
COMPUTER SCIENCE AS EMPIRICAL INQUIRY:
SYMBOLS AND SEARCH

Alien Newell and Herbert A. Simon
November 1975

Carnegie-Mellon University
Pittsburgh, Pennsylvania

Our research over the years has been supported in part by the Advanced Research
Projects Agency of the Department of Defense (monitored by the Air Force Office of
Scientific Research) and in part by the National Institutes of Mental Health.

Copyright ACM

T T~

ACM Turing Award Lecture December 1, 1975

COMPUTER SCIENCE AS EMPIRICAL INQUIRY:
SYMBOLS AND SEARCH

Alien Newell and Herbert A. Simon

Carnegie-Mellon University

Computer Science hs the study of the phenomena surrounding computers. The

founders of this society understood this very well when they called themselves the

Association for Computing Machinery. The machine ~ not just the hardware, but the

programmed, living machine is the organism we study.

This is the tenth Turing Lecture. The nine persons who preceded us on this

platform have presented nine different views of computer science. For our organism,

the machine, can be studied at many levels and from many sides. We are deeply

honored to appear here today and to present yet another view, the one that has

permeated the scientific work for which we have been cited. We wish to speak of

computer science as empirical inquiry.

Our view is only one of many; the previous lectures make that clear. However,

even taken together the lectures fail to cover the whole scope of our science. Many

fundamental aspects of it have not been represented in these ten awards. And if the

time ever arrives, surely not soon, when the compass has been boxed, when computer

science has been discussed from every side, it will be time to start the cycle again.

For the hare as lecturer will have to make an annual sprint to overtake the cumulation

of small, incremental gains that the tortoise of scientific and technical development has

achieved in his steady march. Each year will create a new gap and call for a new

sprint, for in science there is no final word.

Computer science is an empirical discipline. We would have called it an

ACM Turing Award Lecture December 1, 1975

experimental science, but like astronomy, economics and geology, some of its unique

forms of observation and experience do not fit a narrow stereotype of the

experimental method. None the less, they are experiments. Each new machine that is

built is an experiment. Actually constructing the machine poses a question to nature;

and we listen for the answer by observing the machine in operation and analyzing it

by all analytical and measurement means available. Each new program that is built is

an experiment. It poses a question to nature, and its behavior offers clues to an

answer. Neither machines nor programs are black boxes; they are artifacts that have

been designed, both hardware and software, and we can open them up and look inside.

We can relate their structure to their behavior and draw many lessons from a single

experiment. We don't have to build 100 copies of, say, a theorem prover, to

demonstrate statistically that it has not overcome the combinatorial explosion of search

in the way hoped for. Inspection of the program in the light of a few runs reveals the

flaw and lets us proceed to the next attempt.

We build computers and programs for many reasons. We build them to serve

society and as tools for carrying out the economic tasks of society. But as basic

scientists we build machines and programs as a way of discovering new phenomena

and analyzing phenomena we already know about. Society often becomes confused

about this, believing that computers and programs are to be constructed only for the

economic use that can be made of them (or as intermediate items in a developmental

sequence leading to such use). It needs to understand that the phenomena

surrounding computers are deep and obscure, requiring much experimentation to

assess their nature. It needs to understand that, as in any science, the gains that

accrue from such experimentation and understanding pay off in the permanent

ACM Turing Award Lecture December 1, 1975

acquisition of new techniques; and that it is these techniques that will create the

instruments to help society in achieving its goals.

Our purpose today, however, is not to plead for understanding from an outside

world. It is to examine one aspect of our science, the development of new basic

understanding by empirical inquiry. This is best done by illustrations. We will be

pardoned if, presuming upon the occasion, we choose our examples from the area of

our own research. As will become apparent, these examples involve the whole

development of Artificial Intelligence, especially in its early years. They rest on much

more than our own personal contributions. And even where we have made direct

contributions, this has been done in cooperation with others. Our collaborators have

included especially Cliff Shaw, with whom we formed a team of three through the

exciting period of the late fifties. But we have also worKed with a great many

colleagues and students at Carnegie-Mellon University.

Time permits taking up just two examples. The first is the development of the

notion of a symbolic system. The second is the development of the notion of heuristic

search. Both conceptions have deep significance for understanding how information is

processed and how intelligence is achieved. However, they do not come close to

exhausting the full scope of Artificial Intelligence, though they seem to us to be useful

for exhibiting the nature of fundamental knowledge in this part of computer science.

I. SYMBOLS AND PHYSICAL SYMBOL SYSTEMS

One of the fundamental contributions to knowledge of computer science has

been to explain, at a rather basic level, what symbols are. This explanation is a

scientific proposition about Nature. It is empirically derived, with a long and gradual

development.

ACM Turing Award Lecture December 1, 1975

Symbols lie at the root of intelligent action, which is, of course, the primary

topic of Artificial Intelligence. For that matter, it is a primary question for all of

Computer Science. For all information is processed by computers in the service of

ends, and we measure the intelligence of a system by its ability to achieve stated ends

in the face of variations, difficulties and complexities posed by the task environment.

This general investment of computer science in attaining intelligence is obscured when

the tasks being accomplished are limited in scope, for then the full variations in the

environment can be accurately foreseen. It becomes more obvious as we extend

computers to more global, complex and knowledge-intensive tasks as we attempt to

make them our agents, capable of handling on their own the full contingencies of the

natural world.

Our understanding of the systems requirements for intelligent action emerges

slowly. It is composite, for no single elementary thing accounts for intelligence in all

its manifestations. There is no "intelligence principle," just as there is no "vital

principle" that conveys by its very nature the essence of life. But the lack of a simple

deus ex machina does not imply that there are no structural requirements for

intelligence. One such requirement is the ability to store and manipulate symbols. To

put the scientific question, we may paraphrase the title of a famous paper by Warren

McCulloch [1961]: What is a symbol, that intelligence may use it, and intelligence, that

it may use a symbol?

Laws of Qualitative Structure

All sciences characterize the essential nature of the systems they study. These

characterizations are invariably qualitative in nature, for they set the terms within

ACM Turing Award Lecture December 1, 1975

which more detailed knowledge can be developed. Their essence can often be

captured in very short, very general statements. One might judge these general laws,

due to their limited specificity, as making relatively little contribution to the sum of a

science, were it not for the historical evidence that shows them to be results of the

greatest importance.

The Cell Doctrine m Biology

A good example of a law of qualitative structure is the cell doctrine in biology,

which states that the basic building block of all living organisms is the cell. Cells come

in a large variety of forms, though they all have a nucleus surrounded by protoplasm,

the whole encased by a membrane. But this internal structure was not, historically,

part of the specification of the cell doctrine; it was subsequent specificity developed

by intensive investigation. The cell doctrine can be conveyed almost entirely by the

statement we gave above, along with some vague notions about what size a cell can

be. The impact of this law on biology, however, has been tremendous, and the lost

motion in the field prior to its gradual acceptance was considerable.

Plate Tectonics m Geology

Geology provides an interesting example of a qualitative structure law,

interesting because it has gained acceptance in the last decade and so its rise in status

is still fresh in memory. The theory of plate tectonics asserts that the surface of the

globe is a collection of huge plates a few dozen in all which move (at geological

speeds) against, over, and under each other into the center of the earth, where they

lose their identity. The movements of the plates account for the shapes and relative

ACM Turing Award Lecture December 1, 1975

locations of the continents and oceans, for the areas of volcanic and earthquake

activity, for the deep sea ridges, and so on. With a few additional particulars as to

speed and size, the essential theory has been specified. It was of course not accepted

until it succeeded in explaining a number of details, all of which hung together (e.g.,

accounting for flora, fauna, and stratification agreements between West Africa and

Northeast South America). The plate tectonics theory is highly qualitative. Now that it

is accepted, the whole earth seems to offer evidence for it everywhere, for we see

the world in its terms.

The Germ Theory of. Disease

It is little more than a century since Pasteur enunciated the germ theory of

disease, a law of qualitative structure that produced a revolution in medicine. The

theory proposes that most diseases are caused by the presence and multiplication in

the body of tiny single-celled living organisms, and that contagion consists in the

transmission of these organisms from one host to another. A large part of the

elaboration of the theory consisted in identifying the organisms associated with

specific diseases, describing them, and tracing their life histories. The fact that the law

has many exceptions that many diseases are not produced by germs does not

detract from its importance. The law tells us to look for a particular kind of cause; it

does not insist that we will always find it.

The Doctrine of. Atomism

The doctrine of atomism offers an interesting contrast to the three laws of

qualitative structure we have just described. As it emerged from the work of Dalton,

ACM Turing Award Lecture December 1, 1975

and his demonstrations that the chemicals combined in fixed proportions, the law

provided a typical example of qualitative structure: the elements are composed of

small, uniform particles, differing from one element to another. But because the

underlying species of atoms are so simple and limited in their variety, quantitative

theories were soon formulated which assimilated all the general structure in the

original qualitative hypothesis. With cells, tectonic plates, and germs, the variety of

structure is so great that the underlying qualitative principle remains distinct, and its

contribution to the total theory clearly discernible.

Conclusion

Laws of Qualitative Structure are seen everywhere in science. Some of our

greatest scientific discoveries are to be found among them. As the examples illustrate,

they often set the terms on which a whole science operates.

Physical Symbol Systems

Let us return to the topic of symbols, and define a physical symbol system. The

adjective "physical" denotes two important features: (1) Such systems clearly obey the

laws of physics they are realizable by engineered systems made of engineered

components. (2) Although our use of the term "symbol" prefigures our intended

interpretation, it is not restricted to human symbol systems.

A physical symbol system consists of a set of entities, called symbols, which are

physical patterns that can occur as components of another type of entity called an

expression (or symbol structure). Thus, a symbol structure is composed of a number

of instances (or tokens) of symbols related in some physical way (such as one token

ACM Turing Award Lecture December 1, 1975

being next to another). At any instant of time the system will contain a collection of

these symbol structures. Besides these structures, the system also contains a

collection of processes that operate on expressions to produce other expressions:

processes of creation, modification, reproduction and destruction. A physical symbol

system is a machine that produces through time an evolving collection of symbol

structures. Such a system exists in a world of objects wider than just these symbolic

expressions themselves.

Two notions are central to this structure of expressions, symbols and objects:

designation and interpretation.

Designation: An expression designates an object if, given the

expression, the system can either affect the object itself or

behave in ways dependent on the object.

In either case, access to the object via the expression has been obtained, which is the

essence of designation.

Interpretation: The system can interpret an expression if the

expression designates a process and if, given the expression,

the system can carry out the process.

Interpretation implies a special form of dependent action: given an expression the

system can perform the indicated process, which is to say, it can evoke and execute its

own processes from expressions that designate them.

A system capable of designation and interpretation, in the sense just indicated,

must also meet a number of additional requirements, of completeness and closure. We

will have space only to mention these briefly; all of them are important and have far-

reaching consequences.

8

ACM Turing Award Lecture December 1, 1975

(1) A symbol may be used to designate any expression whatsoever. That is,

given a symbol, it is not prescribed a priori what expressions it can designate. This

arbitrariness pertains only to symbols; the symbol tokens and their mutual relations

determine what object is designated by a complex expression. (2) There exist

expressions that designate every process of which the machine is capable. (3) There

exist processes for creating any expression and for modifying any expression in

arbitrary ways. (4) Expressions are stable; once created they will continue to exist

until explicitly modified or deleted. (5) The number of expressions that the system can

hold is essentially unbounded.

The type of system we have just defined is not unfamiliar to computer scientists.

It bears a strong family resemblance to all general-purpose computers. If a symbol

manipulation language, such as LISP, is taken as defining a machine, then the kinship

becomes truly brotherly. Our intent in laying out such a system is not to propose

something new. Just the opposite: it is to show what is now known and hypothesized

about systems that satisfy such a characterization.

We can now state a general scientific hypothesis -- a law of qualitative

structure for symbol systems:

The Physical Symbol System Hypothesis; A physical symbol

system has the necessary and sufficient means for general

intelligent action.

By "necessary" we mean that any system that exhibits general intelligence will

prove upon analysis to be a physical symbol system. By "sufficient" we mean that any

physical symbol system of sufficient size can be organized further to exhibit general

intelligence. By "general intelligent action" we wish to indicate the same scope of

ACM Turing Award Lecture December 1, 1975

intelligence as we see in human action: that in any real situation behavior appropriate

to the ends of the system and adaptive to the demands of the environment can occur,

within some limits of speed and complexity.

The Physical Symbol System Hypothesis clearly is a law of qualitative structure.

It specifies a general class of systems within which one will find those capable of

intelligent action.

This is an empirical hypothesis. We have defined a class of systems; we wish to

ask whether that class accounts for a set of phenomena we find in the real world.

Intelligent action is everywhere around us in the biological world, mostly in human

behavior. It is a form of behavior we can recognize by its effects whether it is

performed by humans or not. The hypothesis could indeed be false. Intelligent

behavior is not so easy to produce that any system will exhibit it willy-nilly. Indeed,

there are people whose analyses lead them to conclude either on philosophical or on

scientific grounds that the hypothesis [s_ false. Scientifically, one can attack or defend

it only by bringing forth empirical evidence about the natural world.

We now need to trace the development of this hypothesis and look at the

evidence for it.

Development of the Symbol System Hypothesis

A physical symbol system is an instance of a universal machine. Thus the

symbol system hypothesis implies that intelligence will be realized by a universal

computer. However, the hypothesis goes far beyond the argument, often made on

general grounds of physical determinism, that any computation that is realizable can be

realized by a universal machine, provided that it is specified. For it asserts specifically

10

ACM Turing Award Lecture December 1, 1975

that the intelligent machine is a symbol system, thus making a specific architectural

assertion about the nature of intelligent systems. It is important to understand how

this additional specificity arose.

Formal Logic

The roots of the hypothesis go back to the program of Frege and of Whitehead

and Russell for formalizing logic: capturing the basic conceptual notions of mathematics

in logic and putting the notions of proof and deduction on a secure footing. This effort

culminated in mathematical logic our familiar prepositional, first-order, and higher-

order logics. It developed a characteristic view, often referred to as the "symbol

game". Logic, and by incorporation all of mathematics, was a game played with

meaningless tokens according to certain purely syntactic rules. All meaning had been

purged. One had a mechanical, though permissive (we would now say

nondeterministic), system about which various things could be proved. Thus progress

was first made by walking away from all that seemed relevant to meaning and human

symbols. We could call this the stage of formal symbol manipulation.

This general attitude is well reflected in the development of Information Theory.

It was pointed out time and again that Shannon had defined a system that was useful

only for communication and selection, and which had nothing to do with meaning.

Regrets were expressed that such a general name as "information theory" had been

given to the field, and attempts were made to rechristen it as the Theory of Selective

Information to no avail of course.

11

ACM Turing Award Lecture December 1, 1975

Turing Machines and the Digital Computer

The development of the first digital computers and of automata theory, starting

with Turing's own work in the '30s, can be treated together. They agree in their view

of what is essential. Let us use Turing's own model, for it shows the features well.

A Turing machine consists of two memories: an unbounded tape and a finite

state control. The tape holds data, i.e., the famous zeroes and ones. The machine has

a very small set of proper operations -- read, write and scan operations on the

tape. The read operation is not a data operation, but provides conditional branching to

a control state as a function of the data under the read head. As we all Know, this

model contains the essentials of all computers, in terms of what it can do, though other

computers with different memories and operations might carry out the same

computations with different requirements of space and time. In particular, the model of

a Turing machine contains within it the notions both of what cannot be computed and

of universal machines computers that can do anything that can be done by any

machine.

We should marvel that two of our deepest insights into information processing

were achieved in the thirties, before modern computers came into being. It is a tribute

to the genius of Alan Turing. It is also a tribute to the development of mathematical

logic at the time, and testimony to the depth of Computer Science's obligation to it.

Concurrently with Turing's work appeared the work of the logicians Emil Post and

(independently) Alonzo Church. Starting from independent notions of logistic systems

(Post productions and recursive functions, respectively) they arrived at analogous

results on undecidability and universality results that were soon shown to imply

that all three systems were equivalent. Indeed, the convergence of all these attempts

12

ACM Turing Award Lecture December 1, 1975

to define the most general class of information processing systems provides some of

the force of our conviction that we have captured the essentials of information

processing in these models.

In none of these systems is there, on the surface, a concept of the symbol as

something that designates. The data are regarded as just strings of zeroes and ones

 indeed that data be inert is essential to the reduction of computation to physical

process. The finite state control system was always viewed as a small controller, and

logical games were played to see how small a state system could be used without

destroying the universality of the machine. No games, as far as we can tell, were ever

played to add new states dynamically to the finite control to think of the control

memory as holding the bulk of the system's knowledge. What was accomplished at this

stage was half the principle of interpretation showing that a machine could be run

from a description. Thus, this is the stage of automatic formal symbol manipulation.

The Stored Program Concept

With the development of the second generation of electronic machines in the

mid-forties (after the Eniac) came the stored program concept. This was rightfully

hailed as a milestone, both conceptually and practically. Programs now can be data,

and can be operated on as data. This capability is, of course, already implicit in the

model of Turing: the descriptions are on the very same tape as the data. Yet the idea

was realized only when machines acquired enough memory to make it practicable to

locate actual programs in some internal place. After all, the Eniac had only twenty

registers.

The stored program concept embodies the second half of the interpretation

13

ACM Turing Award Lecture December 1, 1975

principle, the part that says that the system's own data can be interpreted. But it

does not yet contain the notion of designation of the physical relation that underlies

meaning.

List Processing

The next step, taken in 1956, was list processing. The contents of the data

structures were now symbols, in the sense of our physical symbol system: patterns

that designated, that had referents. Lists held addresses which permitted access to

other lists thus the notion of list structures. That this was a new view was

demonstrated to us many times in the early days of list processing when colleagues

would ask where the data were that is, which list finally held the collections of bits

that were the content of the system. They found it strange that there were no such

bits, there were only symbols that designated yet other symbol structures.

List processing is simultaneously three things in the development of computer

science. (1) It is the creation of a genuine dynamic memory structure in a machine that

had heretofore been perceived as having fixed structure. It added to our ensemble of

operations those that built and modified structure in addition to those that replaced

and changed content. (2) It was an early demonstration of the basic abstraction that a

computer consists of a set of data types and a set of operations proper to these data

types, so that a computational system should employ whatever data types are

appropriate to the application, independent of the underlying machine. (3) List

processing produced a model of designation, thus defining symbol manipulation in the

sense in which we use this concept in Computer Science today.

As often occurs, the practice of the time already anticipated all the elements of

14

ACM Turing Award Lecture December 1, 1975

list processing: addresses are obviously used to gain access, the drum machines used

linked programs (so called one-plus-one addressing), and so on. But the conception of

list processing as an abstraction created a new world in which designation and dynamic

symbolic structure were the defining characteristics. The embedding of the early list

processing systems in languages the (IPLs, LISP) is often decried as having been a

barrier to the diffusion of list processing techniques throughout programing practice;

but it was the vehicle that held the abstraction together.

LISP

One more step is worth noting: McCarthy's creation of LISP in 1959-60

[McCarthy, I960]. It completed the act of abstraction, lifting list structures out of

their embedding in concrete machines, creating a new formal system with S-

expressions, which could be shown to be equivalent to the other universal schemes of

computation.

Conclusion

That the concept of the designating symbol and symbol manipulation does not

emerge until the mid-fifties does not mean that the earlier steps were either

inessential or less important. The total concept is the join of computability, physical

readability (and by multiple technologies), universality, the symbolic representation of

processes (i.e., interpretability), and, finally, symbolic structure and designation. Each

of the steps provided an essential part of the whole.

The first step in this chain, authored by Turing, is theoretically motivated, but

the others all have deep empirical roots. We have been led by the evolution of the

15

