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Computer Science hs the study of the phenomena surrounding computers. The 

founders of this society understood this very well when they called themselves the 

Association for Computing Machinery. The machine ~ not just the hardware, but the 

programmed, living machine   is the organism we study.

This is the tenth Turing Lecture. The nine persons who preceded us on this 

platform have presented nine different views of computer science. For our organism, 

the machine, can be studied at many levels and from many sides. We are deeply 

honored to appear here today and to present yet another view, the one that has 

permeated the scientific work for which we have been cited. We wish to speak of 

computer science as empirical inquiry.

Our view is only one of many; the previous lectures make that clear. However, 

even taken together the lectures fail to cover the whole scope of our science. Many 

fundamental aspects of it have not been represented in these ten awards. And if the 

time ever arrives, surely not soon, when the compass has been boxed, when computer 

science has been discussed from every side, it will be time to start the cycle again. 

For the hare as lecturer will have to make an annual sprint to overtake the cumulation 

of small, incremental gains that the tortoise of scientific and technical development has 

achieved in his steady march. Each year will create a new gap and call for a new 

sprint, for in science there is no final word.

Computer science is an empirical discipline. We would have called it an
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experimental science, but like astronomy, economics and geology, some of its unique 

forms of observation and experience do not fit a narrow stereotype of the 

experimental method. None the less, they are experiments. Each new machine that is 

built is an experiment. Actually constructing the machine poses a question to nature; 

and we listen for the answer by observing the machine in operation and analyzing it 

by all analytical and measurement means available. Each new program that is built is 

an experiment. It poses a question to nature, and its behavior offers clues to an 

answer. Neither machines nor programs are black boxes; they are artifacts that have 

been designed, both hardware and software, and we can open them up and look inside. 

We can relate their structure to their behavior and draw many lessons from a single 

experiment. We don't have to build 100 copies of, say, a theorem prover, to 

demonstrate statistically that it has not overcome the combinatorial explosion of search 

in the way hoped for. Inspection of the program in the light of a few runs reveals the 

flaw and lets us proceed to the next attempt.

We build computers and programs for many reasons. We build them to serve 

society and as tools for carrying out the economic tasks of society. But as basic 

scientists we build machines and programs as a way of discovering new phenomena 

and analyzing phenomena we already know about. Society often becomes confused 

about this, believing that computers and programs are to be constructed only for the 

economic use that can be made of them (or as intermediate items in a developmental 

sequence leading to such use). It needs to understand that the phenomena 

surrounding computers are deep and obscure, requiring much experimentation to 

assess their nature. It needs to understand that, as in any science, the gains that 

accrue from such experimentation and understanding pay off in the permanent
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acquisition of new techniques; and that it is these techniques that will create the 

instruments to help society in achieving its goals.

Our purpose today, however, is not to plead for understanding from an outside 

world. It is to examine one aspect of our science, the development of new basic 

understanding by empirical inquiry. This is best done by illustrations. We will be 

pardoned if, presuming upon the occasion, we choose our examples from the area of 

our own research. As will become apparent, these examples involve the whole 

development of Artificial Intelligence, especially in its early years. They rest on much 

more than our own personal contributions. And even where we have made direct 

contributions, this has been done in cooperation with others. Our collaborators have 

included especially Cliff Shaw, with whom we formed a team of three through the 

exciting period of the late fifties. But we have also worKed with a great many 

colleagues and students at Carnegie-Mellon University.

Time permits taking up just two examples. The first is the development of the 

notion of a symbolic system. The second is the development of the notion of heuristic 

search. Both conceptions have deep significance for understanding how information is 

processed and how intelligence is achieved. However, they do not come close to 

exhausting the full scope of Artificial Intelligence, though they seem to us to be useful 

for exhibiting the nature of fundamental knowledge in this part of computer science.

I. SYMBOLS AND PHYSICAL SYMBOL SYSTEMS

One of the fundamental contributions to knowledge of computer science has 

been to explain, at a rather basic level, what symbols are. This explanation is a 

scientific proposition about Nature. It is empirically derived, with a long and gradual 

development.
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Symbols lie at the root of intelligent action, which is, of course, the primary 

topic of Artificial Intelligence. For that matter, it is a primary question for all of 

Computer Science. For all information is processed by computers in the service of 

ends, and we measure the intelligence of a system by its ability to achieve stated ends 

in the face of variations, difficulties and complexities posed by the task environment. 

This general investment of computer science in attaining intelligence is obscured when 

the tasks being accomplished are limited in scope, for then the full variations in the 

environment can be accurately foreseen. It becomes more obvious as we extend 

computers to more global, complex and knowledge-intensive tasks   as we attempt to 

make them our agents, capable of handling on their own the full contingencies of the 

natural world.

Our understanding of the systems requirements for intelligent action emerges 

slowly. It is composite, for no single elementary thing accounts for intelligence in all 

its manifestations. There is no "intelligence principle," just as there is no "vital 

principle" that conveys by its very nature the essence of life. But the lack of a simple 

deus ex machina does not imply that there are no structural requirements for 

intelligence. One such requirement is the ability to store and manipulate symbols. To 

put the scientific question, we may paraphrase the title of a famous paper by Warren 

McCulloch [1961]: What is a symbol, that intelligence may use it, and intelligence, that 

it may use a symbol?

Laws of Qualitative Structure

All sciences characterize the essential nature of the systems they study. These 

characterizations are invariably qualitative in nature, for they set the terms within
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which more detailed knowledge can be developed. Their essence can often be 

captured in very short, very general statements. One might judge these general laws, 

due to their limited specificity, as making relatively little contribution to the sum of a 

science, were it not for the historical evidence that shows them to be results of the 

greatest importance.

The Cell Doctrine m Biology

A good example of a law of qualitative structure is the cell doctrine in biology, 

which states that the basic building block of all living organisms is the cell. Cells come 

in a large variety of forms, though they all have a nucleus surrounded by protoplasm, 

the whole encased by a membrane. But this internal structure was not, historically, 

part of the specification of the cell doctrine; it was subsequent specificity developed 

by intensive investigation. The cell doctrine can be conveyed almost entirely by the 

statement we gave above, along with some vague notions about what size a cell can 

be. The impact of this law on biology, however, has been tremendous, and the lost 

motion in the field prior to its gradual acceptance was considerable.

Plate Tectonics m Geology

Geology provides an interesting example of a qualitative structure law, 

interesting because it has gained acceptance in the last decade and so its rise in status 

is still fresh in memory. The theory of plate tectonics asserts that the surface of the 

globe is a collection of huge plates   a few dozen in all   which move (at geological 

speeds) against, over, and under each other into the center of the earth, where they 

lose their identity. The movements of the plates account for the shapes and relative
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locations of the continents and oceans, for the areas of volcanic and earthquake 

activity, for the deep sea ridges, and so on. With a few additional particulars as to 

speed and size, the essential theory has been specified. It was of course not accepted 

until it succeeded in explaining a number of details, all of which hung together (e.g., 

accounting for flora, fauna, and stratification agreements between West Africa and 

Northeast South America). The plate tectonics theory is highly qualitative. Now that it 

is accepted, the whole earth seems to offer evidence for it everywhere, for we see 

the world in its terms.

The Germ Theory of. Disease

It is little more than a century since Pasteur enunciated the germ theory of 

disease, a law of qualitative structure that produced a revolution in medicine. The 

theory proposes that most diseases are caused by the presence and multiplication in 

the body of tiny single-celled living organisms, and that contagion consists in the 

transmission of these organisms from one host to another. A large part of the 

elaboration of the theory consisted in identifying the organisms associated with 

specific diseases, describing them, and tracing their life histories. The fact that the law 

has many exceptions   that many diseases are not produced by germs   does not 

detract from its importance. The law tells us to look for a particular kind of cause; it 

does not insist that we will always find it.

The Doctrine of. Atomism

The doctrine of atomism offers an interesting contrast to the three laws of 

qualitative structure we have just described. As it emerged from the work of Dalton,
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and his demonstrations that the chemicals combined in fixed proportions, the law 

provided a typical example of qualitative structure: the elements are composed of 

small, uniform particles, differing from one element to another. But because the 

underlying species of atoms are so simple and limited in their variety, quantitative 

theories were soon formulated which assimilated all the general structure in the 

original qualitative hypothesis. With cells, tectonic plates, and germs, the variety of 

structure is so great that the underlying qualitative principle remains distinct, and its 

contribution to the total theory clearly discernible.

Conclusion

Laws of Qualitative Structure are seen everywhere in science. Some of our 

greatest scientific discoveries are to be found among them. As the examples illustrate, 

they often set the terms on which a whole science operates.

Physical Symbol Systems

Let us return to the topic of symbols, and define a physical symbol system. The 

adjective "physical" denotes two important features: (1) Such systems clearly obey the 

laws of physics   they are realizable by engineered systems made of engineered 

components. (2) Although our use of the term "symbol" prefigures our intended 

interpretation, it is not restricted to human symbol systems.

A physical symbol system consists of a set of entities, called symbols, which are 

physical patterns that can occur as components of another type of entity called an 

expression (or symbol structure). Thus, a symbol structure is composed of a number 

of instances (or tokens) of symbols related in some physical way (such as one token
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being next to another). At any instant of time the system will contain a collection of 

these symbol structures. Besides these structures, the system also contains a 

collection of processes that operate on expressions to produce other expressions: 

processes of creation, modification, reproduction and destruction. A physical symbol 

system is a machine that produces through time an evolving collection of symbol 

structures. Such a system exists in a world of objects wider than just these symbolic 

expressions themselves.

Two notions are central to this structure of expressions, symbols and objects: 

designation and interpretation.

Designation: An expression designates an object if, given the 

expression, the system can either affect the object itself or 

behave in ways dependent on the object.

In either case, access to the object via the expression has been obtained, which is the 

essence of designation.

Interpretation: The system can interpret an expression if the 

expression designates a process and if, given the expression, 

the system can carry out the process.

Interpretation implies a special form of dependent action: given an expression the 

system can perform the indicated process, which is to say, it can evoke and execute its 

own processes from expressions that designate them.

A system capable of designation and interpretation, in the sense just indicated, 

must also meet a number of additional requirements, of completeness and closure. We 

will have space only to mention these briefly; all of them are important and have far- 

reaching consequences.

8



ACM Turing Award Lecture December 1, 1975

(1) A symbol may be used to designate any expression whatsoever. That is, 

given a symbol, it is not prescribed a priori what expressions it can designate. This 

arbitrariness pertains only to symbols; the symbol tokens and their mutual relations 

determine what object is designated by a complex expression. (2) There exist 

expressions that designate every process of which the machine is capable. (3) There 

exist processes for creating any expression and for modifying any expression in 

arbitrary ways. (4) Expressions are stable; once created they will continue to exist 

until explicitly modified or deleted. (5) The number of expressions that the system can 

hold is essentially unbounded.

The type of system we have just defined is not unfamiliar to computer scientists. 

It bears a strong family resemblance to all general-purpose computers. If a symbol 

manipulation language, such as LISP, is taken as defining a machine, then the kinship 

becomes truly brotherly. Our intent in laying out such a system is not to propose 

something new. Just the opposite: it is to show what is now known and hypothesized 

about systems that satisfy such a characterization.

We can now state a general scientific hypothesis -- a law of qualitative 

structure for symbol systems:

The Physical Symbol System Hypothesis; A physical symbol 

system has the necessary and sufficient means for general 

intelligent action.

By "necessary" we mean that any system that exhibits general intelligence will 

prove upon analysis to be a physical symbol system. By "sufficient" we mean that any 

physical symbol system of sufficient size can be organized further to exhibit general 

intelligence. By "general intelligent action" we wish to indicate the same scope of
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intelligence as we see in human action: that in any real situation behavior appropriate 

to the ends of the system and adaptive to the demands of the environment can occur, 

within some limits of speed and complexity.

The Physical Symbol System Hypothesis clearly is a law of qualitative structure. 

It specifies a general class of systems within which one will find those capable of 

intelligent action.

This is an empirical hypothesis. We have defined a class of systems; we wish to 

ask whether that class accounts for a set of phenomena we find in the real world. 

Intelligent action is everywhere around us in the biological world, mostly in human 

behavior. It is a form of behavior we can recognize by its effects whether it is 

performed by humans or not. The hypothesis could indeed be false. Intelligent 

behavior is not so easy to produce that any system will exhibit it willy-nilly. Indeed, 

there are people whose analyses lead them to conclude either on philosophical or on 

scientific grounds that the hypothesis [s_ false. Scientifically, one can attack or defend 

it only by bringing forth empirical evidence about the natural world.

We now need to trace the development of this hypothesis and look at the 

evidence for it.

Development of the Symbol System Hypothesis

A physical symbol system is an instance of a universal machine. Thus the 

symbol system hypothesis implies that intelligence will be realized by a universal 

computer. However, the hypothesis goes far beyond the argument, often made on 

general grounds of physical determinism, that any computation that is realizable can be 

realized by a universal machine, provided that it is specified. For it asserts specifically

10
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that the intelligent machine is a symbol system, thus making a specific architectural 

assertion about the nature of intelligent systems. It is important to understand how 

this additional specificity arose.

Formal Logic

The roots of the hypothesis go back to the program of Frege and of Whitehead 

and Russell for formalizing logic: capturing the basic conceptual notions of mathematics 

in logic and putting the notions of proof and deduction on a secure footing. This effort 

culminated in mathematical logic   our familiar prepositional, first-order, and higher- 

order logics. It developed a characteristic view, often referred to as the "symbol 

game". Logic, and by incorporation all of mathematics, was a game played with 

meaningless tokens according to certain purely syntactic rules. All meaning had been 

purged. One had a mechanical, though permissive (we would now say 

nondeterministic), system about which various things could be proved. Thus progress 

was first made by walking away from all that seemed relevant to meaning and human 

symbols. We could call this the stage of formal symbol manipulation.

This general attitude is well reflected in the development of Information Theory. 

It was pointed out time and again that Shannon had defined a system that was useful 

only for communication and selection, and which had nothing to do with meaning. 

Regrets were expressed that such a general name as "information theory" had been 

given to the field, and attempts were made to rechristen it as the Theory of Selective 

Information   to no avail of course.

11
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Turing Machines and the Digital Computer

The development of the first digital computers and of automata theory, starting 

with Turing's own work in the '30s, can be treated together. They agree in their view 

of what is essential. Let us use Turing's own model, for it shows the features well.

A Turing machine consists of two memories: an unbounded tape and a finite 

state control. The tape holds data, i.e., the famous zeroes and ones. The machine has 

a very small set of proper operations -- read, write and scan operations   on the 

tape. The read operation is not a data operation, but provides conditional branching to 

a control state as a function of the data under the read head. As we all Know, this 

model contains the essentials of all computers, in terms of what it can do, though other 

computers with different memories and operations might carry out the same 

computations with different requirements of space and time. In particular, the model of 

a Turing machine contains within it the notions both of what cannot be computed and 

of universal machines   computers that can do anything that can be done by any 

machine.

We should marvel that two of our deepest insights into information processing 

were achieved in the thirties, before modern computers came into being. It is a tribute 

to the genius of Alan Turing. It is also a tribute to the development of mathematical 

logic at the time, and testimony to the depth of Computer Science's obligation to it. 

Concurrently with Turing's work appeared the work of the logicians Emil Post and 

(independently) Alonzo Church. Starting from independent notions of logistic systems 

(Post productions and recursive functions, respectively) they arrived at analogous 

results on undecidability and universality   results that were soon shown to imply 

that all three systems were equivalent. Indeed, the convergence of all these attempts

12
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to define the most general class of information processing systems provides some of 

the force of our conviction that we have captured the essentials of information 

processing in these models.

In none of these systems is there, on the surface, a concept of the symbol as 

something that designates. The data are regarded as just strings of zeroes and ones 

  indeed that data be inert is essential to the reduction of computation to physical 

process. The finite state control system was always viewed as a small controller, and 

logical games were played to see how small a state system could be used without 

destroying the universality of the machine. No games, as far as we can tell, were ever 

played to add new states dynamically to the finite control   to think of the control 

memory as holding the bulk of the system's knowledge. What was accomplished at this 

stage was half the principle of interpretation   showing that a machine could be run 

from a description. Thus, this is the stage of automatic formal symbol manipulation.

The Stored Program Concept

With the development of the second generation of electronic machines in the 

mid-forties (after the Eniac) came the stored program concept. This was rightfully 

hailed as a milestone, both conceptually and practically. Programs now can be data, 

and can be operated on as data. This capability is, of course, already implicit in the 

model of Turing: the descriptions are on the very same tape as the data. Yet the idea 

was realized only when machines acquired enough memory to make it practicable to 

locate actual programs in some internal place. After all, the Eniac had only twenty 

registers.

The stored program concept embodies the second half of the interpretation

13
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principle, the part that says that the system's own data can be interpreted. But it 

does not yet contain the notion of designation   of the physical relation that underlies 

meaning.

List Processing

The next step, taken in 1956, was list processing. The contents of the data 

structures were now symbols, in the sense of our physical symbol system: patterns 

that designated, that had referents. Lists held addresses which permitted access to 

other lists   thus the notion of list structures. That this was a new view was 

demonstrated to us many times in the early days of list processing when colleagues 

would ask where the data were   that is, which list finally held the collections of bits 

that were the content of the system. They found it strange that there were no such 

bits, there were only symbols that designated yet other symbol structures.

List processing is simultaneously three things in the development of computer 

science. (1) It is the creation of a genuine dynamic memory structure in a machine that 

had heretofore been perceived as having fixed structure. It added to our ensemble of 

operations those that built and modified structure in addition to those that replaced 

and changed content. (2) It was an early demonstration of the basic abstraction that a 

computer consists of a set of data types and a set of operations proper to these data 

types, so that a computational system should employ whatever data types are 

appropriate to the application, independent of the underlying machine. (3) List 

processing produced a model of designation, thus defining symbol manipulation in the 

sense in which we use this concept in Computer Science today.

As often occurs, the practice of the time already anticipated all the elements of

14
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list processing: addresses are obviously used to gain access, the drum machines used 

linked programs (so called one-plus-one addressing), and so on. But the conception of 

list processing as an abstraction created a new world in which designation and dynamic 

symbolic structure were the defining characteristics. The embedding of the early list 

processing systems in languages the (IPLs, LISP) is often decried as having been a 

barrier to the diffusion of list processing techniques throughout programing practice; 

but it was the vehicle that held the abstraction together.

LISP

One more step is worth noting: McCarthy's creation of LISP in 1959-60 

[McCarthy, I960]. It completed the act of abstraction, lifting list structures out of 

their embedding in concrete machines, creating a new formal system with S- 

expressions, which could be shown to be equivalent to the other universal schemes of 

computation.

Conclusion

That the concept of the designating symbol and symbol manipulation does not 

emerge until the mid-fifties does not mean that the earlier steps were either 

inessential or less important. The total concept is the join of computability, physical 

readability (and by multiple technologies), universality, the symbolic representation of 

processes (i.e., interpretability), and, finally, symbolic structure and designation. Each 

of the steps provided an essential part of the whole.

The first step in this chain, authored by Turing, is theoretically motivated, but 

the others all have deep empirical roots. We have been led by the evolution of the
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