rA

AT
if
f
*

E
K

A
I-

V
F

LE
:

7
7
7
7
7
7
7
7
7
7

|:r
-.-.-

'v- •
'••••'

 '.,:'
.;•••

'• -j
 .

.
.

_
.

';:'>
'/"-

'--'
:"v'

'".v
.'''-

j

^i
ltS

j

i
c

3
4(

7

8
S

0
i

2
3

4
5

6
7

8
S

0
!

2
3

4
1

6.
7

8
3

0
i

2
3

4
5

6
7

S
(

r!>

n. if £ r! [: f j; i f i . — -.•a « $r ;X
(

i".
*t 3 ::
- •;.:;3 :3 S! SH .-.
"; ijS s j] >
:

1

S :::x

N
AM

E

3
4
5
6

7

, i i (!

_
_

.L (1 t i

.
X

. i i

_.
 1

 _
_.

_
_

.<.
-1

5
S

7

S G N — 8 _^ — s i t i 1

PQ

S
Y

M
8

1

4
5
5

5
5

5
5
:t

9
0
1

2
3
4
5
;^

;

• 1
i ;

'

,

f
.

^

1 il
l 1

5
U

7
T

O

/
o
c
.

i
;

i
-

:

Z
la

a
a

a
a

JZ
II

P
L

5^

1
:

i
;

1 .31
:dL

d.A
AJ

L
31

77
77

7
{ .

;
i

. .
|

i
i

i
i

|
i

|
|

1
I .

!
9

0
:

•'.]
5

4
5

i
^

j
LI

N
K

1

£
5

5
5

6
6

§1
51

7
8

9
o

i ;;
;

:i
,

1

!j
ic

U
Al

21
?Z

^;
f

.
15

 1
!:

.
i

rA

>e
e|

;:i
:;

i ,
f

:
.

3 :̂i 2™ r r \ c

^
 —

 1 —
—

—
—

—
—

—
 'i.

•
)•

\
,

\
'•'-

\

'
1.

77
77

7:
-.-. :::: ; •S

i —
—

 1 —
—

—
—

—
—

—
—

—
—

—
 i

s '
i

•:

S
f

8
9

0
1

X
) |

C
O

M
M

E
N

TS

!

3!
 6

6
6

6
6

6
6

7
7
7
J

£
:3

4
5

6
7
8

9
O

I2
:

:;:•

I

1

;

1
:

1
i

x
i

:

:>5

:

| '::'<

:
!;i3

:

•'•3 ••A
'

:;:•

:

:>: :":3

j

1
!

X"
'

1
^

:::, X-
*

"•!
•<

;X
*

1: Sj
:

|:>
;

•v
*^ ;i 2
3
4
5
6

7
8

9
0
1

2

I.
0.

7
7
7
7
7
7
7
8

3
4
5
6

7
8

9
0

U
-

f
5

6
7
3
9

0

P-1918
9

constructions. Consequently, as long as cells are available construction

can continue. No separate limits exist on hov many data list structures,

storage cells, symbols, and so on, can be used. The only limit is in the

total amount of available space.

AUXILIARY STORAGE

The storage that holds the interpretive system and the available

space is called the main storage. Access is also possible to secondary

storages**fast auxiliary storage and slow auxiliary storage when

available on the object machine.

CELL NAMES

Access to a word requires access to the cell that holds the word, and

this requires that the cell have a known IPL name. The name of a cell is

the IPL symbol that represents the machine address of the cell. All

cells in use have names, either regional, local, or internal. The cells

in available space are not considered to have names since only when they

are taken for a specific use is the name determined. On the coding sheet

putting a symbol in the NAME field specifies that the word on that line

will be in the cell named. In essence, cells are named by writing a

symbol for NAME* The programmer need name only those cells he wishes to

refer to explicitly; hence NAME is left blank in most Instances.

HEADS, LIST CELLS, TERMINATION CELLS

Cells are used to construct the various structures in IPL. There are

three kinds of cells: heads, which start structures; list cells, which

form the bodies of structures; and termination cells, which mark the end

of structures, (Data terms occur in heads.) We will need these

distinctions in giving the conventions for each type of structure. A

P-1918
10

termination cell contains the word 00 00000 00000, and the symbol that names

it is called a termination symbol* The symbol 0 is a termination symbol,

and is used by the programmer in preference to other termination

symbols. Hence, it is referred to as the termination symbol. The need

for other termination symbols arises from the delete processes (see

DELETE). Any cell containing 0 i.e., SYMB * 0 is called empty. (0 is an

internal symbol.)

STORAGE CELLS

A storage cell is one whose purpose is to hold symbols. A storage

cell is created simply by giving a cell a regional name and putting the

termination symbol, 0, for LINK. SYMB is then the symbol contained in the

cell; it may be put in initially by writing in the symbol on the coding

sheet, or the cell may be left empty and a symbol put in during processing.

Examples:

NAME PQ SYMB LINK

The empty storage cell, All Al 0 0
The cell, A2, containing B3: A2 B3 0

Any cell may function as a storage cell (assuming it is not being used in

some other capacity).

PUSH DOWN LISTS FOR STORAGE CELLS

Associated with each storage cell is a system for storing symbols

contained in the cell. This system is a data list, called a push down

list. The storage cell is the head of the list, and the cells used in the

storage system are list cells. The symbol currently in the storage cell

may be put onto the push down list, so that the cell can be used for

another purpose, and then recovered at a later time. The system is a

"Last-In-First-Out" system (LIFO); that is, the symbols are recovered from

P-1918
11

storage in the inverse order of their entry. The most recently preserved

symbol is the first one recovered. The system is fully specified by the

operation for putting symbols in storage, preserve or push down, and the

operation for recovering symbols from storage, restore or pop up.

PRESERVE To preserve a storage cell is to put a copy of the symbol
contained in the cell on the push down list associated vith
the cell. The operation leaves the symbol still in the cell.

RESTORE To restore a storage cell is to move into the cell the symbol
most recently put on the associated push down list of that cell.
The symbol occurrence in the cell Just prior to restoring is lost,
and the symbol moved from the push down list is no longer on the
list.

P-1918
12

Examples: Let the storage cell W3 contain the symbol 85:

NAME PQ SYMB LINK

W3 85 0

If W3 is preserved, then a copy of 85 goes into storage, while W3
continues to hold 85:

W3 S5
85 0

If another symbol, Bl, is now put into W3, we have:

W3 Bl
85 0

If W3 is preserved again, we have:

W3 Bl
Bl
85 0

And if another symbol, 03, is put into W3, we have:

W3 03
Bl
85 0

If W3 is restored, then:

W3 Bl
85 0

And if W3 is restored again:

W3 85 0

After two preserves followed by two restores, W3 is brought back
to the original condition; and similarly for any number of preserves
followed by the same number of restores.

Each cell, then, really consists of a stack of symbols. The one on top

is accessible, and the others are in storage in the order in which they

are put in the stack. There is no limit to the number of symbols that

may be stored in a push down list; it is always possible to add another

as long as some available space remains in the IPL system.

P-1918
13

DATA LIST STRUCTURES

The data list structure is the IPL expression that contains the data

to be processed. The total data for a program will be given as a set of

data list structures. Each data list structure is made up of data lists,

which in turn are made up of IPL words. (Routines are also list structures,

"but satisfy different conventions.)

DATA LISTS

A data list is a sequence of cells containing IPL words whose order

is defined "by the rule; the LINK part of the cell contains the name of the

next cell in the list. The first cell in a list--the cell which does not

have its name as the LINK of any cell of the list is the head of the list.

All other cells of the list are list cells. Cells containing data terms

(cells with Q = l) are also heads, and are treated as special cases of

data lists. The following rules apply to all regular data lists:

-Only names of list cells can occur as the LINK of a cell.

-Only names of heads can occur as the SYMB of a cell.

-The name of each list cell occurs once and only once as LINK
(this is equivalent to making lists linear, without cycles).

-The LINK of the last cell in a list is a termination symbol.

A list with 0 for the LINK of the head is called an empty list.

To create a data list write down a symbol in the NAME field of some

line. This symbol is the name of the list, and the cell corresponding to

it is the head of the list. (Thus the same symbol names both the list

and the head cell.) Write down the IPL words of the list in successive

lines of the coding sheet. These lines are the list cells, and they

occur in the list in the order they appear on the coding sheet. No names

are given to the list cells (NAME left blank) and the LINKs of all cells

P-1918

but the last one are also left blank. The public termination symbol, 0,

is written for LINK of the last cell.

Examples: NAME PQ SYMB LINK

The list with name LI, containing LI SI
the symbols 31, 35, S12 and 37 in 35
that order: (the first symbol 312
occurs in the head here; conventions 37 0
for heads will be given presently).

The list with name 9-5, containing 9-5 A5
the symbols A5 and 9-3. 9-30

The termination symbol, 0, is used, although any other termination symbol

is perfectly legal. The latter would require an additional cell, and thus

take extra space without any compensating gain.

NAMING LIST CELLS

The IPL computer will assign an internal name to any cell that is not

explicitly named by the programmer. The programmer may give names to list

cells by using local symbols. (Using regional symbols would start a new

list, in effect.) The IPL computer interprets a blank SYMB or LINK in a

cell as referring to the next cell, and the name of this next cell is

filled in. This occurs properly either when the next cell has a blank

NAME or a local symbol for NAME. If the next cell has a regional name,

the blank SYMB or LINK is taken as the termination symbol, 0.

Example: NAME PQ SYMB LINK

The usual reason for naming LI 0 9-1
data list cells is to break 9-2 32 9-3
the sequential order on the 9-1 SI 9-2
coding sheet: 9-3 S3 0

DESCRIBABLE LISTS

It is possible to associate with a list a description list, similar

in concept to a function table, which can contain information about the

P-1918
15

list being described. The SYMB of the head is reserved for the name of the

description list. A list vith the head so reserved is called describable.

If a list is describable, descriptive information can be added to it or

requested about it, at any time during processing, by means of a set of

processes, JlO - J15« Since the head of a describable list is reserved,

the first symbol on the list is in the first cell after the head, the

second symbol is in the second list cell after the head, and so on. Lists

that use the head for any other purpose are called non-describable. If

no information has been associated with a describable list, then there

will exist no description liftt. However, the head is still reserved, and

hence is empty. (The list in the previous example has no description list

associated with it but has a reserved head.)

POLICY ON DESCRIBABLE LISTS

The basic processes (the J's) assume that data lists are describable

whenever this is relevant to their operation. In the manual we will

assume a list to be describable, unless explicitly stated otherwise.

ATTRIBUTES AND VAIXJE3

The information that can be associated with a describable list is in

the form of values to specified attributes. Suppose LI is a describable

list, and Al is some attribute, say the number of symbols on a list. Then

the value of Al for LI is some symbol, say N3- This can be expressed in

mathematical notation as Al(Ll) = N3» Any symbol at all may be used

as an attribute, no matter what its other functions in the total program

might be. The value of an attribute is always a single symbol. However,

any symbol may be the value for example, the name of a data term, the

name of a list, or the name of a list structure so that there is no

P-1918
16

restriction at all on the kind of information that can effectively be the

value of an attribute. Only a single value is possible for a given

attribute, but it is always possible for the value of an attribute to be

the name of a list of "values," thus achieving the effect of multivalued

attributes. The usefulness of descriptions stems from the generality of

what constitutes an attribute or a value. Any number of attribute values

may be associated with a describable list.

DESCRIPTION LISTS

A description list is a list that contains alternately the symbols for

attributes and their values. The attribute symbol occurs first, followed

by its value for the list the description list is describing. Description

lists are themselves describable, so that the first attribute symbol occurs

in the first list cell, its value in the second list cell, the next

attribute symbol in the third, and so on. The same symbol cannot occur

more than once as an attribute on the description list.

CREATING DESCRIPTION LISTS

Processes exist to create, modify, interrogate and erase description

lists during processing (see JIO to J15). Such lists can also be created

on the coding sheet prior to loading. A local name is written for SYMB of

the head of the list to be described. The description list is defined in

the same manner as any other list: its name is written for NAME on some

line (the same symbol as occurred in the head of the main list); the head

of the description list is made blank since the description list is

deserlbable; then follow the attributes and values in sequence on the

coding sheet; the final value has a termination symbol for LINK. (No other

P-1918
17

list structures may intervene on the coding sheet between the describable

list and the description. See DOMAIN OF DEFINITION OF LOCAL SYMBOLS.)

Examples: NAME PQ SYMB LINK

The describable list, LI, LI 0
with no descriptions: SI

52
53 0

L2 described by the attributes L2 9-0
Al and A2 with values VI and SI
V2 respectively: S2

S3 0

9-0 0
Al
VI
A2
V2 0

DATA LIST STRUCTURES

structure is a set of lists connected together by the fact

that the names of some of the lists occur on other lists in the set. A

data list structure is characterized by the following conditions:

-All the component lists are data lists (hence linear that is, not
re-entrant).

-There is one list, called the main list, that has a regional name
(internal, if created by the IPL computer).

-All lists, except the main list, have local names, and are called
sublists.

-All local names that occur in the list structure- -that is, as SYMB
of some cell name lists that belong to the list structure.

-No cell belongs to more than one list (no merging of lists).

-The name of each component list except the main list occurs at
least once on some list of the list structure; it may occur many
times.

-The main list is always describable; the sublists may either be
describable or non- describable .

P-1918
18

A data list structure is thus a fairly simple form of list structure--many

complicating ways of linking lists together having been excluded. It is

not the simplest, which would be a tree, since it is possible for the name

of a sublist to appear in several places in the structure* Data terms are

included in the definition, as are storage cells since they are also data

lists. The name of a list structure is the name of its main list. (Thus

this symbol does triple duty as the name of a list structure, list and

cell*) Not all symbols occurring in a list structure refer to other lists

in the structure: if they are regional or internal symbols their referents

cannot belong to the same list structure. Thus there can be complicated

cross references between a set of data list structures.

DOMAIN OF DEFINITION OF LOCAL SYMBOLS

The d-omaj-Q of definition of a local symbol is a list structure

Within a single list structure a local symbol can be the name of only one

data list that for which it occurs as NAME* All occurrences of a local

symbol within a list structure are understood to refer to this data list.

However, there is no connection between the local symbols in one list

structure and those in another (which is why they are called local)* Thus

the symbol 9-1 will stand for many things in a total program*

Contrariwisei a regional symbol, like Al, or an internal symbol, like

1622, always stands for the same object throughout the toxal program. On

the coding sheet the occurrence of a regional or internal symbol for NAME

marks the start of a list structure* All local symbols that occur after

this line belong to this list structure, until another regional or Internal

NAME occurs.

P-1918
19

LEVELS

It is often convenient to refer to the lists of a data list structure

as having levels The main list has the highest level, and a sublist is

one level below its superlist i.e., the list on vhich its name occurs*

(it is possible for the name of a list to occur on several lists at

different levels.) If numbers need to be assigned to levels, the main

list is assigned level 1 and increasing positive integers are used for

successively lower levels.

P-1918
20

Examples! NAME PQ OTMB LINK

A single list can be a data LI 0
list structure: SI

82
S3 0

A single data term can be a 35 21 BILL
data list structure:

A list of lists can be a data L2 0
list structure. (The spaces 9-1
between lists are for clarity 9-2
in the manual; no such spaces 9-3 0
need occur on the coding
sheet): 9-1 o

81
82
S3 0

9-2 0
S3
81
32 0

9-3 0
82
S3
81 0

A list of numbers can be a L3 0
list structure. In the 9.3
example, two of the numbers N3
belong to the structure and 9-1 o
the other, N3, does not:

9-11 15

9-3 - 1 19

A list can have multiple L4 0
occurrences of sublists, as 9-1
veil as mutual references 9-1 o
and self references:

9-1 0
9-2 0

9-2 0
9-1
9-2 0

P-1918
21

NAME PQ SXMB LINK

If the name of the main list, L5 0
which is internal or regional, L5
appears in the list structure L5
it is treated like any other L5 0
regional or internal symbol.
The example, L5, is a simple
list.

The algebraic expression, XO 0
(X1+X2)-(X3-X4) can be written 9-1
as a list structure where the
sublist arrangement indicates 9-2 0
the parenthetical structure.
We have used +, -, and in- 9-1 XI
stead of admissible IPL symbols 4-
to make the correspondence X2 0
clear.

9-2 X3

0

OTHER LIST STRUCTURES

Other kinds of list structures besides data list structures are

possible and useful e.g., circular lists, in which the "last" cell links

to the "first" cell. The programmer is free to invent and use any such

structures he desires, but he is then responsible for being aware of their

special nature. Almost any kind of structure can be loaded in the computer

(see INITIAL LOADING). We have defined the class of data list structures,

in order to provide useful processes which take into account their

particular conventions e.g., copy and erase an entire data list structure.

ROUTINES AND PROGRAMS

The IPL expressions used to specify information processes are

generally similar to their data counterparts, but differ in detail.

Corresponding to the word of data is the instruction, to the data list is

the program list, and to the data list structure is the routine.

P-1918
22

PRDflTIVg PROCESSES

A primitive process is one that can be directly performed by the

computer without further IPL interpretation; i.e., one that is coded

directly in machine language* IPL symbols can name primitives. Most of

the basic processes (the J's) are primitives, and it is possible to add

primitives to the language (see the sections on machine systems for

details),

INSTRUCTIONS

The IPL word that specifies an information process is called an

instruction. It always has the standard form: PQ SYMB LINK. The process

to be done is designated by PQ SYMB, while the LINK, as usual, designates

the next cell In a list. The P and Q codes are entirely different from

the data P and Q codes. They denote operations to be carried out rather

than types of symbols and data. (The information that SYMB is regional,

internal, or local is lost in an instruction, but is not needed for

interpretation.) The definitions of P and Q, given presently, completely

define the process designated by an instruction.

PROGRAM LISTS

A program list is a sequence of cells containing instructions, whose

order is defined by the following rule: the LINK of a cell is the name of

the next cell in the list. The first cell in a list is the head; all others

are list cells. The head contains an instruction, so no program list is

descrlbable. In interpretation, the program list gives a sequence of

Instructions to be carried out in the order of the list. Almost anything

is possible with program lists: they may be reentrant, or merge. They may

have regional symbols as LINKs, and names of list cells as SYMB. These

P-1918
23

various possibilities are governed by the interpretation of the P and Q

code*

ROUTINES AND PROGRAMS

A routine is a list structure characterized by the following conditions)

-Some of the lists are program lists.

-There is one program list, called the main list, that has a regional
name*

-All lists, except the main list, have local names and are called
subHets (and initiate local subroutines).

-All local names that occur in the list structure as SYMB of some
cell name lists that belong to the list structure.

-The name of each sublist occurs at least once on some list of the
list structure; it may occur many times.

-The main list is not describable (since it is a program list).

Local symbols follow the same rules for the domain of definition given in

connection with data list structures. It is also possible to talk about

the levels in a routine in the same manner as with data list structures.

Each routine specifies a process. A routine is executed when this

specified process is carried out by the IPL computer. This implies that

the subroutines out of which the process is composed are also executed (as

required). A program is the set of routines that specifies a process in

terms of primitive processes. The routine first executed is at the

highest level. The routines of the program are all routines required in

the execution of this top routine, taking into account that routines

require other routines for their execution,

DATA IN ROUTINES

Normally, routines consist purely of program lists. However, it is

sometimes convenient to include various kinds of data along with the

P-1918
2U

routine, such as constants, storage cells, and so on. Since data list

structures are handled differently from program lists on input (P and Q are

treated differently), it is necessary to indicate which cells are to be

Interpreted as data. A + or - in the Sign column is used for this, and

every cell to be interpreted as data must be so marked. (The + or -

contributes to the data only in the case of numeric data terms, as defined

earlier; in all other cases it has no effect.)

SAFE CELL

A storage cell is called safe over a routine if that routine leaves

the symbol in the cell (and the push down list) the same as it was prior

to the execution of the routine, except as modification is explicitly

required by the definition of the routine. If there is no guarantee that

the contents of the storage cell will remain unmolested, the cell is

called unsafe over the routine. A routine can use a safe cell, as long as

it returns the cell to the original condition. Safe cells are useful in

IPL because the preserve and restore operations make it easy to use a

storage cell and then return it to an earlier condition. From the point of

view of the using routine, a safe cell is one it can put a symbol in,

execute a subroutine, and expect to find the symbol still in the cell

afterwards.

INPUTS AMP OUTPUTS OF ROUTINES, HO

A routine can have a set of operands, called the JLnput symbols. It

can also produce a set of symbols as outputs. It may also modify

existing data list structures, either those designated by input symbols,

or those inplicit in the construction of the routine. The number of inputs

or outputs is unlimited. They are always symbols, but these symbols can

P-1918
25

name list structures (either data or routines), BO that the types of Inputs

and outputs are completely general*

All inputs for a routine are placed in a special storage cell, HO,

called the communication cell. If there are multiple inputs, they are

placed in the push down list of HO in a sequence determined by the

definition of the routine . All outputs from a routine are also placed in

the communication cell, HO, If there are multiple outputs, they are placed

in the push down list of HO in a sequence determined by the definition of

the routine* In the IPL-V manual ve will let (o), (l) . ,., represent,

respectively, the symbols in HO and its push down list, They will serve as

names for the inputs and outputs. The communication cell is safe over all

routines* In connection with inputs this means that a routine must remove

(before it terminates) all the input symbols from the communication push

dovn list. The outputs, of course, are explicitly required to be in HO at

the end of processing. (Of course, routines can be defined with any input-

output conventions the programmer desires. The above ones are used by the

basic processes (the J's), and means are provided to make them easy to use

generally.)

EXPLICIT STATEMENT OF INPUTS AND OUTPUTS

The safety of HO implies that a routine must remove all its input

symbols from HO. Its outputs, of course, are to be left In HO. In order

to avoid confusion ve adopt the policy of explicitly stating all inputs and

outputs. For example, if a routine leaves one of its input symbols in HO,

this is to be stated explicitly as one of the outputs.

TEST CELL

The result of many processes involves a binary distinction-- a

P-1918
26

or "no," For example, a process may be a "test" whose purpose Is to make

a "binary choice, or it may produce an output where there is no guarantee

that the output can be produced, so that a binary indication, "yes, the

output was produced," or "no, the output was not produced," is needed as

well as the output symbol in those cases where it can be produced. A

special storage cell, H5, called the test cell, is used for this binary

information. It can contain either of two special symbols, "+," which

stands for yes, or "-," which stands for no. The + and - are symbols used

only in the manual. In the computer, JU is the symbol for -f and J3 for -.

These are, respectively, the names of the basic processes that set H5 + or

-. The test cell is safe over the basic processes (the J's); that is, if

a J-process does not set H5 as part of its definition, then H5 will be the

same after performance of the process as it was before. (This means that

conditional transfers may be delayed after the decision has been made and

recorded in H5, as long as only J's which do not set H5 are performed.)

P-1918
27

THE DESIGNATION OPERATION, Q, AND TOE DESIGNATED SYMBOL, S

In instructions the Q prefix specifies an operation, called the

designation operation, whose operand is SYMB. The result of performing

the designation operation on SYMB is a new symbol, S, called the

designated symbol of the instruction. We give below all eight values of Q,

The first five Q's Q » 0, 1,..., ^ are normally the only ones that appear

on the coding sheet.

Q s 0 8 » the symbol in the instruction itself i.e., SYMB.

Q * 1 S » the symbol in the cell named in the instruction i.e., in
SYMB.

Q » 2 S * the symbol in the cell whose name is in the cell named in
the instruction i.e., in the cell named in SYMB.

Q » 3 Trace this program list (otherwise equivalent to Q » 0).

Q * k Continue tracing (otherwise equivalent to Q » 0).

Q * 5 SYMB is the address of a primitive i.e., of a machine language
subroutine.

Q * 6 Routine is in fast auxiliary storage.

Q s 7 Routine is in slow auxiliary storage.

Examples: NAME PQ SYMB LINK

Given the memory situation: £1 Cl 0
Cl Dl 0

For the three instructions below
we get the following designated
symbol:

S s Bl 0 Bl
S s Cl 1 Bl
S * Dl 2 Bl

P-1918
28

THE OPERATION CODE, P

The P prefix specifies an operation, called simply the operation of

the instruction, whose operand is the designated symbol, S. The result

is an action related to the set up, execution, and clean up of routines*

The eight operations are:

p * ° EXECUTE S. S is assumed to name a routine or a primitive; it
is executed i.e., the process it specifies is carried out
before the next instruction is performed.

P * 1 INPUT S. HO is preserved; then a copy of S is put in HO.

p * 2 OUTPUT TO S. A copy of (0) is put in cell S; then HO is
restored.

p ~ 3 RESTORE S. The symbol most recently stored in the push down
list of S is moved into S; the current symbol in S is lost.

p ~ ** PRESERVE S. A copy of the symbol in S is stored in the push
down list of S; the symbol still remains in 8.

P « 5 REPLACE (0) BY S. A copy of 8 is put in HO; the current (o)
is lost.

P » 6 COPY (0) IN S. A copy of (0) is put in S; the current symbol
in 8 is lost, and (0) is unaffected.

P » 7 BRANCH TO 3 IF H5 -. The symbol in H5 is always either + or -.
If H5 is -*-, then LINK names the cell containing the next
instruction to be performed. (This is the normal sequence.)
If H5 is -, then S names the cell containing the next
instruction to be performed.

Thus, P « 0 is used to execute subroutines; P * 1, 2, 5, and 6, are used

to transfer symbols to and from the communication cell, HO; P » 3 and k

are used in connection with safe cells; and P » 7 is a centralized

transfer of control.

Examples:

At the right we give small segments
of program lists--i.e., sequences of
instructions. Below we give a verbal
statement of the action.

P-1918
29

NAME PQ SYMB LINK

It takes two instructions to put the 11 WO
symbol in WO into the cell Wl. The 20 Wl
first instruction, UWO, inputs the
symbol 1WO to HO, and the second,
20W1, moves the symbol into cell Wl,

It is desired to execute a process, 10 LI
P15, which takes two inputs and 11 WO
produces one output. The inputs are PI 5
to be 'LI 1 and the symbol in WOj and 20 Wl
the output is to be in Wl. 10L1
inputs 'LI* to HO, pushing the symbol
in HO down, so it is not destroyed.
11WO inputs the symbol in WO to HO,
again pushing down. Then P15 is fired:
it removes the two symbols Just put in
HO, and places its own output there.
20W1 takes this output from HO and
puts it in Wl (destroying the symbol
in Wl). HO is left as it was at the
beginning .

It is desired to put (o) into Y5, but 1*0 Y5
without destroying the symbol already 20 Y 5
there. Hence, 20Y5 is preceeded by

which preserves Y5.

It is desired to replace a symbol in the 12 WO
cell named in Wl by the symbol in the 21 Wl
cell named in WO. 12WO brings the
symbol into HO, and 21W1 puts it in
lWl--i.e., in the cell named in Wl.
Notice that HO is left Just as it was
before the two operations were per­
formed.

A process whose name is in Y2 is fired 11 WO
with input from WO. Assume it has one 1 Y2
output. This is put into Wl by 60W1, 60 Wl
which also leaves it in HO so that J2 10 S5
can test if it is equal to S5. The J2
result of J2 is either a 4- or - in H5. 70 9-1
709-1 transfers control to the part ...
of the program list starting at 9-1
if H5 is - . If H5 +, then control 9-1 ...
proceeds down the list.

Process P30 is fired on an input from 11 WO
WO. WO is restored by 30WO to bring P30
it back to its previous condition. 30 WO

P-1918
30

INTERPRETATION

The Interpretation of a program consists of generating a sequence of

primitives according to the lists in the program, and executing each

primitive in turn. The part of the IFL-computer that carries this process

out Is called the interpreter. The process consists of a cycle of operations,

which we define in two ways: first, as a series of rules, from the most

generally applicable to the most special; second, as a step-by-step

sequence of interpretive actions, similar to a flow diagram.

CURRENT INSTRUCTION ADDRESS CELL, HI

Execution of a routine in a program involves executing its subroutines.

While executing a subroutine it is necessary to remember the current

location in the higher routine, so that when the subroutine is finished,

interpretation can proceed from the correct instruction in the higher

routine. The hierarchy of in-process subroutines is necessarily unlimited,

since a subroutine can be composed of other subroutines of unknown

composition. A special storage cell, HI, called the current instruction

address cell or CIA, is used to mark locations in the hierarchy of

inprocess routines. The symbol in HI is the address of the current

instruction; the symbol one down in the push down list is the address of

the instruction in the routine one level up; the next symbol down is the

address of the instruction in the routine two levels up; and so on. (The

programmer never uses HI; it is used solely by the interpreter.)

P-1918
31

RULES OF INTERPRETATION

1. An instruction is interpreted by first applying Q to SYMB to get
3 and then applying P to 3 to get the action.

2. Generally, the instructions in a program list are interpreted in
the order of the list. Control advances.

3. In case P * 7 the sequence may be broken (if H5-)> but control
remains at the same level and continues along the list from the
cell with name S. Control branches.

k. A process designated in a program list is executed by remembering
the address of its instruction in HI (with a preserve), and then
interpreting its program list i.e., the list whose name is the
designated symbol starting with the instruction in the head.
Control descends a level.

5. A primitive process designated in a program list is executed by
transferring machine control to the machine language subroutine
corresponding to the primitive process; no descent occurs.

6. Interpretation of a program list terminates with a LINK = 0, the
end of the list; or with LINK » name of a routine, in which case
this routine is executed as the last process of the program list.
(Termination is also achieved by branching to a 0 or the name of
a routine via P = 7.)

7* Upon termination of a program list, control ascends a level, and
interpretation proceeds in the program list that contained the
name of the program list Just finished, from the point at which
it was executed (HI is restored). If HI is empty, the computer
halts.

8, If the routine of a designated process is in auxiliary storage,
it is brought into main storage, and interpretation proceeds.

P-1918
32

THE INTERPRETATION CYCLE

START: HI contains the name of the cell holding the instruction to
be interpreted.

INTERPRET Q
- Q » 0, 1, 2: apply Q to SYMB to yield S; go to INTERPRET P,
- Q ss 3, IM execute monitor action (see MONITOR SYSTEM); take

S » SYMB; go to INTERPRET P.
- Q « 5 i transfer machine control to SYMB (executing primitive);

go to ASCEND.
- Q*5 6, 7: "bring routine in from auxiliary storage; put

name of auxiliary region in HI, go to INTERPRET Q.

INTERPRET P
- P = 0: go to TEST FOR PRIMITIVE.
- P - 1, 2, 3, k, 5, 6: perform the operation; go to ADVANCE.
- P = 7: go to BRANCH.

TEST FOR PRIMITIVE: Q of S
- Q = 5 : transfer machine control to SYMB of S (executing

primitive); go to ADVANCE.
~ Q 7^ 5: go to

ADVANCE: interpret LINK
- LINK ==, 0: termination; go to ASCEND.
- LINK T 0: LINK is the name of the cell containing the next

instruction; put LINK in HI; go to INTERPRET Q.

ASCEND: restore HI (returning to HI the name of the cell holding the
current instruction, one level up); restore auxiliary region
if required; go to ADVANCE.

DESCEND: preserve HI: put S into HI (HI nov contains the name of the
cell holding the first instruction of the sub program list);
go to INTERPRET Q.

BRANCH: interpret sign in H5
- H5 - : put S as LINK (control transfers to S); go to
ADVANCE.

- H5 + : go to ADVANCE.

Figure 3 gives a schematic picture of the connections between the parts of

the interpretive cycle.

0=5

Transfer
to

primitive

1

P-1918
33

INTERPRET 0

0=0,1,2

S=Q(SYMB)

0 = 6,7

0=3,4

Toke monitor action

S = SYMB

INTERPRET P

P= 1,2,3,4,5,6

Execute P

ASCEND

LINK = 0

P=7

BRANCH

HS--

Take S
as LINK

H5+

ADVANCE

LINK/0

o

P=0

TEST FOR
PRIMITIVE

Transfer
to

primitive

Get routine from
auxiliary storage

DESCEND

FIG. 3

P-1918

TMXY OF INTERPRETATION CYCLES, §3

The interpreter counts the number of cycles executed by tallying 1

into H3 every time an ADVANCE occurs. H3 is an integer data term. It is

set to zero at the beginning of a run by the loader. It is available to

the program during running--that is, it can be copied, reset to 0 at

various points in the program, and so on. It provides a useful measure of

the amount of processing done.

BASIC SYSTEM OF PROCESSES

The system of prefixes, P and Q, the interpreter, and the rules for

constructing list structures, are essentially the grammar of IPL. In order

to construct useful programs it is necessary to add a set of basic

processes for manipulating symbols, lists, description lists, list structures,

and special format words. The system provided here is general purpose, in

that any process can be accomplished with it. It is focussed on list

manipulation, however, with the consequence that arithmetical processes

are inefficient in comparison with their machine code counterparts. The

sysxem consists of a set of storage cells with special functions (some of

which have already been described), and a set of basic information processes.

Some of the basic processes are primitives; some are elementary IPL routines

included to complete the repertoire.

SYSTEM REGIONS (EXCLUDED FROM OTHER USE)

The regions Hdddd, Jdddd, and Wdddd are used by the system, and no

new symbols in these regions may be defined by the programmer.

P-1918
35

SYSTEM CELLS

The following cells have special functions. They are all storage

cells and safe, except H3 and Wll, which are integer data terms.

HO Communication cell.

HI Current instruction address cell (CIA); never used by programmer.

H2 Available space list; never used by programmer, except to count
with J126.

H3 Tally of interpretation cycles executed; an integer data term.

H^ Current auxiliary routine cell; never used by programmer.

H5 Test cell; safe only over J's.

WO Ten cells for common working storage (see WORKING STORAGE
to PROCESSES and GENERATOR PROCESSES).
W9

Random number control cell; holds the name of integer data term
used to produce random number in J129 and Jl6.

Remainder of integer division; an integer data term (see J113).

See MONITOR SYSTEM FOR W12 through W15, W23, W29.

Monitor start cell; holds name of routine executed at start of
trace (0*3).

W13 Monitor end cell; holds name of routine executed at return to
Q*3 point.

Monitor terminate cell; holds name of routine executed at
signalled termination.

Monitor save cell; holds name of routine executed at signalled
save for restart.

See INPUT-OUTPUT for Wl6 through W22, W2*f, W25.

Wl6 Input mode cell; holds name of integer determining input mode*

WIT Output mode cell; holds name of integer determining output mode.

Wl8 Read unit cell; holds name of integer determining unit used by

Write unit cell; holds name of integer determining unit used by
J142.

P-1918
36

unit cell; holds name of integer determining unit for J150's

Print column cell; holds name of integer determining print column.

Print spacing cell; holds name of integer determining line and
page spacing.

mortem cell; holds name of list determining information to
be printed on post mortem dump.

Print line cell; holds name of present print line.

Entry column cell; holds name of integer determining entry
position in print line.

See ERROR TRAP for W26 through W28.

Error trap cell; holds name of list, in description list form,
of trap symbols and associated processes.

W27 Trap address cell; holds CIA at the time of the trap.

^raP symbol cell; holds symbol indicating cause of trap.

W29 Monitor point address cell; holds name of cell holding
instruction with Q = 3.

P-1918
37

GENERAL PROCESSES, JO to J9

In this and following sections we give the definitions of the basic

processes, accompanied by whatever general explanations are appropriate.

Note that all outputs are explicitly named, and that only these outputs

remain in HO after completion of a routine. We include definitions of

some terms with a circumscribed meaning.

TEST A test is a process whose only result is to set H5 4- or -. Its

definition is of the form: "TEST X" where X is any statement. If X is

true, then H5 is set 4-; if X is false, then H5 is set -. Any number of

Inputs is permissible.

FIND A find is a process with a single symbol as output, but where it is

uncertain whether the output can be produced (can be found). If the output

is produced it is put in HO, and H5 is set +>. If the output is not

produced, there is no output in HO, and H5 is set -. Any number of inputs

is permissible.

MOVE In normal computing one never destroys the information in the

originating location when reading it into a new place; i.e., readouts are

"non-destructive." In IPL, with the operation of restore, a "destructive"

read becomes useful. Thus, move means to put in the newly designated

place, but not to leave in the original place. If a symbol is being moved

from a storage cell, then the cell is restored; if a list structure is

being moved to auxiliary storage, then it is erased in main storage.

P-1918
38

JO N0.5?* Proceed to the next instruction.

Jl EXECUTE (O). The process, (o), is removed from HO, HO is
restored (this positions the process's inputs correctly), and
the process is executed (as if its name occurred in the
instruction instead of '

TEST IF (O) 5 (l). (The identity test is on the SYMB part only;
P and Q are ignored.)

J3 SET H5- . The symbol in H5 is replaced by the symbol J3.

Jl* SET H5 + . The Qrmbol in H5 is replaced by the symbol Jk.

J5 REVERSE H5. If H5 +, it is set -; if H5 is -, it is set 4-.

J6 REVERSE (O) AND (l). Permutes the symbol in HO with the first
symbol down in the HO push down list.

J7 HALT, PROCEED ON GO. The computer stops j if started again it
interprets the next instruction in sequence.

& RESTORE HO. (identical to 30HO, but can be executed as LINK.)

J9 ERASE CELL (0). The cell whose name is (0) is returned to the
available space list, without regard to the contents of the cell.

DESCRIPTION PROCESSES, J10 to Jl6

As described earlier in the section on DATA LIST STRUCTURES, there

are processes for manipulating descriptions and description lists. For all

of them the name of the describable list is input, and not the name of the

description list. The name of the description list is found in the head

of the describable list, and, whenever created by these processes, is a

local symbol. (This allows the description list to be erased automatically

whenever the list is erased as a list structure see J72.)

J10 FIND THE VALUE OF ATTRIBUTE (p) OF (l). If the symbol (o) is on
the description list of list (1) as an attribute, then its
value i.e., the symbol following it--is output as (0) and H5
set -f-; if not found or if the description list doesn't exist,
there is no output and H5 set - . (J10 is accomplished by a
search and test of all attributes on the description list.)

P-1918
39

Jll ASSIGN (1) AS THS VALUE OF ATTRIBUTE (0) OF (2). After Jll the
symbol (l) is on the description list of list (2) as the value
of attribute (0). If (o) was already on the description list,
the old value has teen removed, and (l) has taken its place; if
the old value was local, it has been erased as a list structure
(J72). If (0) is a new attribute, it is placed at the front of
the description list* Jll will create the description list
(with a local name), if it does not exist (head of (2) blank)*
There is no output in HO.

J12 ADD (1) AT FRONT OF VALUE LIST OF ATTRIBUTE (0) OF (2). The
value of (0) is assumed to be the name of a list*The symbol,
(l). is inserted on the front of this list (behind head, as in
J6i;« If the attribute is not on the description list, it is
put on and a list is created as its value (with a local name)*
As in Jll, if the description list doesn't exist, it is created.

ADD (1) AT END OF VAIJUE LIST OF ATTRIBUTE (0) OF (2)* Identical
to J12, except that (l) is inserted at the end of the list,
rather than the front*

ERASE ATTRIBUTE (0) OF (l). If the symbol (o) exists on the
description list of list (l) as an attribute, both it and its
value symbol are removed from the list. If either is local, it
is erased as a list structure (J72). If (0) is not an
attribute on the description list of (l), nothing is done, (in
all cases the description list is left.)

J15 ERASE ALL ATTRIBUTES OF (0). The description list of list (0)
is erased as a list structure (J72), and the head of (0) is put
blank.

Jl6 FIND ATTRIBUTE RANDOMLy FROM DESCRIPTION LIST OF (0). An the
attributes on the description list of list (0) that have
positive numerical data terms as values (integer or floating
point) are taken as a population from which a random selection
is made with relative weights given by their values. Thus if
there are attributes A. with values NA > 0 then:

Probability of A* being selected ~

all i

The output (0) is the attribute symbol selected, and H5 is set
4-* If there are no positive numerical data terms on the
description list, there is no output and H5 is set -. The
random number used in Jl6 is generated as in J129, and is
therefore controlled by W10.

P-1918

GENERATOR HOUSEKEEPING PROCESSES, Jl? to J19

GENERATORS

Repetitive operations can be handled In IPL by means of loops,

utilizing the conditional branch, Just as In normal programming* They can

also be handled by means of generators. A generator Is a process that

produces a sequence of outputs and applies to each a specified process«

The process that the generator applies Is called the subprocess of the

generator, and Is an Input* Thus, the generator Is associated with the

kind of sequence It produces, and will apply any process vhatsoever to

these outputs* The only thing a generator knows about the subprocess Is

the name of Its routine, plus a convention allowing the subprocess to

control whether or not the generator will continue to produce outputs of

the sequence. This latter convention Is necessary if generators are to be

used conditionally e.g., to search for a member of a sequence with certain

properties.

What makes generators different from all the other processes considered

so far, Is that two contexts of information that of the generator, and

that of the subprocesses and superprocess--must coexist in the computer at

the same time. Hence, the strict hierarchy of routines and subroutines Is

violated, and special pains have to be taken to see that information

remains safe, and that each routine is always working in its appropriate

context. To see this, define the context of a routine to be the set of

symbols in the working storages that it is using. We will assume that any

routine using nfl symbols of information, stores these in WO through Wn,

rather than some arbitrary subset of W's. The routine that uses a

generator, which we will call the superroutine, has a certain context.

p-1918

The subprocess is in the same context as the super-routine. The generator

Is being used to provide a sequence of information to be processed in the

routine using the generator, and the subprocess is simply that part of the

superroutine that does the processing* In general it needs access to all

the symbols in the context of the superroutine. It is given a name only

to communicate to the generator what processing to do* The generator has

an entirely different context in order to produce the sequence* The

purpose of the generator is to separate the processing that goes into

producing a sequence from the processing that is to be done to the sequence.

There is an alternation between generator and subprocess which is both an

alternation of control and an alternation of context: to produce an

element of the sequence* the generator must be in control, and its context

should occupy the W's; and to process the element the subprocess must be

in control, and the context of the superroutine should occupy the W's.

Thus, whenever the generator fires the subprocess. it is necessary to

remove the context of the generator from the W's, thus revealing the prior

context, which is that of the superroutine. At the termination of the

subprocess the context of the generator must be returned to the W's

(pushing down the W's, of course).

To handle the special housekeeping associated with generators, three

routines are provided! J17 is used at the beginning of a generator to set

up the housekeeping, Jl8 is used to fire the subprocess, and shuffles the

contexts back and forth, and J19 is used at the end of a generator to

clean up the housekeeping structures.

P-1918

J17 GENERATOR SETUP. Has two Inputs:
(0) = Wn, the highest W that will be used for working storage- -

e.g., (0) a. w6, if cells WO through W6 will be used.
(l) s= the name of the subprocess to be executed by generator*
J17 does three things (and has no output):

-Preserves the cells WO through Wn;
-Stores Wn and the name of the subprocess in storage cells,
and preserves a third cell for the output sign of H5 (these
three storage cells are called the generator hideout);
-Obtains the trace mode of the superroutine (Q one down In
Hi); and records it in one of the hideout cells (see
MONITOR SYSTEM) .

Jl8 EXECUTE SUBPROCESS. Has no input. It does six things:
-Removes the symbols in WO through Wn, returning the
previous context of symbols to the top of the W's;
-Stacks these symbols in one of the hideout cells;
-Sets the trace mode of the subprocess to be that of the
superroutine (see MONITOR SYSTEM);

-Executes the subprocess;
-Returns the symbols of the generator^ context from the
hideout to the W's, pushing the W f s down;

-Records H5, the communication of the subprocess to the
generator (see J19)> in one of the hideout cells.

CLEANUP. Has no input. Does three things:
-Restores WO through Wn;
-Restores all the cells of the hideout;
-Places in H5 the recorded sign, which will be + if the
generator went to completion (last subprocess communicated
-f-), and - if the generator was stopped (last subprocess
communicated -).

P-1918

GENERATOR CONVENTIONS

We can now summarize the conventions for the use and construction of

generators.

-In the superroutlne the generator is executed like any other routine.
Its inputs are placed in HO:

is always the name of the subprocess;
(2), «.., define the kind of sequence to be produced.

J.lJJJU.

81.
-Start the generator routine by doing JTf: input (l), the subprocess,
is already in place; do a lOWn, where Wn is the highest working cell
to be used, for input (o).

-Produce the first member of the sequence, and put it in HO as input
to the subprocess. The member may be given by any number of symbols,
(0), (1),

-Fire the subprocess by executing Jl8. At the time of execution the
generator's symbols cannot be stacked up more than one deep in the
Wf s or J18 will fail to clear the context.

-The subprocess operates in the context of the superroutine, taking
as input the symbols provided by the generator, above. Thus the
symbols in the W's are the ones placed there by the superroutine,
or by one of the earlier executions of the subprocess. Likewise, the
subprocess can put symbols in the W f s (or HO), which are then
available to later executions of the subprocess, or to the
superroutine after the termination of the generator.

-The subprocess sets H5 upon termination: + if the generator is to
produce the next member of the sequence; - if the generator is to
terminate.

-Within the generator, after executing Jl8, if H5 is + produce the
next member of the sequence. If there are no more members, clean up
and quit with J19, which will pop up the W's and set H5 for output.
If H5 is -, then immediately clean up and quit with J19.

 There is no output from the generator to the superroutine except
which is + if the generator went to completion i.e., produced all
members of the sequence and is - if the generator was terminated.
J19 sets this output.

 There is no restriction on the nesting or cascading of generators:
a generator may use other generators as subroutines; and a generator
can be in the form of a subprocess operating on the output of another
generator. (The subprocess of a generator is part of its context, so
that Jl8 always fires the subprocess of the generator currently in
context.)

 If the generator is in main storage, the subprocess to it may have
either a regional or local name. If the generator is in auxiliary
storage, the subprocess to it must have a regional name (see
AUXILIARY STORAGE PROCESSES).

P-1918
kh

WORKING STORAGE PROCESSES, J20 to J59

Storage cells can be created at will by the programmer, and can be

used either as permanent or temporary storage for any purpose the

programmer desires. The only advantage in using the W's lies in the

following forty processes for manipulating them, together with their

built-in use in the generator processes.

J2n MOVE (0), (l), ..., (n) INTO WO, Wl, . .., Wn RESPECTIVELr . Ten
routines, J20 - J29 that provide block transfers out of HO into
working storage. The symbols currently in WO to Wn are lost.

J3n RESTORE WO, Wl, ..., Wn. (Ten routines, J30 - J39)

Jim PRESERVE WO, Wl, ..., Wn. (Ten routines, JUO -

J5n PRESERVE WO, Wl, ..., Wn, THEN MOVE (o), (l), ..., (n) INTO WO ,
Wl, ..., Wn, RESPECTIVELY (Ten routines, J50 to J59, combining
Jim and J2n.)

LIST PROCESSES, J60 to J10*4-

PRESERVE AND RESTORE A3 GENERAL LIST OPERATIONS

The preserve and restore operations were defined earlier for storage

cells. We describe below the mechanics underlying them. It can be seen

that these operations can apply to any list, given the name of a cell in

the list: preserve will insert an additional cell with the same PQ SYMB as

the given cell, and restore will replace the contents of the given symbol

with the contents of the following cell, and remove the following cell

from the list, thus performing a deletion.

P-1918

To the right we are given, initially,
the available space list, H2, and a
cell, WO, with a list proceeding from
its LINK:

NAME PQ SBCB LINK

H2
1000
1050
1020

0
0
0
0

1000
1050
1020

If we preserve WO, then a word is
obtained from available space and
inserted in the list following WO,
with a copy of SYMB of WO:

Notice that all words in the list
except WO remained unchanged, and
that all the conditions for preserve
are satisfied. Note also that the
amount of processing is independent
of how many items are on the list.

If we now put into WO a new SYMB, Dl,
we get (with no change in the H2
list):

Restoring WO reverses the operation,
deleting the cell next after WO,
putting it back on the available
space, but putting its SXMB in WO:

Restoring WO again yields:
Notice that cells are returned on
the front of the available space
list, H2, so that the amount of
processing required is independent
of the size of available space.

LOCATE

WO
500
505

H2
1050
1020

B2
Cl
C2

0
0
0

500
505

1050
1020

WO
1000
500
505

B2
B2
Cl
C2

1000
500
505

WO
1000
500
505

H2
1000
1050
1020

WO
500
505

H2
500

1000
1050
1020

WO
505

Dl
B2
Cl
C2

0
0
0
0

B2
Cl
C2

0
0
0
0
0

Cl
C2

1000
500
505

 ...

1000
1050
1020
....

500
505

. «

500
1000
1050
1020
 ...

505
....

A locate produces an output which is the name of the cell containing

the desired symbol. Since there is no guarantee that the symbol is

locatable, H5 is set -f- if it is, and - if it is not located. In the

P-1918

negative case an output is still produced: in the locate processes in the

basic system, J60, J6l, J62, the output is the name of the last cell in the

list.

INSERT

In an insert two symbols are designated, either directly as inputs or

as the result of preliminary processing by the insert processes: a symbol

in a list cell, and a symbol that is to be inserted in the list relative to

the first symbol. A new cell from available space is put in the list to

hold the new symbol, which is then located in the appropriate relationship

to the symbol already in the list. There are no outputs in HO.

NAME PQ SYMB LINK

Consider the mechanics for two
relationships: insert before and
insert after. Suppose the symbol
to be inserted is Al, the symbol in
the list is Bl, and its list cell
is 1000:

In both cases we start by preserving
1000:

For insert before, we put Al in 1000:

For insert after, we put Al in 1010:

900
1000
910

900
1000
1010
910

900
1000
1010
910

900
1000
1010
910

....

Bl

 *

Bl
Bl

....
Al
Bl

....
Bl
Al

1000
910

1000
1010
910

1000
1010
910

1000
1010
910

Notice that the symbols bear the
appropriate relationship of before and
after, but not necessarily the cells.
Given the name of a cell, there is no
way to insert a cell in front of it,
since the cell that links to it is
unknown.

P-1918
kj

DELETE

In a delete a symbol in a list is designated, either directly as input

or as the result of preliminary processing, and it is desired to remove

this symbol from the list, reducing the number of list cells by one. H5 is

set - for appropriate special cases; e.g., if the symbol designated for

deletion does not exist. Otherwise it is set +.

NAME PQ SYMB LINK

Suppose the designated symbol is
Al and it is in list cell 1000:

Then deletion is accomplished by
restoring 1000:

900
1000
910
920

900
1000
920

Al
Bl

1000
910
920

Bl
1000
920

900
1000

900
1000

.... 1000
Al 0

.... 1000
00 0

Notice that it is the cell after
1000 that is removed. It is not
possible to remove a cell knowing only
the name of the cell, since the name
of the cell linking to it is unknown.

Suppose, however, that cell 1000 was
the last cell in the list:

Then, it is not possible to remove
the next cell, which is 0, the
termination symbol. Instead, 1000 is
made into a private termination eel.1..
This is the only way to make cell 900
the last cell in the list. H5 is set -
to indicate that we have deleted the
last symbol.

POLICY ON PRIVATE TERMINATION CELLS

Private termination cells are introduced to allow deletion of final

symbols on lists. They occur in no other way. They can gradually

accumulate during processing, using up space. Consequently, J60, the

process which locates the next symbol on a list, automatically returns

private termination cells to available space, substituting the termination

symbol, 0. (j60 can do this, since when it detects a termination cell it

still has available the name of the previous cell.) Any J's that use J6o

as a subroutine will also have this feature (see sections on machine systems).

P-1918
U8

ERASE

To erase a structure of any kind is to return all the cells comprising

it to available space. There is no output in HO.

COPY

To copy a structure of any kind is to produce a new set of cells from

available space and link them together isomorphically to the given structure.

All the cells of the new set will contain exactly the same symbols as their

correspondents, except those that contain symbols used to link the structure

together; e.g., local names in list structures. These contain the names of

the copies of the corresponding lists* The name of the new structure is

the output, (0).

LIST PROCESSES

J60 LOCATE NEXT SYMBOL AFTER CELL (o). (o) is the name of a cell.
If a next cell exists (LINK of (0) not a termination symbol),
then the output (o) is the name of the next cell, and H5 is
set +. If LINK is a termination symbol, then the output (0) is
the input (0), which is the name of the last cell on the list,
and H5 is set - *

If the next cell is a private termination cell, J60 will work as
specified above, but in addition the private termination cell
will be returned to available space and the LINK of the input
cell (0) will be changed to hold 0.

No test is made to see that (o) is not a data term, and J60 will
attempt to interpret a data term as a standard IPL cell.

J6l LOCATE UCT SYir^QL ON LIST (o). (0) is assumed to be the name
of a cell in a list (either a head or list cell; it makes no
difference). The output (o) is the name of the last cell in
the list, and H5 set +. If there is no cell after (0), then
the output (0) is the input (o) and H5 is set -.

J62 LOCATE (0) ON LIST (l). A search of list with name (l) is made,
testing each symbol against (o) (starting with cell after cell
(l)). If (0) is found, the output (o) is the name of the cell
containing it and H5 set +. Hence, J62 locates the first
occurrence of (0) if there are several. If (o) is not found,
the output (0) is the name of the last cell on the list, and H5
set -.

P-1918

INSERT (O) BEFORE SYMBOL IN (l). (l) la assumed to name a cell
In a list. A new cell Is inserted in the list behind (l). The
symbol in (l) is moved into the new cell, and (0) is put into
(l). The end result is that (0) occurs in the list before the
symbol that was originally in cell (l). There is no output in
HO.

INSERT (0) AFTER SYMBOL IN (l). Identical with j6$, except the
symbol in (1) is left in (l), and (0) is put into the new cell,
thus occurring after the symbol in (l). (If (l) is a private
termination symbol, (o) is put in cell (l), which agrees with
the definition of insert after.)

INSERT (0) AT END OF LIST (l). Identical with J6U, except that
the location of the last cell is obtained first, prior to
inserting.

J66 INSERT (0) AT END OF LIST (l), IF WOT ALREAPT ON IT. Identical
with J62 followed by J6if, if (0) is not found. ~lF(o) is found,
J66 does nothing.

J67 REPLACE (1) BY (0) ON LIST (2) (FIRST OCCUBRBNCB ONI3T). J62
followed by putting (0) in the cell occupied by (1). This only
replaces the first occurrence of (l). If (l) doesn't occur on
list (2), J67 does nothing.

J68 DELETE SYMBOL IN CELL (0). (o) names a cell in a list. The
symbol in it is deleted by replacing it with the next symbol
down the list (the next cell is removed from the list and
returned to available space, so that the list is now one cell
shorter). H5 is set + unless (o) is the last cell in the list
or a termination cell. Then H5 is set ». Thus, H5 - means that,
after J68, (o) is a termination cell.

J69 DELETE SYMBOL (o) FROM LIST (l) (FIRST OCCURRENCE ONL3T). J62
is executed, followed by a delete if (0) is found. H5 is set +
if (0) deleted, and set * if (0) not on list.

JfO DELETE LAST SYMBOL SKOM LIST (0). A J6l, followed by a delete
if list (0) was not empty. H5 is set 4- if there was a last
symbol, and set * if list (o) was empty.

J71 ERASE LIST (0). (o) is assumed to name a list. All cells of
the list both h>ead and list cells are returned to available
space. (Nothing else is returned, not even the description list
of (0) if it exists.) There is no output in HO. If (0) names
a list cell, the cell linking to it will be linking to
available space after J71, a dangerous but not always fatal
situation.

P-1918
50

J72 ERASE LIST STRUCTURE (0). (o) ia assumed to name a list
structure or a sublist structure* List (o) is erased, as are
all lists with local names on list (o), and all lists with local
names on them, and so on* Thus, description lists get erased,
since they have local names. If the list is on auxiliary
storage (Q of (0) * 6 or 7), then the list structure is erased
from auxiliary, and the head, (0), ifl also erased. J72 works
for lists in both main and auxiliary storage.

J73 COPY LIST (O). The output (0) names a new list, with the
identical symbols in the cells as are in the corresponding cells
of list (0), including the head. If (0) is the name of a list
cell, rather than a head, the output (0) will be a copy of the
remainder of the list from (0) on. (Nothing else is copied, not
even the description list of (o), if it exists.) The nam is
local if the input (o) is localj otherwise it is internal.

J?U COPy LIST STRUCTURE (o). A new list structure is produced, the
cells of which are in one to one correspondence with the cells
of list structure (0). All the regional and internal symbols in
the cells will be identical to the symbols in the corresponding
cells of (0), as will the contents of data terms. There will be
new local symbols, since these are the names of the sublists of
the new structure. Description lists will be copied, if their
names are local. If (0) is in auxiliary storage (Q of (0) «* 6
or T)> the copy will be produced in main storage. In all cases,
list structure (0) remains unaffected. The output (o) names the
new list structure. It is local if the input (0) is local; it
is internal otherwise.

JT5 DIVIDE LIST AFTER LOCATION (o). (0) is assumed to be the name
of a cell on a list. A termination symbol is put for LINK of
(0), thus making (0) the last cell on the list. The output (o)
names the remainder list: a new blank head followed by the
string of list cells that occurred after cell (0).

J?6 INSERT LIST (p) APPER CELL (l), AND LOCATE LAST SYMBOL. List
(0) is assumed to be describable.Its head is Erased (if local,
the symbol in the head is erased as a list structure). The
string of list cells is inserted after cell (l): LINK of cell
(1) is the name of the first list cell, and LINK of the last
cell of the string is the name of the cell originally occurring
after cell (l). The output (0) is the name of the last cell in
the inserted string and H5 is set +. If list (0) has no list
cells, then the output (o) is the input (l) and H5 is set -.

J77 TEST IF (0) IS ON LIST (l). Assumes (l) is the name of a cell
on a list. A search is done of all cells after (l); H5 is set
+ if (0) is found, and set - if not.

J?8 TEST IF LIST (0) IS NOT EMPTY. H5 is set - if LINK of (0) is a
termination symbol, and set + if not.

P-1918
51

J79 03SST IF CELL (0) IS NOT EMPTY. H5 is set - If SBCB of (o) is 0,
and set + otherwise*

J8n FIND THE nth SYMBOL ON LIST (0), 0^n^9> (Ten routines, J80-
J89.) Set H5 -f- if the nth symbol exists, - if not. Assumes
list (0) describable, so that J8l finds symbol in first list
cell, etc* JdO finds symbol in head; and sets H5 - if (0) is
a termination symbol.

J9n CREATE A LIST OF THE n SYMBOLS (n-l), (n~2), *.., (l), (0).
04 n.<.9«The order is (n-l) first, (n-2) second, ..., (o) last.
The output (0) is the name (internal) of the new list; it is
describable. J90 creates an empty list (also used to create
empty storage cells, and empty data terms).

J100 GENERATE SYMBOLS FROM LIST (l) FOR 8UBPROCESS (0). The
subprocess named (0) is performed successively with each of the
symbols of list named (l) as input. The order is the order on
the list, starting with the first list cell. H5 is safe over
the generator: The sign of H5 left by the subprocess at one
occurrence will exist at the next occurrence (it must be 4- to
keep the generator going).

J101 GENERATE CELLS OF LIST STRUCTURE (l) FOR SUBPRQCES3 (p). The
subprocess named (0) is performed successively with each of the
names of the cells of list structure named (l) as input. The
order (called print order) is as followsi

1. List (0) is generated first.
2* All cells of a list are generated in contiguous sequence.

starting with the head.
3* After a list has been generated, the sublists of the list

structure that occur on the list are generated in the order
they occur on the list.

k» Lower level sequences of sublists occur after the higher
level sequence is finished, and are not interpolated.

5« Each list is generated only once, at the first opportunity.

The name of the cell is output to the subprocess as (0). H5 is
set + if the cell is the head of a list (so that J101 is
starting to generate a new sublist). In this case J101 has
already marked the sublist processed (J137)> so that the head
contains the processed mark and a blank symbol. The original
contents of the head are one down in the list, and will occur
as the next cell to be generated. In case the cell output to
the subprocess is a list cell H5, is set -.

J101 has available the name of the next cell to be generated
prior to executing the subprocess (which determines how
manipulations of the list structure by the subprocess will
affect generation).

P-1918
52

J101 cleans up the processing marks that it puts in the list
structure, returning the list structure to its original state
(except as modified by the subprocess). Structures whose names
have been put by the subprocess in the blank heads created by
marking processed are not erased by the generator.

J101 will move in list structure (o) if it is on auxiliary.

J102 GENERATE CELLS OF TREE (l) FOR SUBPROCESS (0). The subprocess
named (0} is performed successively with each of the names of
the cells of the tree named (l) as input. A tree is a data list
structure in which each sublist appears once and only once. The
cells of each sublist are generated before going on with the
superlist; the cell containing the name of the sublist occurs
immediately after the sublist and all its sublists are generated.
H5 is set 4- to the subprocess if input (0) is the head of a new
sublist, and is set - otherwise. (Nothing is marked processed,
since there is no need to keep track of multiple occurrences.)
The name of the next cell to be generated is found before the
cell is presented to the subprocess i.e., it is possible to
erase a tree with J1&2.

J102 will move in list structure (0) if it is on auxiliary.

AUXILIARY STORAGE PROCESSES, J105 to J109

There are two types of auxiliary storage fast and slow and two

separate auxiliary storage systems one for data list structures, and the

other for routines.

AUXILIARY STORAGE FOR DATA LIST STRUCTURES

The system for data list structures is patterned after a file drawer.

The file holds data list structures, A list structure can be filed in

auxiliary storage (it is the programmer's decision whether in fast or slow

storage). When filed, the structure is no longer in main storage, and all

the space it used is made available (except the head see below). The

programmer must be aware of when he has filed a list structure in auxiliary,

since most of the processes do not check for this. Thus, doing a J6o,

which locates the next symbol, on the name of filed list structure can only

lead to chaos. The system determines where a list structure shall be

filed, and records this information in the control word for the list

P-1918
53

structure. This is kept in the head of the list structure i.e*, in the

cell whose name is the name of the list structure. Thus, a list structure

has the same name throughout a run, no matter hov often it is shuffled

between main and auxiliary storage: when it is in auxiliary, the cell of

the name holds the control information to get the list structure back.

A filed list structure may be moved back into main storage, in which

case it is no longer filed, and no trace of it remains in auxiliary. This

can be done any time the name of the list structure is encountered, since

the head holds the control Information that locates it in auxiliary. It

is also possible to copy or erase list structures in auxiliary using the

regular list processes, J7^ and J72. Thus, the repertoire of processes

for handling auxiliary storage of data list structures consists of the

following processes:

J72 ERASE LIST STRUCTURE (p). (See definition in LIST PROCESSES.)

COPY LIST STRUCTURE (p). (See definition in LIST PROCESSES.)

J1Q5 MOVE LIST STHUCTUBE (0) IN FROM AUXILIARY. The control word in
cell (0) determines the location of the list structure,
Including whether it is in fast (Q ** 6) or slow (Q * 7) storage.
The list structure is returned to main storage, using words from
available space, and the head replaced by the head of the list
structure, so that the list structure is identical to itself
prior to filing (except that different list cells are used).
H5 is set +. If the list structure (o) was already in main
storage (Q ̂ 6 or 7)> J105 does nothing and H5 is set -. The
output (0) is the input (o).

J106 FILE LIST STRUCTURE (0) IN FAST AUXILIARY STORAGE. Creates a
copy of list structure (0) in a unit of the fast storage (the
system selects unit and the space within the unit). Erases
the list structure in main storage, except for head. Creates
control word (Q * 6) and places it in the head. There is no
output, (if there is no space in the fast auxiliary, it is
filed In the slow auxiliary .)

J107 FILE LIST STRUCTURE (o) IN SLOW AUXILIARY STORAGE. Identical to
J106 except uses slow auxiliary storage (Q « 7). (if there is
no space in the slow auxiliary, an error signal occurs.)

P-1918

J108 TEST IF LIST STRUCTURE (0) IS ON AUXILIARY. Sets H5 4- if (o) is
on either fast or slow auxiliary, and H5 - in all other cases.

AUXILIARY STORAGE FOR ROUTINES

The system for routines is used by the interpreter to bring in routines

for execution. It consists of an auxiliary block into which all routines

stored in auxiliary (either fast or slow) are copied, and executed. All

routines to be stored in auxiliary are assembled into this block during

loading, so that no further assembly is needed to execute them once they

have been brought in (see INTERPRETATION). Since all auxiliary routines

use the same block, if an auxiliary routine uses an auxiliary routine, the

copy of the higher one in main storage is destroyed when the lower one is

called in. It is necessary to bring the higher auxiliary routine back into

main storage again when the lower is finished. This leads to a "two call"

system, in which every routine requires two reads from auxiliary storage:

one to bring the routine in, and one to bring back its predecessor in the

auxiliary block. It is necessary to use a storage cell, the current

auxiliary routine cell, Rk, to keep track of the routines in the auxiliary

block, since the nesting of auxiliary routines is unlimited. The symbols

stacked in Rk are names of the control words, so the routines can be

called back. These considerations lead to the following restrictions:

-There is a fixed upper limit to the size of an auxiliary routine,
given by the size of the block. However, this block can be set
arbitrarily for each run (see type 3: BLOCK RESERVATION CARDS).

-No auxiliary routine shall modify itself during execution. If it did,
the call back from auxiliary would not be the same as the initial
and now modified--copy read in from auxiliary. (There are other
reasons for not allowing self-modification e.g., recursions.)

P-1918
55

-Subprocesses used with generators in auxiliary must be independent
routines i.e., have regional names so that every time the generator
executes the subprocess it can be brought in from auxiliary. If the
subprocess were a sub-list-structure of the superroutine (with a
local name), then when the generator was brought in from auxiliary it
would destroy the copy of the superroutine and with it, the
subprocess--and chaos would result when the generator tried to
execute the subprocess (see GENERATORS).

Routines cannot be created or manipulated during processing, so there are

no routines for moving routines from main storage to auxiliary or vice

versa.

CONTROL OF AUXILIARY UNITS

Both fast and slow auxiliaries are repacked when full or inefficient

(see sections on machine systems). Thus the location of a list structure

in auxiliary is variable. This means that copies of the control words

have no validity, and hence should never be used by the programmer. It

also means that the programmer has no control over which auxiliary units

are used (see INITIAL LOADING).

ARITHMETIC PROCESSES, J110 to J129

All the input and output symbols in this section are the names of

numeric data terms. Most operations admit only integers (P = 0, Q » l) or

floating point numbers (P * 1, Q * l), but some admit any data term. In

the arithmetic operations, if all factors are integers, then the result

will be an integer. If either factor is floating point, the result will

be a floating point number. Note that the prior nature of the cell holding

the answer is immaterial. Thus, for example, J90 is used to create new

result cells, even though it does not create data terms. None of the

factors are affected by the operations, unless they are also named as the

result. Any illegal operation overflow, divide check, etc. produces an

error condition (see ERROR TRAP).

P-1918
56

J110 (l) + (2) ^> (Q). The number named (o) la set equal to the
algebraic sum of the numbers named (l) and (2)« The output (0)
Is the Input (0); i.e., the result*

Jill (l) - (2) X(P)_* ^e lwnil>er (°) i8 8et «q.ual to the algebraic
difference between numbers (l) and (2). The output (o) is the
input (0).

JU2 (l) x (2)) (O). The number (0) is set equal to the product
of the numbers (l) and (2). The output (0) is the input (o).

J113 (l) / (2) ̂ (9)* ^e number (o) is set equal to the quotient
of the number (1) divided by the number (2). The output (0) is
the input (o)* If division is integer division, then the
remainder is the data term, Wll (consequently, the remainder is
unsafe over divisions).

Jll4 TEST IF (0) « (1). Tests identity, including prefixes, of any
two data terms, named (0) and (l). Hence will always give H5 -
if an integer is tested against a floating point*

J115 TEST IF (0) > (1)*

J116 PEST IF (0) < (1).

J117 TEST IF (0) p 0.

J118 TEST IF (0) > 0.

J119 TEST IF (0) <. 0.

3^2® CQpy (0)> The output (o) names a new cell containing the
identical contents to (Q)» The name is local if the input (0)
is local; otherwise it Is internal.

J121 SET (0) IDENTICAL TO (l). The contents of the cell named (l)
Is placed in the cell (0). The output (o) is the input (0).

J122 TAKE ABSOLUTE VALUE OF (0). The number (0) is modified by
setting its sign 4.. It is left as the output (0).

J123 TAKE NEGATIVE OF (0), The number (0) is modified by changing
Its sign i.e., by multiplication by -1. It is left as the
output (0). (Zero is signed; J123 takes zero into minus zero*)

CLEAR (0). The number (o) is set to be 0. If the cell Is not
a data term, it Is made an integer 0. If a number, its type,
integer, or floating point, is unaffected. It is left as the
output (0).

P-1918
57

J125 TALLY 1 IN (0). Aa integer 1 is added to the number (0). The
type of the result is the same as the type of (0). It is left
as the output (0).

J126 COUNT LIST (0). The output (0) is an integer data term, whose
value is the number of list cells in list (0) (i.e., it doesn't
count the head). If (0) = H2, J126 will count the available
space list. This is the only place where H2 can be used safely
by the programmer.

J12? TEST IF DATA TYPE (0) = DATA TYPE (l). Tests if P of cell (0)
is the same as the P of cell (1).(Assumes (0) and (l) are data
terms, hence, uses P of data term representation, which is not
the same as P of instructions see sections on machine systems.)

J128 TRANSLATE (0) TO BE DATA TYPE OF (l). The output (0) is the
input (0), translated according to the data type of data term
(l). This translation is not defined for all data terms. It
will float integers (P «* 0 to P » l) and fix floating point
numbers (P = ltoP=0). It can be expanded to include other
P's see sections on machine systems.

J129 PRODUCE RANDOM NUMBER IN RANGE 0 TO (0). The output (0) is a
new number chosen from the uniform distribution over the interval
0 up to number (0) (the endpoint (o) is excluded). It is an
integer or floating point number according to (0). It is
produced by first generating a random number in the interval 0
up to 1, and then multiplying this number by (o). The random
fraction is generated by multiplying the number named in storage
cell W10 by a fixed number and taking the low order digits.
This new number is returned to W10 to become the factor in the
next random number generated. Thus, starting W10 with a
specified integer leads to a fixed sequence with randqn ^
properties, which can be repeated. Different random sequences,
such as are needed in statistical replication, are generated by
starting W10 with different Initial numbers.

Note that if the input is the integer n, the selection is from
the n Integers, 0, 1,, n-1, each with probability 1/n.

P-1918
58

DATA PREFIX PROCESSES, J130 to J139

The reason for defining the data list structure as a unit of

information is to allov processes that work for the list structure as a

whole. We have processes like J72, erase a list structure; J7^, copy a

list structure; and Jl^O, read a list structure into the computer. One

erase process is sufficient to cover almost all possible types of data.

It is desirable to be able to construct additional higher IPL routines

that also work for list structures. To do this requires the ability to

detect and manipulate the three kinds of symbols) regional, Internal, and

local. This is possible (for data only) since the Q prefix is used

internally to encode the symbol type with each occurrence. Upon loading

data list structures (see INPUT-OUTPUT), the following coding takes placet

Q SB 0 SYMB is regional.
Q s i Word is data term.
Q s 2 SYMB is local.
Q SB 3 Una s signed.
Q » k SYMB is internal.
Q ss 5 Word is data term (same as Q * l).
Q = 6 List structure is in fast auxiliary storage.
Q SB 7 List structure is in slow auxiliary storage.

P = 0 For all standard IPL words, and as assigned
for data terms.

The only values of Q and P that appear externally are those connected with

data terms. We give the others here to make it clear wha-fc processes are

being performed with the data prefix processes; details can be found in

the sections on machine systems.

RECURSIONS

Besides the processes implied above, it is necessary to be able to

work on all parts of the list structure e.g., in an erase, every cell

must be erased. The basic technique in processing list structures is

P-1918
59

recursion. Since a list structure is recursively defined, the kind of

operations that can be defined for a list structure involve defining what

is to be done to each list of the structure and then recursing through the

structure* That is, the total process has the form:

-Do what you have to to this list;
-Find all the local names on this list;
-Do the total process to each sub-list-structure
defined by these local names.

Eventually, all the lists in the list structure get processed and the

recursion will stop; the recursive character of the routine and the fact

that all connections in the structure are marked by local names assures

this. Since, however, the name of a list can occur in many places in a

list structure, there must be some device for avoiding multiple processing

of the same list if this is not desired (and it must not be allowed for

list structures which allow the name of a list to appear on one of its

sublists)* For example, in erasing a list of lists which consists of three

occurrences of the same sublist e.g., LI: 9-1* 9-1* 9-1 the sublist, 9-l>

must be erased only once, not Just as a matter of efficiency, but because

chaos will result if an erased list is erased.

MARKING A LIST PROCESSED

The solution provided in the basic system to keep track of multiple

processing is a technique for marking a list "processed": J137 (taking the

name of a list as input) preserves the list, makes the head blank

(Q = k, SXMB s= 0), and marks it with P = 1. Since throughout the rest of

the data, P = 0, it is possible to detect if the sublist has already been

processed by testing whether P = 1 (J133)» The mark can be removed and

the list returned to its initial condition by a restore. The blank head

can hold temporary information relevant to each sublist during a list

P-1918
60

structure process. For example, a new temporary description list could be

put in the head* It would not get mixed up with the normal description

list, which is one down in the push down list. Of course, this temporary

description list must be cleaned up at the end, say by J15.

It is possible to avoid some of the problems of keeping track of list

structure by using J101, the generator of the cells of a data list structure.

J101 uses the device of marking processed every sublist is marked processed

when first presented but much of the mechanics is buried in J101, and

need not be repeated by the subprocess that uses it.

J130 TEST IF (0) IS REGIONAL SYMBOL. Tests if Q = 0 in HO.

J131 TEST IF (0) NAMES DATA TERM. Tests if Q * 1 or 5 in the cell
whose name is (0).

J132 TEST IF (0) IS LOCAL SYMBOL. Tests if Q s 2 in HO,

J133 TEST IF LIST (o) HAS BEEN PROCESSED. Tests if P - 1 (and
Q j£ 1 or 5) in the cell whose name is (o). It will only be 1
if list (0) has been preserved and P s= 1 put in its head by
J137, This means list (0) has been processed.

J13^ TEST IF (0) IS INTERNAL SYMBOL. Tests if Q = k in HO.

J136 MAKE SYMBOL (0) LOCAL. The output (o) is the input (o) with
Q = 2. Since all copies of this symbol carry along the Q value,
if a symbol is made local when created, it will be local in all
its occurrences.

J137 MARK LIST (0) PROCESSED. List (o) is preserved, its head made
blank (Q » if, SXMB »OJ, and P set to be 1. Restoring (0) will
return (0) to its initial state. This will work even with data
terms. The output (0) is the input (o),

J138 MAKE SYMBOL (o) INTERNAL. The output (o) is the input (0) with
Q = 4.Best considered as "unmake local symbol."

P1918
61

INPUT-OUTPUT CONVENTIONS

Input and output comprise several pieces: initial loading; translation

from one representation to another; reading data list structures during

running; writing data list structures created during running so they can

be reloaded; printing; and monitoring the running program. All of these

utilize common conventions about format and designation of units.

EXTERNAL TAPES (BCD TAPES)

It is possible to use tapes for input and output, rather than the

on-line card readers, punches, and printers. Such tapes are called

external tapes, to distinguish them from the tapes used for auxiliary

storage. An external tape is functionally identical with a deck of cards

outside the IPL computer. It consists of a sequence of independent list

structures (and machine language code, if it is being used for initial

load). It can be removed from a computer and put on again at a later time.

External tapes are not generally compatible accross different types of

machines (but see sections on machine systems for details). Tapes can be

used as intermediate storage, since tapes written by the write processes

can later be read back in by the read processes. An external tape can

hold information in any of the representations defined below.

INPUT-OUTPUT UNIT CODE

The units used for input and output are named by small integers as

followsi

0 The "normal" value for an installation. This will depend on the
operating system being used at the installation and the kind of
machine. It will include on-line card read and punch for some
signal from the console.

1-10 External tapes. The connection between these names and physical
units is again dependent on the machine and the installation.

The sections on the machine system should be consulted for more information.

P-1918
62

INPUT-OUTPUT REPRESENTATION MODS

The Information being input and output is in one of several modes,

each of which has an integer code:

0 = IPL standard (one IPL word per card, as represented on the coding
sheet) .

1 - IPL compressed (about 7 IPL words per card).

2 ~ IPL binary (about 20 IPL words per card).

3
k
5 >= Machine language for various object machines. See sections on
6 machine systems for further details.
7

4

IPL COMPRESSED REPRESENTATION

See sections on machine systems for information.

IPL BINARY REPRESENTATION

(See sections on machine systems for further information.) The

information is put on the card in column binary, although the notation used

is as if it were row binary: e.g., 9L is the 36 bit word in the left half

of the 9 row of the card. The 9 row is special:

9LP = 6 (= 7 if wish to ignore checksum).
9ID = v + 500g, where v =. word count and is at most 22.
9LA « sequence number of card in deck.
9R = checksum - (9L) + (8L) + . . . + (vth information word).

All the v information words, starting with 8L and working back, are

considered one long string of bits. The string is divided up into units

by the following heading code and convention:

Heading code (bits)

0 =* end of list.

10 = IPL word: followed by Q LINK P SYMB NAME.

11 = data term: followed by Q P DATA NAME.

P and Q each coded into 3 bits.

NAME, SYMB, LINK, each coded into 1 bit (s=0) if blank; or into 6 bit
region plus 15 bit relative number if not blank.

DATA is coded into 30 bits.

P-1918
63

READ AND WRITE PROCESSES, JlUO to Jlk6

These are processes that allow the input and output of data list

structures during running, under the control of the program. Only data

list structures, not routines, can be input or output by these processes.

The form of the data list structures is identical to that of initial

loading, and may be in any of the three modes of representation: IPL

standard, IPL compressed, or IPL binary (if possible for the object machine)

A safe storage cell, Wl6 for reading and WIT for writing, determines the

mode. The symbol in the cell is the name of the integer data term giving

the code stated earlier. The list structures are handled independently,

and not as blocks (as in initial loading), and no header cards are used.

No translation, assembly listing, or direct input to auxiliary (all inputs

being to main storage) is possible. The unit to be used must be selected,

and safe storage cells, Wl8 for read and W19 for write, are used for this.

The symbol in the cell names the integer data term giving the unit (see

INPUT-OUTPUT UNIT CODE).

READ LIST STRUCTURE TO (0). A list structure on cards (or
external tape) in any of the admissible forms (IPL, compressed,
binary) is read into main storage, its name input to (o), and
H5 set -K Blank records are treated as end-of-list-structure
marks. If the first record read by JlkO is blank, it is
ignored. If there is no list structure (card hopper empty or
end of file) then there is no input and H5 is set -. Internal
symbols are assumed to already exist in the IPL computer:
internal symbol 13^5 is assigned address

P-1918
6k

READ A SYMBOL FROM CONSOLE. Inputs a symbol or data term from
the console into HO. Sets H5 4- if there is an input, and - if
there is not. An input data term is put in a new cell and given
an internal name.

The console conventions depend on the particular machine, and
the sections of the manual on machine systems should be
consulted for the exact definition of

WRITE LIST STRUCTURE (o) . (0) is assumed to name a list
structure. It is punched (or written on external tape) in any
of the admissible forms (IPL, compressed, IPL binary)* Regional
symbols are converted back to external form, adddd; internal
symbols are converted directly- -address 13^5 "to symbol 13^5;
and local symbols are expressed as 9<iddd, where the dddd are
small integers that start with 0 for each list structure. The
order of writing is that of J101, so that all the symbols of a
list are written consecutively. Thus there is no need for
local names for list cells i.e., no link is needed except for
0, the termination symbol.

REWIND TAPE (0). The external tape named by the data term (0)
is rewound.

SKIP TO NEXT TAPE FILE. The external tape named in W18 is
positioned past the next end of file mark.

WRITE END OF FILE. The end of file mark is written on the
external tape named in W19.

Jlk6 WRITE END OF BLOCK. A blank record (appropriate to mode 1W17)
is written on the external tape named in W19. (See INITIAL
LOADING for use of blank records.)

MONITOR SYSTEM, Jl^T to

Three kinds of facilities are available for monitoring the running

program and controlling it. First, it is possible to take a "snap shot"

of the program to see what it is doing. Second, it is possible to get

P-1918
65

"post mortem" information after a program has stopped. Third, it is

possible to trace the program, printing information on each instruction as

it is executed. The sections of the manual on machine systems should be

consulted on the conventions for using the console to accomplish the

features described below.

MONITOR POINT, Q g 3

Any instruction with Q = 3 is called a monitor point in the program.

As far as execution of the program is concerned it is treated as Q « 0.

However, when it is encountered, the interpreter takes the following

monitoring actions

-It turns the trace on, also marking that a monitor point has occurred.

-It pushes down the safe storage cell W29 and stores the current
instruction address (the name of the cell holding the instruction
with Q =s 3) as 1W29.

-It checks the pbnsole for the following signals:

-Terminate the program for restart (see SAVING FOR RESTART): it
executes the routine named in the safe storage cell, W1J5, and
then continues with the program. Terminating this routine with
J166 accomplishes the terminate for restart.

-Terminate the program: it executes the routine named in the
safe storage cell, Wl^, and then continues with the program.
Terminating this routine with J7 accomplishes the program
terminate.

-External trace mode: no trace, selective trace, full trace.

-If neither of the terminates occur, it executes the routine
named in the safe storage cell, W12, and then continues the
program.

-When the program list in which Q = 3 occurred is finished i.e.,
when the marked routine is finished it executes the routine
named in the safe storage cell, W13*

-It then pops up W29 and continues with the program.

It is normal to mark a routine by putting the monitor mark in the head.

P-1918
66

SNAPSHOTS

The four cells, W12, W13, WlU, and W15, hold four routines, called

snapshot routines. As seen above, they will be executed under various

conditions associated with the monitor points, Q ~ 3» There is no

restriction to the routine that could be executed, although the normal use

is to print out various lists to see how the program is progressing. The

snapshot for W15 must end with Jl46 to make the program terminate for

restart, and the snapshot for Wl^ must end with J7 to stop the program.

POST MORTEM PUMP

In the event the program stops from some internal error, it is

possible to print out information about the terminating condition of the

machine* The routine that does this is self contained, and is therefore

normally unaffected by whatever error stopped the IPL program. It is

executed manually from the console* W23 is used to select the information

obtained. The dump routine varies with machine, and the sections of the

manual on each machine system should be consulted for details.

TRACING

There are two trace modes, "on" and "off." In addition there are

three externally imposed conditions: no trace, in which the trace mode is

"off" no matter what is indicated internally; selective trace, in which

the trace mode is as indicated Internally; and full trace, in which the

trace mode is "on" no matter what is indicated internally. If the trace

mode is on, then for each instruction the following information is printed:

' vX

P-1918
6?

-Level number, counting down from the initial routine as level 1.

-CIA, the current instruction address (the symbol in Hi).

-Test signal, the contents of H5 (-for -) prior to execution.

-Instruction being executed, PQ SYMB LINK (the contents of CIA).

-S, the designated symbol.

-(0), the symbol in HO prior to execution.

-The contents of cell (o), printed in appropriate form (data term or
PQ SYMB LINK).

-H3, the number of interpretation cycles since H3 was last reset. (H3
will include one count for each line of trace that would have
printed had full trace been on.)

The format is as follows:

Level CIA >H5 P Q SYMB LINK S (0) CONTENTS H3

The level and CIA are indented according to the level, modulo the printing

internal available. The symbols are translated back into IPL representation

(this is not possible on all machines). The Q of (0) is printed, indicating

whether the symbol is internal or local*

TRACE MARKS

The trace mode is carried by a mark in HI. This mark encodes whether

the trace mode is on or off, and also whether a monitor point occurred. On

selective trace, the interpreter consults this mark each cycle (after

INTERPRET Q but before INTERPRET P) and if it reads on, prints the trace

information. This mark is governed by the occurrence of Q » 3> and Q « k,

in the instructions of the program. Both of these are treated as Q = 0 in

determining the designated symbol. The following rules describe their

function:

P-1918
68

"If a Q = 3 is encountered, set trace on.

-If the trace is on, it remains on as we advance along a program list
(always at the same level) i.e., the trace mark propagates down a
list.

-When the program descends a level, the trace is always off, a priori
 i.e., the trace mark does not propagate down levels*

-If a Q ss k is encountered, the trace mark is set to equal the trace
mark one level up i.e., the trace is propagated down a level by
Q 9 k.

-In ascending HI is restored and the trace mark of the higher level
again becomes operative*

These rules mean the following: putting Q = 3 in the head of a program list

will cause that list to be traced* Putting Q » k in the head of a program

list will cause that list to be traced, if the program list calling upon

it is tracing. Hence, putting Q = k in the heads of all local sublists of

a routine makes the routine a tracing unit: all instructions of the routine

will trace if Q « 3 in the head of the routine; the whole routine will

trace conditionally if Q ss k is put in the head; and none will trace if

Q A 3 or 4 in any instruction.

The Q's can be written in the routines at the time of coding by the

programmer. Since Q = 3 and k are equivalent to Q » 0, they can often be

put in without adding space to the system. If the head of a routine does

not have Q = 0, then an additional instruction, say with SYMB = JO, is

necessary. Since the routines that are traced are changed often, it is

desirable to specify the Q's at the beginning of each run, without

permanently marking the routines. This can be done by means of three IPL

processes:

P-1918
69

JlVf MARK ROUTINE (0) TO TRACE, If Q = 0, 3, or k, in cell (0),
changes Q to be 3« If not, preserves (0), and places the
Instruction 03 JO in cell (0).

MARK ROUTINE (o) TO PROPAGATE TRACE. Identical to Jll*7 except
uses Q = k*

MARK ROUTINE (0) NOT TO TRACE, If Q * 3 or k, in cell (0), puts
Q ss 0; unless SYKB is also JO, in which case Jllj-9 restores (o).
If Q f* 3 or k, does nothing.

PRINT PROCESSES, J150 to Jl6l
*

Two classes of printing processes are provided, those for printing IPL

units of data (symbols, lists, list structures, data terms) and those for

composing and printing a line of information. Each of the printing

processes is related to:

-the unit that will print, given by the integer data term named in
the safe storage cell W20. (Soe INPUT-OUTPUT UNIT CODE.)

-the column in which the leftmost character of the format will print,
given by the integer data term named in the safe storage cell W21.
The columns run from 1 at the far left of the page to 120 at the
right. The entire format of 37 spaces must fit onto the page,
independent of whether particular fields are going to print or not.
If the column number shifts the format too far to the right or left,
the format will print at the rightmost or leftmost possible position.

-the line spacing that will occur between a line and the previous
printing, given by the integer data term named in the safe storage
cell W22. The spacing code is the following:

0 if spacing is suppressed i.e., print on the same line;
1 if start printing on the next line;
2 if skip one line before starting to print;
3 if skip to next page, and start printing at the top.

Not all the object machines have the full flexibility, so the sections on

machine systems should be consulted.

P-1918
TO

PRINTING IPL UNITS OF DATA

J150 PRINT LIST STRUCTURE (o). The contents of all the cells of the
data list structure named (o) are printed. Regional symbols are
translated to the form adddd; internals are printed as the
decimal integer corresponding to the address; and local symbols
are translated to the form 9dddd , where dddd are small integers
starting with 0 for each list structure. All data terms are
translated to their external form.

Bach list of the list structure is printed in an uninterrupted
vertical column, so that neither LINK nor the NAME of any list
cell is ever printed. If the SYMB names a data term, then this
data term is printed to the right on the same line. If the
NAME is a local name (which can occur only in printing the head
of a sublist), its corresponding address is printed to the left.
The local name, 9dddd, bears no relation to this address. The
full format is shown below. (Column 1 corresponds to the
column specified by the integer data term named in W21.)

-column: 123^5 67

addr.
of
NAME
if
local

The lists of the list structure are printed in the order of J101,

J151 PRINT LIST (0). The contents of all the cells of the list
named (0) are printed in an uninterrupted vertical column. The
format is the same as that of J150, except that local symbols
are not translated to form 9&ddd; but instead their addresses
are printed, and the Q =2 identifies them as locals.

J152 PRINT SYMBOL (0). The symbol (0) is printed. The format is
the same as J150, where (0) is placed at SYMB, and if it names
a data term, this is printed to the right. Locals are handled
as in J151.

J153 PRINT DATA TERM (0) WITHOUT NAME OR TYPE. (0) is assumed to
name a data term (if not, nothing is printed and the designated
spacing occurs.) The DATA part of the data term is printed in
its location in the format of J150, but neither (0) nor the PQ
of the data term is printed. This process, in connection with
the suppression of spacing, allows alphanumeric characters to
be placed along a line in any pattern.

89111
012

NAME

111
3^5

PQ

11112
67890

SYMB

2222
123^

22
56

PQ

22233333333
7890123^567

DATA
if SYMB names
data term

P-1918
71

LIKE PRINTING

In addition to the output unit, left margin, and line spacing controls

given previously, line printing is controlled by:

-the current print line, named by the symbol in the safe storage cell
W2^. Print lines are reserved during loading (see T5TPE 3: BLOCK
RESERVATION CARDS), when the symbol naming the line and the size of
the line are specified. All print lines start with column 1; the
specified line size determines the right margin of the line.

-the current column at which information will be entered in the current
print line, given by the Integer data term named in the safe storage
cell W25. Information can be entered either left-justified--lW25
specifying the position of the first character of the field being
entered or right-JustIfled 1W25 specifying the position of the last
character of the field. After an entry, 1W25 is set to the next
column following the last character of the field entered, and H5 is
set 4* If the entire field cannot be entered because it would
exceed the line size, no information is entered, 1W25 is left
unchanged, and H5 is set -.

Symbols are entered on the print line in compact form; that is, as Al,

BIO, etc. Data terms are entered according to the following rules:

Integers: Leading zeros are eliminated. Plus signs are not entered,
but minus signs are. Examples: "00273" entered as "273"
(3 columns); "-01050" entered as "-1050" (5 columns).

Floating Point: The entire number is entered, signed value followed
by signed exponent. Only minus signs are entered.
Examples: ".505135xl05" entered as "505135 05" (9 columns);
".llfxlO"16 entered as "1^0000 -16" (10 columns).

Alphanumeric: Trailing blanks that is, blanks that follow some
non-blank character and are not followed by some non-blank
character are eliminated. Example: M_AJP_" entered as
"_A_F" (k characters);"___" entered as "___" (5
characters.)

All Other: The entire value of the data term is entered as a ten
digit octal integer. Example: "000056723V1 entered as
"0000567234".

J15*f CLEAR PRINT LINE. Print line 1W24 is cleared and the current
entry column, 1W25, is set equal to the left margin, 1W21.

PRINT UNE. Line lW2*f is printed, according to spacing control
1W22. The print line is not cleared.

P-1918
72

J156 ENTER SYMBOL (o) LEFT-JUSTIFIED. Symbol (0) is entered in the
current print line with its leftmost character in print position
1W25, 1W25 is advanced to the next column after these in which
(o) is entered, and H5 is set -f. If (o) exceeds the remaining
space in the print line, no characters are entered, 1W25 is not
advanced, and H5 is set -.

J157 ENTER DATA TERM (0) LEFT-JUSTIFIED* Data term (0) is entered
in the current print line with its leftmost character in print
position 1W25, 1W25 is advanced, and H5 set -K If (0) exceeds
the remaining space, no entry is made and H5 is set -.

J158 ENTER SYMBOL (o) RIGHT-JUSTIFIED. Symbol (o) is entered as in
J156, except that 1W25 names the print position of the last
character of the field. If entry is possible, 1W25 is advanced
and H5 set 4-; if not, H5 is set -.

J159 ENTER DATA TERM (0) RIGHT-JUSTIFIED. Data term (0) is entered
as in J157> except that 1W25 names the print position of the
last character of the field. If entry is possible, 1W25 is
advanced and H5 set +j if not, H5 is set -.

Jl60 TAB TO COLUMN (0). (0) is taken as the name of an integer data
term. Current entry column, 1W25, is set equal to 1W21 -f- (o).

Jl6l INCREMENT COLUMN BY (p). (0) is taken as the name of an integer
data term. Current entry column, 1W25, is set equal to 1W25 -h
(o).

In addition to lines composed using these primitives, complete

headings and partial lines can be specified at loading (see TYPE 3: BLOCK

RESERVATION CARDS).

INITIAL LOADING

To use IPL, the computer must first be turned into an IPL computer by

loading the IPL interpretive system, either from cards or tape. Then the

IPL computer must load the user's program into the total available space.

This requires a deck of cards (or external tape) containing the IPL words,

as well as some special cards to identify the program and to define the

regional symbols that are used in the program. These special cards are

called type cards, and they are identified by a non-zero digit in the

TYPE column (column li-l). The cards that have been described up till now

P-1918
73

have all been type 0 cards (TXTE may be left blank on type 0 cards). The

following additional types are recognized.

TYPE li COMMENT CARDS.

All columns (except kl) are available for anything the programmer

wishes to write. Comment cards are listed on the assembly listing, but

have no other effect on rthe loading process.

TYPE 2s REGION CARDS

All the regional symbols with the same initial letter constitute a

region. Each region is translated into an interval of addresses in the

computer. For example, the R region might correspond to addresses 1000 to

1018: then RO would correspond to 1000, Rl to 1001, and Rl8 to 1018. The

interval for each region must be specified at loading time by a type 2 card.

One type 2 card is used for each region. The first symbol of the region?-

e.g., R or RO is put in the NAME field, SYMB is left blank, and the

number of cells in the interval is put in LINK. The IPL computer assigns

the next block of contiguous cells available in the loading process to this

region. Thus the origin is assigned arbitrarily. There is normally no

need to know the origin, since all regional symbols are translated back

into the letter- number form for output. However, for some purposes it may

be desirable to specify the origin. This is done by placing the address

of the origin in SYMB. The origin can also be specified in terms of

another region, provided the other region is first defined. See the

sections on machine systems for further details.

P-1918

Examples:

Ten symbols for the M region
MO to M9:

Starting the M region at
address 1000i

Making MO synonymous with
B37

TYPE NAME PQ SYMB LINK

MO

MO

MO

10

1000 10

B37 10

There are 36 possible regions: AB...Z+-/».,$*(and).

Three regions, H, J, and W, have already been permanently specified for the

basic system. The regions are all part of the IPL computer. All the

regional symbols that are not actually used during loading i.e., do not

occur as some NAME, SYMB, or LINK on the coding sheet are made part of

the available space for the IPL computer at the end of the loading, and

thus lose their regional character. All regional symbols mentioned (in

SXMB or LINK) but not defined (in NAME) are blank. If the exact limits of

intervals are specified, then the intervals corresponding to different

regions may overlap and need not be contiguous. If origins are assigned

by the IPL computer, the regions are adjacent and disjoint.

TYPE 3: BLOCK RESERVATION CARDS:

It is necessary to reserve blocks of space for various purposes, and

sometimes desirable to set a number of regional symbols to be blank without

mentioning them, say for later input. lype 3 cards are used to accomplish

this. They fit the same format as type 2 cards: S3TMB indicates the base,

if appropriate; and LINK indicates the size of the block (NAME is always

blank). Q is used to indicate the purpose of the block, according to the

following table:

P-1918
75

Q = 0 Reserve regional symbols. If SYMB is A5 and LINK is 10, then
A5 through Al^ inclusive are set blank, and will not be put
back on available space. The symbols reserved must have
previously been covered by a type 2 card.

Q » 1 Reserve print line. SYMB is the regional symbol naming the
line. LINK is the number of words to be set aside for the
print line. (These words are taken from available storage,
not from the region. See sections of the manual on machine
systems for details of how SYMB refers to the line, and of how
many characters are stored per word in a particular machine.)
If P is not 0 or blank, the immediately following record is a
Hollerith record to be loaded into the block starting with
column 1 into the first character position and continuing to
the end of the block.

Q =2 Reserve primitive block. Space can be provided with known
addresses to hold additional primitives. See the sections of
the manual on the machine systems;

Q as 3 Reserve auxiliary routines buffer. This space is used by all
the routines on auxiliary storage. Its size limits the
maximum size of a routine on auxiliary. See AUXILIARY STORAGE.

Q = k Specify available space. If this card is absent from the
loading deck, or if it is present with LINK blank, all the
available space possible will be assigned, including all the
unmentioned and unreserved regional symbols. If LINK is
specified, only that much space will be provided, and all in
one continuous block if possible. In any event, various
scraps of space (unmentioned symbols, interstices between
regions, etc.) will be put on the end of available space.
This is often useful in debugging.

TYPE ki LISTING CARDS

Type k cards represent printed output from computers which must

output via cards and therefore require a way of distinguishing printed

output (J150's) from punched output (J1^2). They are generated by the

computer, and not by the programmer. If input, they are listed on the

assembly listing, but have no other effect on loading.

TYPES 5, 6, AND 7: HEADER CARDS

Data or routines are loaded in a series of separate blocks, each of

which is preceded by a header card that governs the loading process.

P-1918
76

The Input deck may be In several modest IPL standard (one word per

card); IPL compressed; IPL binary; or one of the machine codes. It may

also come from one of several Input units: tapes or the card reader. It is

possible to specify an output during initial loading, which serves the

purpose of translating from one form, such as IPL standard, to another,

such as IPL binary, for subsequent use. An assembly listing is usually

produced during loading, to indicate the machine location assigned to each

IPL word in order to facilitate debugging. This may be suppressed, if

desired.

The block may contain routines or data, and it is necessary to specify

which, as the P and Q codes are treated differently. Also, the block may

go Into main storage (type 5)* or to one of the auxiliary storages (type 6

for fast, type 7 for slow). In the latter case, it is necessary to

specify the units available to the auxiliary system, although it is not

necessary (or possible) to specify vhat units are used for what list

structures.

Finally, a header card is used to specify that loading has finished,

and to indicate where the program starts.

The codes for these various items of Information are given in the

following tablei

P-1918
77

TYPE: Type of storage to be used:

5 main storage
6 «* fast auxiliary
7 slov auxiliary

HAME: Name of storage unit:

Blank for main storage (type 5)
See sections on machine systems for designation of auxiliary

storage units on the various object machines (types 6 and

P: Input mode:

0 *IPL standard (l word per card)
1 =• IPL compressed
2 == IPL binary

k
5
6
7

Machine language for various object machines.
machine systems for details.

See sections on

of input:

0 - Routines. Internal symbols are considered pure symbolics.
Undefined internal symbols (internal symbols not in the internal
symbol table) are assigned equivalents from available space.

1 - Data list structures. Internal symbols are considered pure
symbolics. Undefined internal symbols are assigned equivalents
from available space.

2 = Routines. Internal symbols are considered pure symbolics. The
internal symbol table is reset (thus undefinlng all internal
symbols) and undefined internal symbols are assigned equivalents
from available space.

3 Data list structures. Internal symbols are considered pure
symbolics. The internal symbol table is to be reset and
undefined internal symbols are to be assigned equivalents from
available space.

4 *= Routines. Internal symbols are considered machine addresses
(and so no equivalent need be assigned).

5 * Data list structures. Internal symbols are considered machine
addresses.

P or Q blank are interpreted as P or Q = 0.

SYMBi Input unit:

0 - "normal" for installation. May be left blank«
1-10 for external tapes

If SYMB contains a regional symbol, loading terminates and the
program begins at the named routine.

P-1918
78

LINK: Output mode: of form bbbcd

b *= blank (columns 57-59)
c » 0 or blank if assembly listing desired.

1 or any other character, if assembly listing to be
suppressed,

d == 0 or blank if no output desired
1 if output in IPL compressed.
2 if output in IPL binary
All other input-output modes are illegal.

The output unit is the one given in W19.
Each block of IPL compressed or IPL binary output ends with a
blank record appropriate to that mode (see ALTERNATE INPUT
UNITS).

TYPE 9; FIRST CARD

The very first card of a program to be loaded must be a type 9 card.

Except for the type designation, a type 9 card is treated like a comment

card (type l) and may be used to identify the program. The use of type 9

cards allows several programs to be stacked on an external tape for batch

execution.

ALTERNATE INPUT UNITS

As indicated on the type 5, 6, or 7 header card, it is possible to

read a block of input from an input unit other than the primary one. The

unit on which the first type 9 card is read is the controlling unit. If

any header card read on that unit refers to any other input unit (in SYMB),

the block that would follow that header card is read from the alternate

unit. The header card on the controlling unit completely specifies the

block--input mode, type of input, destination in storage, output mode and

unit. Discrepancy between the header and the actual information on the

alternate input unit causes a loading error. The block on the alternate

unit is terminated by a blank record or by a header card, at which time

the next record on the controlling unit is read. Any non-type 0 cards on

the alternate unit, except header cards that terminate blocks, are treated

as type 1 cards.

P-1918
79

ASSEMBLE LISTING

As indicated on the type 5> 6> or 7 header card, it is possible to

obtain an assembly listing of the program being loaded. This consists of

a replica of the cards being input alongside the machine locations they

correspond to with the assembled contents in decimal. The assembly listing

of type 0 and 1 cards can be suppressed for any,block by a signal in the

LINK of the header card. Other type cards are printed under all conditions.

LOADING DECK

The IPL deck for initial loading consists of the following parts in

order:
M

1. One type 9 card.

2. All type 2 cards with exact limits, if any, in any order.

3. All type 3 cards with exact limits, if any, in any order.

k. All type 2 cards giving only region size, if any, in any order.

5. All type 3 cards giving only block size, if any, in any order.

Only regions and blocks defined by these cards (plus the H, J and
W regions) exist for the IPL computer this run. The type 2 and 3
cards with exact limits must go first to insure that their cells
will be available.

6. Blocks of data and routines, in any order.

Each block is preceded by an appropriate type 5, 6, or 7 card.
For IPL standard and IPL compressed cards, the end of the block
is signalled by the next type 5, 6, or 7 card. For binary and
machine modes, a special termination signal is required in the
last card (see machine systems for details).

The input unit that initiates loading the one containing the
type 9 card becomes the controlling unit. If a type 5, 6, or 7
card Indicates that the block is to come from another input unit
(SYMB of the type card), then after the block is through loading,
the next type card is picked up from the original controlling unit.

7. A final type 5 card vith a regional symbol for SYMB to terminate
loading and start the program.

Any violation of this order will result in an on-line printed
error message.

P-1918
80

(it may be noted that the process of loading an IPL program is a one-pass

symbolic assembly, hence the need to define symbols before loading the

data and routines*)

In loading type 0 cards, the IPL computer assigns locations from

available space to local symbols. A list of local symbol definitions is

kept. The list is cleared whenever a regional or internal symbol is

encountered in NAME (the start of a new list structure), and at the end of

the loading process.

Internal symbols are likewise assigned locations from available space

and thus redefined. A list of internal symbol definitions is kept. This

list is cleared upon the appropriate signal from a header card, and at the

end of the loading process. The programmer knows the correspondence of

input symbols and their redefinitions only by means of the assembly listing.

Any subsequent output of internal symbols will be in terms of their

redefinitions.

Regional cells may be defined more than once in the loading sequence.

The latest occurring definition is the effective one. (This is often

useful in making corrections.)

INPROCESS LOADING

More routines and data can be loaded during interpretation of an IPL

program. All options as to mode, unit, etc., available during initial

loading are present during inprocess loading. No new regions or blocks can

be specified during inprocess loading. (Not all object machines have full

flexibility, so the sections on machine systems should be consulted.)

P-1918
81

J165 LOAD ROUTINES AND DATA> More routines and data are read, with
the input unit specified by 1W18 as the controlling unit, The
load deck consists of header cards (type 5> 6, or 7) each
followed by a block of routines or data (except when an alternate
input unit is specified) and terminated by a type 5 card with a
regional SYMB. The routine named as SYMB on the final type 5
card is taken as the next routine to be interpreted. If there
are no routines or data, interpretation continues with the
instruction following J165.

SAVE FOR RESTART

A primitive process is provided that allows a running program to be

terminated at any point, read out on tape or cards, and restarted again by

reading the tape or cards back into the machine. This process may be

externally executed at a monitor point (see MONITOR SYSTEM) or may be put

in the program at any point.

J166 SAVE ON UNIT (p) FOR RESTART. The entire contents of main
storage is written onto a single external tape (or punched on
cards, according to the unit named by data term (o).) Auxiliary
storage is also saved in some form. Identification of the
auxiliary units and external tapes being used by the IPL
computer are printed out. Then the program stops. If the
specified auxiliary units and external tapes are provided, and
the tape (deck) is input under control of a one card loader
(specified for each machine system), the program will commence
at the instruction following Jl66. (See sections on machine
systems for more details.)

Jl66 does not save external tapes. The programmer saving for restart

must provide routines to record the position of external tapes before

executing Jl66 and to reposition those tapes where continuing after restart.

An additional primitive is provided for use in repositioning tapes:

Jl6? SKIP LIST STRUCTURE. A single liflt structure on cards or
external tape (as specified by 1W18) in any of the admissible
forms IPL, compressed, binary (as specified by 1W16) is
skipped over, and H5 set -f. A blank record is treated as an
end-of-list-structure mark. Immediately subsequent blank
records are ignored. If there is no list structure (card
hopper empty or end of file), then H5 is set -. Jl67 behaves as
does J140, except that the structure is not entered into storage.

It is anticipated that "save for restart" will be used to provide a

fast-loading version of checked-out routines, to which additional routines

to be debugged can be added by "load more routines and data."

P-1918
82

ERROR TRAP, J170

Many different error conditions can occur during processing by the

IPL computer for example, multiple definition of local symbols within a

list structure during loading, specifying other than a data term as operand

for an arithmetic process. These conditions cause a system error trap to

occur. The action taken upon trapping depends on the routine currently

associated with the particular error condition. (See sections on machine

systems for the normal error conditions and associated trapping actions.)

When an error condition occurs, the following steps take place:

-The safe storage cell W27 is preserved and the CIA at the time of the
trap is stored as 1W27« This is the name of the instruction word
designating the trapped process, except for primitives executed as
links, when it is the name of the primitive.

-The safe storage cell W28 is preserved and the symbol associated with
the trapping condition, the trap attribute , is stored as 1W28.

-The description list of W26 (that is, the list 1W26) is searched (as
In J10) for the trap attribute. If the trap attribute exists as an
attribute of W26, its value names the routine to be executed as the
trapping action. That routine is executed. If no value is associated
with the trap attribute, the routine associated with the attribute
'internal zero* (the symbol *0') is executed as the trapping action.
If no value is associated with 'internal zero 1 , no trapping action
is taken.

The trapping action is executed as a subprocess of the trapped
process--that is, as thougfr it were designated directly in the
trapped process. Because HO, H5, and the W's are not disturbed by
the error trap mechanism, the trapping action can repeat the trapped
process under its own control if desired. If the trapping action is
marked with Q=4, it will trace conditionally.

-When the trapping action terminates, W27 and W28 are restored and
interpretation continues with the process following the trapped
process.

P-1918
83

The standard description list form of W26 allovs any trapping action

to be modified or disabled by assigning a different value to the trap

attribute* Also, additional trap attributes and associated actions can

be added* A primitive process is provided to take trapping action at any

point in the program.

J170 TRAP ON (O). J170 preserves W27 and W28, stores the appropriate
CIA in W27 and (0) in W28, searches the description list of W26
for the attribute (o), and executes as a subprocess of the
process designating J170 the routine named by the associated
value. If (0) is not an attribute of W26, the routine
associated with 'Internal zero 1 is executed. If 'internal zero 1
is not an attribute of W26, no trapping action is taken. J170
then restores W27 and W28 and terminates'.

X

P-1918
85

(0; » (it* • * •
ALTERNATE INPUT UNITS
ARITHMETIC PROCESSES*
ASSEMBLY LISTING
ATTRIBUTES
AUXILIARY STORAGE
AUXILIARY STORAGE
AVAIALABLE SPACE
BLOCK RESERVATION
CELLS

HEAD
LIST
NAMES
PRIVATE
SAFE
STORAGE
SYSTEM
TERMINATION

JMO-J129

PROCESSES* J105-J109

CARDS* TYPE 3

TERMINATION

CELLS*
CELLS*
CELLS*
CELLS*
CELLS,
CELLS,
CELLS*
CELLS*
CIA CELL, HI
CODING FORM, EXAMPLE
CODING FORM* USE OF
COMMENTS CARDS* TYPE 1
COMMUNICATION CELL, HO
COPY
CURRENT INSTRUCTION ADDRESS CELL* HI
DATA IN ROUTINES

LIST STRUCTURES
LIST STRUCTURES, AUXILIARY
LIST STRUCTURES* RULES FOR
LIST* RULES FOR
PREFIX PROCESSES, J130-J139
TERMS
TERMS* EXAMPLE
TYPE CODE* P

DELETE
DESCRIBABLE LISTS

LISTS
LISTS
PROCESSES* J10-J16

SYMBOL* S

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DESCRIPTION
DESCRIPTION
DESCRIPTION
DESIGNATED

STORAGE FOR

DESIGNATION OPERATION* 0
ERASE
ERROR TRAP, J170
FIND
FIRST CARD, TYPE 9
GENERATOR CONVENTIONS
GENERATOR HOUSEKEEPING PROCESSES, J17-J19
GENERATORS

25
78
55
79
15
9

52
7

74
7
9
9
9

47
24
10
35
9

30
6
3

73
24
48
30
23
13
52
17
13
58
3
8
7

47
14
14
16
38
27
27
48
82
37
78
43
40
40

P-1916
86

GENERAL PROCESSES* JO-J9 37
HEADER CARDS, TYPE 5, 6, 7 75
HEADS OF LISTS 9
HO, COMMUNICATION CELL 24
HI, CIA CELL 30
H2, AVAILABLE SPACE LIST 7
H3, INTERPRETATION CYCLE TALLY 34
H5, TEST CELL 25
INITIAL LOADING 72
INITIAL LOADING DECK, ORDER OF 79
INPROCESS LOADING, J165 80
INPUT-OUTPUT CONVENTIONS 61
INPUT-OUTPUT REPRESENTATION MODE 62
INPUT-OUTPUT UNIT CODE 61
INPUTS OF ROUTINES 24
INSERT 46
INSTRUCTIONS 22
INTERNAL SYMBOLS 2
INTERPRETATION 30
INTERPRETATION, CYCLE 32
INTERPRETATION, FLOWCHART 33
INTERPRETATION, RULES OF 31
INTERPRETIVE SYSTEM, IPL-V 1
IPL BINARY REPRESENTATION 62
IPL COMPRESSED REPRESENTATION 62
LEVELS, DATA LIST STRUCTURE 19
LEVELS, ROUTINE 23
LIST CELLS 9
LIST PROCESSES, J60-J104 44
LIST STRUCTURES, DATA 13
LIST STRUCTURES, DATA ' 17
LIST STRUCTURES, OTHER 21
LIST STRUCTURES, ROUTINE 23
LISTING CARDS, TYPE 4 75
LISTS, DATA 13
LISTS, DESCRIBABLE 14
LISTS, DESCRIPTION 14
LISTS, DESCRIPTION 16
LISTS, PROGRAM 22
LISTS,,PUSH DOWN 10
LOADING, INITIAL . 72
LOADING, INITIAL, ORDER OF 79
LOADING, INPROCESS 80
LOCAL SYMBOLS 2
LOCAL SYMBOLS, DOMAIN OF 18
LOCATE 45
LINE PRINTING 71

P-1918
87

MARKING PROCESSED 59
MONITOR POINT* Q=3 65
MONITOR SYSTEM* J147-J149 64
MOVE 37
OPERATION CODE, P. 28
OUTPUTS OF ROUTINES 24
P, DATA TYPE CODE 7
P, OPERATION CODE 28
POP UP 11
POST MORTEM DUMP 66
PRESERVE 11
PRESERVE 44
PRIMITIVE PROCESSES 22
PRINT PROCESSES* J150-J161 69
PRIVATE TERMINATION CELLS 47
PROCESSES, ARITHMETIC, J110-J129 55
PROCESSES, AUXILIARY STORAGE, J105-J109 52
PROCESSES, BASIC SYSTEM OF 34
PROCESSES, DATA PREFIX, J130-J139 58
PROCESSES, DESCRIPTION, J10-J16 38
PROCESSES, ERROR TRAP, J170 82
PROCESSES, GENERAL, JO-J9 37
PROCESSES, GENERATOR HOUSEKEEPING, J17-J19 40
PROCESSES, INPROCESS LOADING, J165 80
PROCESSES, LIST, J60-J104 44
PROCESSES, MONITOR SYSTEM, J147-J149 64
PROCESSES, PRINT,J150-J161 69
PROCESSES, READ AND WRITE, J140-J146 63
PROCESSES, SAVE FOR RESTART, J166-J167 81
PROCESSES, WORKING STORAGE, J20-J59 44
PROGRAM LISTS 22
PROGRAMS 21
PROGRAMS, RULES FOR 23
PUSH DOWN 11
PUSH DOWN LISTS 10
Q, DATA 58
0, DESIGNATION OPERATION 27
READ AND WRITE PROCESSES, J140-J146 63
RECURSIONS 58
REGION CARDS, TYPE 2 73
REGIONAL SYMBOLS' 2
RESTORE 11
RESTORE 44
ROUTINES 21
ROUTINES, AUXILIARY STORAGE FOR 54
ROUTINES, DATA IN 23
ROUTINES, INPUTS AND OUTPUTS 24

P-1918

ROUTINES* RULES FOR 23
S> DESIGNATED SYMBOL 27
SAFE CELLS 24
SAVE FOR RESTART* J166-J167 81
SNAPSHOTS 66
STORAGE CELLS 10
SYMBOLS 2
SYMBOLS* TERMINATION 10
SYSTEM CELLS, LIST OF 35
SYSTEM REGIONS 34
TALLY OF INTERPRETATION CYCLES, H3 34
TAPES, EXTERNAL (BCD) 61
TERMINATION CELLS 9
TERMINATION CELLS, PRIVATE 47
TERMINATION SYMBOLS 10
TEST 37
TEST CELL, H5 25
TRACE MARKS 67
TRACING 66
TRAP, ERROR 82
TYPE CARDS 72
VALUES OF ATTRIBUTES 15
WORDS, STANDARD AND SPECIAL IPL 3
WORKING STORAGE PROCESSES, J20-J59 44

SHORT LIST OP BASIC PROCESSES PI9I8
89

* means sets H5

JO
Jl

*J2
*J3

*J5
J6

J9

*J10
Jll

J12

J13

J14
J15
*J16

J17
*J18
»J19

J2n
J3n
J4n
J5n

*J60
*J61
*J62
J63

J65
 J66
J67

»J68
»J69
*J70
J71
J?2
J73

J75

*J76

*J78
»J79
*j8n
J9n

*J100
*J101

*J102
J103
J104

*J105
J106
J107
*J108
J109

No operation
Execute (0) after restoring HO
TEST (0) - (1)
Set H5 -
Set H5 +
Reverse sense of H5
Reverse (0) and (l)
Halt, proceed on 00
Restore HO
ERASE cell (0)

FIND value of attribute (0) of (l)
Assign (1) as value of attribute (0)

of (2)
Add (1) at front of value list of

attribute (0) of (2)
Add (1) at end of value list of
attribute (0) of (2)

ERASE attribute (0) of (l)
ERASE all attributes of (0)
FIND attribute of (0) randomly

GEN set up: context (0), suppr. (1)
Execute subprocess of GEN
GEN clean up

MOVE (O)-(n) to WO-Wn
Restore WO-Wn
Preserve WO-Wn
Preserve WO-Wn; MOVE (O)-(n) to

WO-Wn

LOCATE next symbol after cell (0)
LOCATE last symbol on list (0)

*J115
*J116
*J117
»Jll8
*J119
J120
J121

J122

J123

J124
J125
J126
»J127

J128

J129

*J130
*J131
*J132
*J133

LOCATE
INSERT
INSERT
INSERT
INSERT
Replace

0 on list (1)
0 before symbol in cell (l)
0 after symbol in cell (l)
0 at end of list (l)
0 at end if not on list (1)
(1) by (0) on list (2) (1st,

J135
J136
J137

J138
J139

J142

DELETE symbol in cell (0)
DELETE (0) from list (l) (1st)
DELETE last symbol from list (0)
ERASE list (0)
ERASE list structure (0)
COPY list (0)
COPY list structure (0)
Divide list after location (0); name

of remainder is output (OJ
INSERT list (0) after (l), LOCATE

last
TEST if (0) is on list (l)
TEST if list (0) is not empty
TEST if cell (0) is not empty
FIND the nth symbol on list (0)
Create list of n symbols, (n-l) to

(0)

GEN symbols on list (l) for (0
GEN cells of list structure (1

for (0)
GEN cells of tree (l) for (0)

J145
J146

J147
J148

J149

J150

MOVE list structure
File list structure
File list structure

in from aux.
in fast aux.
in slow aux.

TEST if list structure (0) is on aux.

J110
Jill
J112
J113

T '

 |

 * i

+

X
?!
X
[2)

0
0
0|, leave
0), leave

, leave
, leave

J152
J153

J15 1*
J155

*J156
*J157

*J158
*J159

J160
J161
J162
J163
J164

J165
J166

*J167
J168
J169

TEST if 0 »
TEST if 0 > 1
TEST if |0 4 l'
TEST if 0 0
TEST If '0 > 0
TEST if '0 < 0
COPY (0)
Set (0) Identical to (l),

leave (0)
Take absolute value of (0),

leave (0)
Take negative of (0),

leave (0)
Clear (0), leave (0)
Tally 1 In (o), leave (0)
Count list (O)
TEST if data type (0) -
data type (1)

Translate JO) to be data
type of (1)

Produce random number
between 0 and (0)

TEST if JO) is regional symbol
TEST if JO) names data term
TEST if (0) Is local symbol
TEST if list (0) has been
processed

TEST if (0) is internal symbol

Make (0) local, leave (0)
Mark list (0) processed,

leave (OJ
Make (0) internal, leave (0)

Read list structure to (0)
Read symbol from console to (0)
Write list structure (0)
Rewind tape (0)
Skip to next tape file
Write end of file
Write end of block

IS)Mark routine
Mark routine

trace
Mark routine (6) to not trace

to trace
to propagate

Print list structure (0)
Print list (0)
Print symbol (0)
Print data term (0) w/o name

or type
Clear print line
Print line
Enter symbol (0) left-Justified
Enter data term (o) left-

Justified
Enter symbol (0) right-Justified
Enter data term (o) right-

Justified
Tab to column (0)
Increment column by (o)

Load routines and data
Save on unit (0) for restart
Skip list structure

J170 Trap on (0)

PI9I8
90

IPL INSTRUCTION; PQ SYMB LINK

P Is operation code
P«0 Execute S
P-l Input S (after preserving HO)
P-2 Output to S (then restore HO)
P-3 Restore (pop up) S
P»4 Preserve (push down) S
P-5 Replace (0) by S
P-6 Copy (0) In S
P-7 Branch to S if H5 -

Q is designation code
Q-0 S=SYMB
Q-l S=»symbol in cell named SYMB
Q-2 S^symbol in cell named in cell

named SYMB
Q«3 s-SYMB; start selective trace
Q«4 S-SYMB; continue selective trace

SYMB is symbol operated on by Q
LINK is address of next instruction

(0 for end of routine)

SYSTEM STORAGE CELLS

HO Communication cell
HI Current Instruction address cell
H2 Available space list
H3 Tally of interpretation cycles
H4 Current auxiliary routine cell
H5 Test cell

WO-W9 Common working storage
W10 Random number control cell
Wll Integer division remainder

Monitor start cell (Q«*3)
Monitor end cell (Q-3)
Monitor terminate cell
Monitor save for restart cell
Input mode cell
Output mode cell
Read unit cell
Write unit cell
Print unit cell
Print column cell
Print spacing cell
Post mortem dump cell
Print line cell

W25 Print entry column cell
W26 Error trap cell
W27 Trap address cell
W28 Trap symbol cell
W29 Monitor point address cell

W12
W13

W15
Wl6
W17
W18
W19
W20
W21
W22
W23

IPL DATA; PQ SYMB LINK

Q-0 Standard list cell
P la irrelevant
SYMB la symbol
LINK is address of next list cell
(0 for end of list)

Q-l Data term
SYMB
dddd

ddddd
aaaaa

Decimal integer
Floating point
Alphanumerloa1
Octal

PQ
1

11
21
31

LINK
dddd

d 4ee

ddddd ddddd

TYPE CARDS

0 (blank) Routines and data
1 Comments
2 Region definition

NAME-regional symbol
SYMB-origln (if given)
LINK-slze

3 Block reservation
Q-O Reserve regional symbols
Q-l Reserve print line
Q=2 Reserve primitive block
Q-3 Reserve auxiliary buffer
Q-4 Specify available space

4 Listing cards
5 Main storage header
6 Past auxiliary storage header
7 Slow auxiliary storage header

NAME«name of storage unit
P -input mode

P-0 IPL standard
IPL compressed
IPL binary

-type of input
Q-O Routines; internals symbolic
Q-l Data; internals symbolic

Routines: internals symbolic;
reset internal symbol table

Data; internals symbolic;
reset internal symbol table

Routines; Internals absolute
Q=5 Data; internals absolute

SYMB«input unit
0 - "normal" for installation
1-10 - external tapes

Regional SYMB names first routine
(terminate loading)

LINK-output mode (of form bbcd)
b-blank (columns 57-59)
c-non-zero if assembly listing
d«l output in IPL compressed
d«2 output in IPL binary

9 First card

P-l
P-2

Q-2

Q-3

SHORT LIST OP BASIC PROCESSES PI9I8
91

* means sets H5

JO
Jl

»J2

J9

 J10
Jll

J12

J13

J15
 J16

J17
*J18
»J19

J2n
J3n
J4n
J5n

*J60
*J61
*J62
J63

J65
J66
J67

*J68
*J69
*J70
J71
J?2
J73

J75

*J?6

»J77
*J7«
*J79
*j8n
J9n

*J100
»J101

*J102
J103

J110
Jill
J112
J113

No operation
Execute (0) after restoring HO
TEST (0) - (1)
Set H5 -
Set H5 +
Reverse sense of H5
Reverse (0) and (1)
Halt, proceed on GO
Restore HO
ERASE cell (0)

of attribute
as value

(0) of (1)
of attribute (0)

FIND value
Assign (1)

of (2)
Add (l) at front of value list of

attribute (0) of (2)
Add (l) at end of value list of

attribute (0) of (2)
ERASE attribute (0) of (l)
ERASE all attributes of (0)
FIND attribute of (0) randomly

OEN set up: context (0), suppr. (l)
Execute subprocess of GEN
GEN clean up

MOVE (O)-(n) to WO-Wn
Restore WO-Wn
Preserve WO-Wn
Preserve WO-Wn; MOVE (O)-(n) to

WO-Wn

LOCATE next symbol after cell (0)
LOCATE last symbol on list (0)
LOCATE 0 on list (l)
INSERT 0 before symbol in cell (l)
INSERT 0 after symbol in cell (l)
INSERT 0 at end of list (l)
INSERT 0 at end if not on list (l)
Replace (l) by (0) on list (2) (1st)
DELETE symbol in cell (0)
DELETE (0) from list (l) (1st)
DELETE last symbol from list (0)
ERASE list (0)
ERASE list structure (0)
COPY list (0)
COPY list structure (0)
Divide list after location (0); name

of remainder is output (O)
INSERT list (0) after (l), LOCATE

last
TEST if (0) is on list (l)
TEST if list (0) is not empty

(0)

*J115
*J116
*J117
*Jll8
*J119
J120
J121

J122

J123

J124
J125
J126
*J127

J128

J129

*J130
*J131
*J132
*J133

J135
J136
J137

J138
J139

J143
JlU
J145
J146

J147
J148

J149

J150
J151
J152
J153

TEST if cell is not empty
FIND the nth symbol on list (0)
Create list of n symbols, (n-l)

(0)

GEN symbols on list (l) for
GEN cells of list structure

for (0)
GEN cells of tree (l) for (0)

to

*J105 MOVE list structure
J106 File list structure
J107 File list structure
«J108
J109

in from aux.
in fast aux.
in slow aux.

TEST if list structure (0) is on aux.

(1

1
1

 >

 >
 V

, leave
, leave
, leave
, leave

(0
§
0

J155
*J156
*J157

*J158
*J159

J160
J161
J162
J163
J164

J165
J166
*J167
J168
J169

TEST if 0
TEST if 0
TEST if 0
TEST if 0
TEST if 0
TEST if 0
COPY (0)
Set (0) identical to (l),

leave (0)
Take absolute value of (0),

leave (0)
Take negative of (0),

leave (0)
Clear (0), leave (0)
Tally 1 in (0), leave (0)
Count list (o)
TEST if data type (0) -

data type (1)
Translate fO) to be data

type of (l)
Produce random number

between 0 and (0)

TEST if 0\ is regional symbol
TEST if |0 (names data term
TEST if 0, is local symbol
TEST if list (0) has been
processed

TEST if (0) is Internal symbol

Make (0) local, leave (0)
Mark list (0) processed,

leave (0)
Make (0) Internal, leave (0)

Read list structure to (0)
Read symbol from console to (0)
Write list structure (0)
Rewind tape (0)
Skip to next tape file
Write end of file
Write end of block

Mark routine
Mark routine

trace
Mark routine

ISJ to trace
to propagate

(0) to not trace

Print list structure (0)
Print list (0)
Print symbol (0)
Print data term (0) w/o name

or type
Clear print line
Print line
Enter symbol (0) left-Justified
Enter data term (o) left-

justified
Enter symbol (0) right-Justified
Enter data term (0) right-

Justified
Tab to column (0)
Increment colximn by (0)

Load routines and data
Save on unit (0) for restart
Skip list structure

Jl?0 Trap on (0)

PI9I8
92

IPL INSTRUCTION; PQ SYMB LINK

P is operation code
P-0 Execute S
P-l Input S (after preserving HO)
P-2 Output to S (then restore HO)
P=3 Restore (pop up) S
P-4 Preserve (push down) S
P«5 Replace (0) by S
P=6 Copy (0) in S
P-7 Branch to S if H5 -

Q is designation code
Q-0 S=SYMB
Q-l S=symbol in cell named SYMB
Q-2 S»symbol in cell named in cell

named SYMB
Q-3 S-SYMB; start selective trace
Q«4 S-SYMB; continue selective trace

SYMB is symbol operated on by Q
LINK is address of next instruction

(0 for end of routine)

SYSTEM STORAGE CELLS

HO Communication cell
HI Current instruction address cell
H2 Available space list
H3 Tally of Interpretation cycles
H4 Current auxiliary routine cell
H5 Test cell

WO-W9 Common working storage
W10 Random number control cell
wll Integer division remainder
W12 Monitor start cell (Q-3)
W13 Monitor end cell (Q-3)
Wl4 Monitor terminate cell
W15 Monitor save for restart cell
Wl6 Input mode cell
W17 Output mode cell
W18 Read unit cell
W19 Write unit cell
W20 Print unit cell
W21 Print column cell
W22 Print spacing cell
W23 Post mortem dump cell
W24 Print line cell
W25 Print entry column cell
W26 Error trap cell
W27 Trap address cell
W2o Trap symbol cell
W29 Monitor point address cell

IPL DATA; PQ SYMB LINK

Q-0 Standard list cell
P is irrelevant
SYMB is symbol
LINK is address of next list cell
(0 for end of list)

Q-l Data term
SYMB
dddd

ddddd
aaaaa

Decimal integer
Floating point
Alphanume r1ca1
Octal

PQ
1

11
21
31

LINK
dddd

d +ee

ddddd ddddd

TYPE CARDS

0 (blank) Routines and data
1 Comments
2 Region definition

NAME«regional symbol
SYMB-origin (if given)
LINK-slze

3 Block reservation
Q-0 Reserve regional symbols
Q-l Reserve print line
Q-2 Reserve primitive block
Q-3 Reserve auxiliary buffer
Q-4 Specify available space

4 Listing cards
5 Main storage header
6 Past auxiliary storage header
7 Slow auxiliary storage header

NAMEename of storage unit
P -input mode

P»0 IPL standard
P-l IPL compressed
P-2 IPL binary

Q -type of input
Q»0 Routines; Internals symbolic
Q-l Data; Internals symbolic
Q-2 Routines; Internals symbolic;

reset internal symbol table
Q-3 Data; Internals symbolic;

reset Internal symbol table
Q-4 Routines; Internals absolute
0=5 Data; Internals absolute

SYMB-input unit
0 « "normal" for installation
1-10 » external tapes

Regional SYMB names first routine
(terminate loading)

LINK-output mode (of form bbcd)
b-blank (columns 57-59)
c«non-zero .if assembly listing
d-1 output In IPL compressed
d-2 output in IPL binary

9 First card

