
MEMORANDUM
RM-3285-1-PR
FEBRUARY 1963

LEARNING, GENERALITY
AND PROBLEM-SOLVING

Alien Newell

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

WIIID
SANTA MONICA • CALIFORNIA

MEMORANDUM
RM-3285-1-PR
FEBRUARY 1963

LEARNING, GENERALITY
AND PROBLEM-SOLVING

Alien Newell

This research is sponsored by the United States Air Force under Project RAND
contract No. AF 49 (638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force. Permission to quote from or repro
duce portions of this Memorandum must be obtained from The RAND Corporation.

MOD
1700 MAIN SI • SANTA MONICA • CALIFORNIA'

-111-

PREFACE

This Memorandum is a discussion of the concept of

learning in the field of artificial intelligence and its

intimate relationship to other concepts such as generality

and problem-solving. It is part of a continuing RAND

research effort in these areas.

The long range goals of artificial intelligence imply

the ability for programs to be truly general purpose, in

the sense of being able to acquire from their environment

the information necessary to develop successfully in ways

T(not envisioned in detail by their designers. The analysis

given here shows that learning is generally viewed as the

means to accomplish this. These issues are fundamental

not only to the field of pure artificial intelligence, but

to the whole attempt to develop more sophisticated infor

mation processing, such as in Command and Control systems.

To illustrate some of the questions brought up in

the paper, a discussion is given of some very recent work

done at RAND on a learning scheme for the General Problem-

Solver (GPS). More details and specifications of this

scheme will be given in a subsequent RAND Memorandum.

This revision of RM-3285-PR incorporates several

changes and additions designed to present a more straight-
T

forward approach to the subject matter.

-iv-

The work formed the basis of an invited presentation

by the author at the International Federation for

Information Processing Congress, 1962, at Munich, Germany

on August 29, 1962.

-v-

SUMMARY

Learning plays a peculiar and subtle role in the

field of artificial intelligence. Emphasis is placed on

it in a way that seems to indicate it is a special concern,

different from the other topics--problem-solving, pattern

recognition, etc.--that also receive attention in the

field.

An analysis of learning is presented to support the

argument that the usual paradigm of learning (i.e., if

the performance of a program on a task changes over time,

then learning has occurred) does not get to the heart of

the matter. This is done by showing that problem-solving

programs are also learning programs by these standard

criteria. A little more analysis supports the contention

that the key features are the uses of the past for general

utility and the use of genuine induction and generalization

Further probing reveals that we are really concerned with

generality--with producing a machine general enough to

transcend the vision of its designers. Learning is viewed

as the major means to achieving this end.

Turning to the question of how to use experience, a

review is made of the various techniques and ideas which

have been used. It is argued that the standard schemes

of repetition with the modification of statistical weights

is not the most fruitful way to proceed. Rather, attention

-VI-

is directed to the problem of representation, to the work

on programs that construct programs, to the feature

constructing pattern recognition programs, and to the

programs for interpreting natural language.

To provide a concrete illustration of alternative

ways to explore in developing learning programs, a modi

fication of GPS is discussed that learns its own dif

ferences from an examination of the operators it is given

with which it manipulates the objects of the problem.

This scheme makes use of EPAM, a program for simulating

the way humans do rote memory. Although this scheme does

not involve either repetition, the piling up of statistical

experience, or the use of success or failure data, it is

clearly a learning program in its use of past experience

for an indefinite future and its use of genuine techniques

of generalization.

 -vii-

r
CONTENTS

PREFACE .. iii

SUMMARY .. v

Section

I. INTRODUCTION 1

II. THE PROBLEM OF LEARNING 3

III. THE PROBLEM OF GENERALITY 9

IV. REPRESENTATIONS 11

V. AN EXAMPLE FROM GPS 17

REFERENCES ... 33

-1-

r
I. INTRODUCTION*

In the field of artificial intelligence we are en

gaged in constructing mechanisms that reproduce the in

formation processing we see in man. Sometimes we wish

only to match or surpass his external performance; some

times we are at pains to simulate his behavior in detail.

For this memorandum the distinction is of little importance

For many sufficiently-limited, symbolic tasks, such as

multiplication, we both understand the task and can greatly

exceed man's performance; interest fades from these. We

are more concerned with performances that seem highly

sophisticated and elaborate, where we understand completely

neither the task nor how to accomplish it. Yet we demand

a certain clarity: dreaming, reverie, and wit still lie

outside the operational boundaries of artificial intelli

gence in 1962.

Among the functions that do concern us, learning

plays a peculiarly crucial and subtle role. For instance,

the following typical questions are asked with great

regularity by sophisticated visitors:

"I understand that your program plays chess, but
does it learn to play better?" "No."

"Oh," (with an intonation of disappointment).

JL

I am much indebted to my colleague H. A. Simon for
discussions on the issues raised in this paper.

-2-

'Will your chess program repeat itself exactly if
it is played against in the same way?" "Yes."

"I see," (with a hint of satisfaction: the program
has failed some crucial test).

Throughout the field of artificial intelligence emphasis

is placed on learning. Pattern recognition programs

continually underplay the performance of recognition,

emphasizing instead the ability to learn to recognize new

patterns. When Samuel's checker player^ ' is cited in

discussions of problem-solving, its learning is usually

stressed as a crucial feature.

Why does learning play this crucial role? What is

its special power? I would like to explore these questions

and their implications for progress in artificial intelli

gence.

-3-

r
II. THE PROBLEM OF LEARNING

Learning is a broad, but well-established, concept

that stands for a cluster of notions, many of which are

implicit. Discussions of learning, such as the following,

are not attempts at precision; they constitute hypotheses

about what are the important features of the existing

concept.

If we observe that a performance of X is a function

of its experience in the past, then we say that X learned

from its experience. This corresponds generally to the

man-in-the-street's notion of learning. There are so

r~ many things wrong with it that the psychologists long ago

elaborated it to the paradigm of Figure 1. At time T we

observe the performance of X on a specific task; if at T'

its performance on the same task has changed, it has

learned something from its previous performance and inter

vening experience. The task may be repeated over and over

again in order to study the course of learning. With a

few caveats, this paradigm has sufficed in the psychological

laboratory.

The paradigm is also much used in the study of arti

ficial intelligence. It has even been elaborated slightly,

since we can determine the internal structure of our learning

machines precisely. The machine consists of a performance
4***

program for doing the task and a learning program that

LE
A

R
N

IN
G

P

A
R

A
D

IG
M

OQ

»-
»

f

<D 9

H
-

0

OQ 0)

CU

T I
P

er
fo

rm
an

ce

P
ro

gr
am

Le
ar

ni
ng

P

ro
gr

am

T
' I

P
er

fo
rm

an
ce

P

ro
gr

am

-5-

r
modifies the performance program as a function of its

behavior on the task.

Does this paradigm express the aspects of learning

that are really important to us? Let me test it against

existing problem-solving programs. By common consent

these are not learning programs witness the dialogues

just quoted on the chess program. Yet they fit the

paradigm exactly. Figure 2 shows the top-level flow diagram
(2)of LT, one of the early theorem-proving programs. v '

The executive routine is performed repeatedly in the same

situation. On first performance it usually does not

solve the problem and on some later performance it does.
r*

Its eventual success that is, its change in performance--

is due to the experience accumulated from the intervening

trials. Even LT's internal structure corresponds to the

structure of a learning machine. The top box with the

subproblem tree corresponds to the performance program.

This includes the Substitution Method, which is the only

method in LT that can actually solve problems. The second

box in the diagram corresponds to the learning program.

It contains the Detachment and Chaining Methods, which

create new subproblems and add them to the subproblem

tree--that is, modify the performance program. This part

is called into play only after the performance program

y_t fails. Learning occurs only on failure. And the modi

fication is adaptive, since by construction it generates

LT

E
X

E
C

U
T

IV
E

OQ (D

O d rt

S
el

ec
t

S
ub

pr
ob

le
m

S
ub

st
itu

tio
n

M
et

ho
d

D
et

ac
hm

en
t

M
et

ho
d

C
ha

in
in

g
M

et
ho

d

S
ub

pr
ob

le
m

 T
re

e

N
ew

P

ro
bl

em
s

-7-

r
new subproblems that increase the probability of success

on later trials.

This example is not a trick. LT can in fact be said

to learn the solution. However, LT is still not usually

considered a learning program, nor do I consider it one.

Important elements exist in our concept of learning besides

those given in the standard paradigm.

The most important way the problem-solvers seem deficient

as learning machines is in the use they make of their

experiences. All the information is accumulated to obtain

a single result: to prove the original theorem. Once this

is done, the experiences have no more value. In contrast,
r~"

the devices we do call learning machines use their experience

to prepare for a whole range of future situations. Pattern

recognizers use the learning trials to extract information

from which innumerable varying exemplars can be recognized.

Samuel's checker player improves its function for evaluating

positions, which is used in all future play. Significant

learning seems to imply obtaining something of general

utility from the experience.

We also seem to require a learning program to use

genuine generalization and induction in processing its

experiences. The problem-solvers are again deficient on

this score, since what is learned from each new experience

^ from each new subproblem is primarily that it is not a

solution. In contrast, some basic postulate of generalization

-8-

is a prominent part of all current learning machines.

Often this is simply, 'what has worked in the past will

work in the future," but it always exists.

-9-

r
III. THE PROBLEM OF GENERALITY

These added factors--general utility and induction

which imply significant learning, as opposed to learning

that simply satisfies the paradigm, reveal a deep concern

in artificial intelligence to construct a machine general

enough to transcend the vision of its designer.* Learning

is viewed as the maj or means for achieving this. Man has

the ability to get along on his own and to define for him

self the terms on which he will enter into dependencies with

parts of his environment. In artificial intelligence we

face the prospect of externally special-purpose machines,

^ brilliant within a narrow range, but always encased within

an artificial universe bounded by the limited vision of its

designers.

Generality, then, is one of our major goals: the

ability to cope with the range and diversity of the real

world. Theoretically, we do not care how we get such a

machine. We would accept a perfectly constructed general

problem-solver. Such a machine would not need to learn at

all! That we reject this possibility--as by common consent

I believe we do expresses the conviction that the real

world is too diverse, too full of details, and too complex

This same concern is expressed, although improperly,
in the question of whether a machine can outperform its
designer. This question was laid to rest long ago, both
trivially in tasks like multiplication and non-trivially
in tasks like checkers.

-10-

to permit any pure "performance" device to achieve per

fection. Continuous learning is the price of generality.

When learning is emphasized as the basic solution to

the problems of generality, we must include all the ways

experience might be processed to prepare for future action.

The world itself determines what regularities exist over

time and place to be exploited by learning; their nature

determines in large measure the kind of processing that

must be used.

However, current learning machines utilize an extremely

narrow range of mechanisms. The central ideas are well

known: repetition, simple reinforcement, statistically

determined weights. They derive in many ways from taking

seriously the paradigm of Figure 1, as realized in animal

experimentation. The range of relevant processes is

clearly broader than this, however difficult it may be to

visualize the possibilities. Our horizons need expanding

on the varieties of mechanisms that are relevant and re

quisite to achieving generality.

-11-

r
IV. REPRESENTATIONS

All learning requires an internal representation of

the experiences to be made available for later use. This

may be as simple as a recorded fact, as obscure as the

connectivity of a network, or as elaborate as a detailed

map, but it must exist. The representation forms a crucial

bridge, not just between the moment of gathering and the

moment of using information, but between descriptions of
/3\

the environment and determinations of action. v ' The

representation is pulled in two directions. Processes must

translate from the raw experience to the representation;

^ to simplify this translation, the representation should be

simple in terms of the environment. But processes must

also translate from the representation to action; to simplify

this translation, the representation should be simple in

terms of the action principles of the machine. Complexity

of translation can be exchanged between the encoding and

decoding processes by an appropriate choice of representation.*

In all events, a certain gap must be bridged to get from

the environment to its implications for action. The

representation remains the filter through which all

information must pass.

Representations of experience are crucial in another

way. They form not only limits to what can be accomplished

r _____
There is a nice discussion of this in Lindsay.^ '

-12-

by the machine, but limits to what can be envisioned by the

designer. New forms of learning require the invention of

representations that can express new potentialities--that

make variable what was previously fixed structure. These

extensions are rarely suggested by existing structures;

they constitute true inventions. For example, LT never

learned new methods because we could not invent a space of

possible methods expressed in a language that LT could

manipulate. A consequence of this paucity of good repre

sentations is that existing learning programs tend to cluster

around the few existing representations. Here, above all,

we need our horizons extended.

Most of the representations currently in use are

extremely close to the action scheme of their machines.

This is quite natural, since the easiest way to get a

learning scheme is to generalize some feature of the way

an existing machine performs. The problem of translation

from the representation to action is thereby solved, since

the representation is already in terms directly understood

by the performance program. However, translation of the

raw experience into the representation must still occur.

Our excessive tendency to describe an environment solely

by the dichotomy, "succeed" or "fail," may partly reflect

the difficulties of this translation.

Many learning programs use some collection of numerical

parameters of the action scheme as a representation, which

-13-

r
are then optimized by experience. From our viewpoint

here, these are the least interesting kinds of learning

precisely because they never lead beyond themselves--which

does not deny their occasional effectiveness. The variety

of the world is far richer than can be represented by a

fixed set of numbers controlling a machine of fixed structure.

More interesting are representations using extremely

general languages of action. Rich of the work in learning

machines has used networks of linear threshold elements,

the set of threshold values serving as the representation

of experience. If I dismiss this work somewhat summarily,

it is only because this representation still seems toor~
limiting to express, without great organizational innovation,

the kind of detail and complexity, both of action and

environment, that we see in the world.

Programming languages, the one known class of action

languages able to express truly complex behaviors, are

more intriguing. However, programs are extremely obdurate

languages for encoding descriptive experiences, which is

why they have not been used much in learning programs. Early

examples, such as Friedberg 1 s,^ ' did not incorporate enough

power and structure to fashion programs that could accomplish

useful tasks. Work by Kilburn, Grimsdale, and Sumner^ '

removed some of the deficiencies, and was considerably more

f-^ successful. Currently, at least two efforts are developing

programs that construct programs. One, by Saul Amarel,^ '

-14-

takes a set of examples of the desired inputs and outputs

and tries to discover a program that yields these; the
/Q\

other, by H. A. Simon,^ ' takes general defining statements

about the input and output and attempts to find the program,

These programs are not learning programs, in the same

way as LT is not one.* They solve the problem of con

structing a program that meets certain conditions. Their

significance lies in developing techniques for translating

from descriptive information to a language of action rich

enough to express complex behavior. Continued advance

along these lines should finally permit representations

of experience which are much richer and more directly

reflect the environment than the action-oriented representa

tions we use currently.

Another kind of action language is worth noting.

Pattern recognition of the non-network variety tends to use

a set of features of the sample to be identified, along

with learning schemes for selecting and weighting these

features. The representational limitations of sets of

weights have already been mentioned. Recently, programs

have been written that produce their own features. The

most advanced scheme is that of Uhr and Vossler.

Nevertheless, the early programs called themselves
learning programs.

**This program was also reported on at the IFIP
Congress. Interestingly, the very early program of
Selfridge^ ' and Dineen^ ' also created its own features.

-15-

r
From our viewpoint the advance of these programs derives

from representing past experience not merely as numerical

weights, but as features.

The ways of representing experience discussed above

were developed directly out of the action structure of the

machine. If we turn to the other side to representations

that mirror the environment--less has been done. The work
(12)*

of Remus v ' moves in this direction by basing actions

directly on a descriptive classification of the environ

ment. More generally, these would be programs that seek

to construct models, theories, or explanations of their

-v. environment, independent of particular action implications.
(13) A hypothesis-testing program by Feldman, Tonge, and Kanter v '

is an example. Programs designed to obey natural language^ ' '

also constitute exceptions, since they face the problem

of first understanding what is being said. These latter

programs, by exploring the possibilities for environment-

oriented representations, have great relevance for generality

and learning, even though they are not cast directly in

the form of learning machines.

I have been emphasizing the critical role of the

internal representation of experience, and the limits it

puts on our vision in constructing general machines.

Whole ranges of mechanisms seem to me to lie outside the

Also presented at the IFIP Congress.

-16-

view of much of the current work on learning machines,

limited as they are by implicit assumptions about how

experience should be inducted and represented. Conse

quently, I have been stressing those areas of research--

programs that construct programs, recognizers that create

new features, and programs that build descriptive models

of the environment which expand our horizons by making

available new forms of representation. An example will

illustrate further the possibilities for using experience.

-17-

r
V. AN EXAMPLE FROM GPS

Most readers are probably acquainted with the program

called GPS, which was described at the International
(15)

Conference on Information Processing, Paris, 1959, ' and

has been reported several times since.* GPS is a computer

program for solving problems, a member of the class of game-

playing and theorem-proving programs. It has been used

both for explorations into artificial intelligence and for

detailed simulation of human problem-solving.^ ' ' Its

performance in both of these aspects has been dominated
/I 0\

by the problems it has presented in program organization. v '

f^ To refresh your memory, Figure 3 shows the general scheme

by which GPS operates. Much goes on under the surface

of this diagram; yet it is still the most adequate simple

picture. GPS is a program for accepting a task environment

defined in terms of discrete objects, operators that mani

pulate these objects, and particular tasks like transforming

one object into another. It performs these tasks by growing

a structure of goals. Each goal is a data structure that

describes some state of affairs to be achieved and gives

ancillary information about methods, history, and en

vironment. Different types of goals exist, each with its

GPS is the joint work of J. C. Shaw, H. A. Simon, and
the author. I am indebted to Charles Bush for his help
in running GPS.

M
E

A
N

S
-

E
N

D
S

A

N
A

L
Y

S
IS

OQ 0)

9 CD M

9

CL

CO 9

Oi AT CD H
»

CD

T
ra

n
sf

o
rm

o

b
je

ct
 A

 i
nt

o
o

b
je

ct

B
:

M
at

ch
 A

to
.B

R
ed

uc
e

D
A

in

to
 B

R
ed

uc
e

d
iff

e
re

n
ce

D

:

S
ea

rc
h

fo
r

Q
(D

)
A

pp
ly

 Q
 t

o
A

oo I

A
pp

ly
 o

p
e
ra

to
r

Q
 t

o
o
b

je
ct

A

M
at

ch
 A

 t
o

C
(Q

)
R

ed
uc

e
D

A
pp

ly
 Q

 t
o

A
1

-19-

own methods. The three methods shown are the crucial

ones. To transform an object A into an object B, the

first method matches the two objects; if they are not the

same, a difference is found, which leads to setting up a

subgoal of reducing that difference. If this subgoal is

attained, a new object A 1 is produced, which hopefully

is more like B. The subgoal is then set up to transform

A 1 into B. Secondly, the principal method to reduce a

difference is to find an available operator relevant to

that difference, and to set up the subgoal of applying it.

In the third method, to apply an operator the operand is

matched to the conditions required by the operator. This

may lead to a difference, which requires setting up a

subgoal to reduce it, similar to the earlier case. The

methods, these three along with others, grow a tree of

subgoals in the process of solving a problem. In addition,

GPS has devices for pruning and shaping the tree of sub-

goals: checking for duplicate objects and goals, rejecting

goals as unprofitable, and selecting goals as especially

worthwhile.

With this brief sketch, let me consider some of the

issues raised earlier. A problem for GPS is basically defined

by objects and operators. The differences are the constructs

that mediate between them, that allow GPS to select artfully

the operators that are appropriate to transform one object

into another. Figure 4 shows the table of connections for

Fig
.

4
 - Log

ic Tabl
e

of

Connectio
ns

*

L
O

G
IC

T

A
B

L
E

O

F

C
O

N
N

E
C

T
IO

N
S

A
dd

V

a
ri
a
b
le

s

D
el

et
e

V
a
ri
a
b
le

s

In
cr

e
o

se
 N

u
m

b
e
r

D
ec

re
as

e
N

um
be

r

C
ha

ng
e

C
on

ne
ct

iv
e

C
ha

ng
e

S
ig

n

C
ha

ng
e

G
ro

u
p

in
g

C
ha

ng
e

P
o

si
tio

n

R
l

R
2

R
3

R
4

R

5
R

6

R
7

R
8

R
9

R
IO

R

ll
R

I2

X

X X

X X

X

X X
X X

X X X X

X
X X

X X

X X

X X X X

<
(

i

1 1
0 o

1

-21-

r
logic, whereby differences lead to relevant operators.

The differences are not given explicitly by either the

task environment or the specific task; clearly GPS should

learn them for itself. The fact of the program is other

wise: we, GPS's designers, give it differences as part of

its equipment to deal with a task when we define a task

environment. Thus, differences represent a sensitive point

of dependence of GPS upon its designers.

Three years ago in an article entitled MA Variety of

Intelligent Learning in GPS,"' ' we discussed these same

issues, and there also focused on the differences. First

we observed that, although a simple standard learning para-

' digm could be used to learn the connections in the table

of Figure 4, the information could be generated directly.

If the input and output forms of the operators were matched,

the differences so found would be the table entries that

is, the operators were relevant to precisely those dif

ferences they produced. Looking, rather than learning

from repetitive trial, was the appropriate way to gain

experience here.

We went on to consider how the differences themselves

might be generated by GPS. As initially created, each

difference was simply a symbol, linked to a machine language

program to detect the difference. From GPS's viewpoint

^ differences were unanalyzable unities; from ours they were

members of the class of all programs. From either viewpoint

-22-

no learning was possible. We first had to invent a repre

sentation of differences in terms of a simpler programming

language one in which differences, though programs, were

represented as objects. We then gave GPS operators to

construct and modify these difference programs, and dif

ferences to detect features of these programs. We thus

cast the learning of differences into the form of a pro

blem for GPS in terms of objects and operators, a problem

it could handle by the same means it handles all problems.

We carried this effort through a small hand simulation,

problems of program organization still preventing our

simulating it in the metal. Our exploration went far enough

to make the point that intelligent learning might look more

like problem-solving than like a stochastic learning process,

I would like now to consider the matter along an

alternative path, although I shall make much the same

point. Again, GPS is to obtain somehow its own differences.

However, GPS cannot be given only the objects and operators;

some elementary form of perceptual discrimination must be

available to it. We assume that for each elementary

attribute of an object structure, GPS can tell its location

in the structure, and whether corresponding attributes of

two expressions have the same or different values. If

we provided GPS with less perceptual capability than this,

we would be hiding some of the environment from it.

-23-

In the best of all worlds, GPS would have an operator

available to remove directly every elementary difference

between a given object and a desired object. If at position

P attribute A for the given object had the value X while

for the desired object it had the value Y, then an operator

would exist which would change X to Y without disturbing

anything else. In reality, GPS must work with operators

that are not nearly so obliging as these operators of

immediate perception. (Real saws produce sawdust, as well

as cut.) Matching can be looked on as an act of wishful

thinking--of seeing the problem in terms of the immediate

perceptual operations that would make one expression like

the other. By way of example, Figure 5 shows two simple

logic expressions as GPS would see them. Each consists of

a collection of nodes, linked together by the attributes.

If the two expressions are matched, the difference structure

shown below them is obtained; it specifies all the elementary

things one would do (if one could) to change the first

expression directly into the second.

That the real-world operators are inconvenient and do

not allow such direct transformations, does not make them

unpatterned. Each one can be seen as a composite, made up

of these same elementary perceptual operations. Figure 6

shows the difference structure derived by matching the

input form to the output form of an operator. Thus, the

D
IF

F
E

R
E

N
C

E

S
T

R
U

C
T

U
R

E

O
F

O
B

JE
C

T
S

5V
 m

bo
/

L
Le

ft
S

ub
ex

pr
es

si
on

R

R
ig

ht

S
ub

ex
pr

es
si

on

QR
e
p
lo

D
IF

F
E

R
E

N
C

E
-S

T
R

U
C

T
U

R
E

 O
F

O
P

E
R

A
T

O
R

A
v
B

=
^
B

v
A

m
bo

/ V Sy
_m

b0
/

ro

m
 i

L
L
e
ft

S
ub

ex
pr

es
si

on

R
R

ig
ht

 S
ub

ex
pr

es
si

on

R
ep

la
ce

-26-

basic bridge from environment to action is built; both

objects and operators are described in a common language

of immediate perceptions.

The price paid for this becomes evident as soon as we

attempt to construct the table of connections from differences

to operators. When the differences were specified by the

designers, each difference represented a macroscopic

change (some pattern of the simple differences just

discussed), known to be of utility in solving problems

in terms of the set of operators available. Thus there

was a difference, change of position, and operators, such

as A.B^B.A, AvB ̂ BvA, and AD B =^-B ̂ -A, which dealt

simply and directly with this difference. The table of

connections was formed between the names of the individual

differences and the names of the individual operators.

With the elementary differences we are now considering,

this is no longer possible, since each operator has a

complicated structure of differences.

I will borrow a technique from the work of two of my

colleagues to deal with this. E. A. Feigenbaum and H. A.

Simon have reported on a program called EPAM.' '

Basically, EPAM consists of a very simple but intriguing

scheme for discriminating among a collection of objects

by growing a tree of tests when confronted with the task

of sorting the objects. GPS already uses EPAM-like trees.

During the course of problem-solving each newly created

-27-

structure (either a goal or an object) is sorted through

a tree, which normally grows to accommodate it. However,

if an identical structure has already been stored in the

tree, it is discovered, since the new structure comes to

rest at the same place in the tree. Appropriate action is

then taken. For example, by this sorting process GPS

immediately recognizes the final desired object if it

ever generates it, independently of its reason for gener

ating it. GPS does not have to ask the question deliberately

of each new object, "Are you the final answer?"

An EPAM net will be used for the table of connections,

growing it under the impact of the operators that are avail

able for a problem. Figure 7 shows the tree that might be

produced by discriminating the standard set of logic op

erators. The difference structure of each operator was

sorted down this tree until it came to rest either at an

unoccupied slot, or at a place holding a previously stored

difference structure. In the latter case, the two difference

structures were matched and the most important difference

between them was used to define a test from which new

branches would develop to discriminate the two operators.

Once the tree of operators has been grown, it can be used

to select operators for reducing the differences found

between two objects. Their difference structure can be

sorted down this tree to select the operators that most

closely fit the pattern of elementary differences in the

structure.

OQ (D

CD O

hh O

O § (D

O n H
» o 9

CO H
i o r1

o OQ

T
R

E
E

O

F
C

O
N

N
E

C
T

IO
N

S

FO
R

LO

G
IC

L
L

e
ft

R

R
ig

ht

M
 M

ai
n

9

TR
4
,6

,2
0

21
,2

4
/

V
13

14

M
+

 R
M

+
 R

TB

"X

X
22

7

23

t_
L

A
dd

 D

el
et

e
o
 R

ep
la

ce

~
 C

ha
ng

e
si

gn
s

8
O

th
er

w
is

e

V

17
T 19

B

9
/

1,
2

25
'

25

16

ro

oo
 i

-29- *

Let us consider the total operation of GPS with such

a modification. In a new task area, GPS first explores

the environment by processing the operators as has been

shown; the tree that is grown represents the set of op

erators in their capacity to modify differences in this

environment. Then GPS is prepared to turn to particular

tasks, using this representation as a central part of its

prob1em-s oIving.

One aspect of this description is still missing.

Generalization was a central feature of the discussion of

learning; one part of the environment is relevant to another

only by an inductive leap. In most learning problems one

is trying to pass between essentially analogous situations,

and the basis of induction from one to the other is usually

some form of invariance: what was good there is good here.

In the present arrangement, although the inductive bases

are different, generalization is by no means absent.

At least three generalizing assumptions are incorporated

in this scheme. The most important is the assumption of

"conservation of symbols." A term in a desired expression

must come from somewhere: if SvT is to transform into TvS,

then it is a fair assumption that the T in the second ex

pression "comes from" the T in the first. Thus GPS creates

a generalized difference structure by replacing each term

in the raw difference structure with an expression repre

senting the location of that term in the expression.

-30-

Figure 8 shows the generalized difference structures for

the two examples of Figures 5 and 6.

The second generalizing assumption is spatial invari-

ance: most operators in logic can be applied at any

location in the expression. Hence the position of the total

pattern of differences in the total expression is irrelevant.

Consequently, the lowest node of the raw difference

structure that covers all differences is made the top

node of the generalized difference structure. This

assumption is quite analogous, both in its power and in

its inductive basis, to the transformations, such as centering,

focusing, and smoothing, that are standard in many pattern

recognizers.

The third generalizing assumption concerns the sign of

the logic expressions. Whenever operations on a binary

variable (say with values + and -) are symmetric in the

values, it is possible to describe both changes from +

to - and from - to 4- simply as "change value." This is a

familiar transformation in all work with Boolean variables.

As shown in Figure 8, the generalized difference structure

is transformed this way.

GPS, of course, neither learns nor discovers these

bases of generalization. To do so would require inventing

a representation of the environment that would include in

a plausible way many possible bases. Neither GPS, nor its

designers, know yet how to specify such a representation.

G
E

N
E

R
A

LI
Z

E
D

D

IF
F

E
R

E
N

C
E

S

T
R

U
C

T
U

R
E

S

oo oo I O

<D D

(D

M

0) N

»

Ou H
i

H
i

(D U (D D O (D CO

rt n (D

0)

R
ep

la
ce

V

B

A
dd

R
ep

la
ce

R
ep

la
ce

L
L
e
ft

S
ub

ex
pr

es
si

on

R
R

ig
ht

S

ub
ex

pr
es

si
on

-32-

Surely what we have been describing here is learning,

even though there is no repetition of experience, no

success or failure, no piling up of statistical data about

the past. The key features of learning--preparation for

an indefinite future and the use of generalization to bridge

separate experiences--are both clearly present. Something

akin to an analysis of the environment is going on. So,

does one problem-solving program slowly grow independent

of its designers.

-33-

REFERENCES

Samuel, A. L., "Some Studies in Machine Learning
Using the Game of Checkers," IBM J. Res. Develop.,
Vol. 3, No. 3, July 1959, pp. 210-229.

Newell, A., J. C. Shaw, and H. A. Simon, "Empirical
Explorations of the Logic Theory Machine: A Case
Study in Heuristic," Proceedings of the Western
___^____iput_________Radio Engineers, New York, 1957, pp. 218-230.
Joint Computer Conference» 1957, Institute ofe

3. Newell, A., and H. A. Simon, "Computer Simulation of
Human Thinking and Problem Solving," M. Greenberger
(ed.), Management and the Computer of the Future,
Wiley, New York, 1962.

4. Lindsay, R. K., "Toward the Development of a Machine
Which Comprehends," Unpublished PhD thesis, Carnegie
Institute of Technology, 1961.

5. Friedberg, R. M., "A Learning Machine: Part I," IBM
J. Res. Develop., Vol. 2, No. 1, January 1958,
pp. 2-13.

6. Kilburn, T., R. L. Grimsdale, and F. H. Sumner,
"Experiments in Machine Learning and Thinking,"
Information Processing, UNESCO, Paris, 1959,
pp. 303-309.

7. Amarel, S., "On the Automatic Formation of a Computer
Program Which Represents a Theory," Proceedings of
Conference on Self Organizing Systems, Chicago,
May 1962 (to be published).

8. Simon, H. A., Experiments with a Heuristic Compiler,
The RAND Corporation, P-2349, June 19.61.

9. Vossler, C., and L. Uhr, "Computer Simulations of a
Perceptual Learning Model for Sensory Pattern Recog
nition, Concept Formation, and Symbol Transformation,"
International Federation for Information Processing
Congress, 1962.

10. Selfridge. 0., "Pattern Recognition and Modern Com
puters, Proceedings of the Western Joint Computer
Conference, 1955, Institute of Radio Engineers,
New York, 1955, pp. 91-93.

-34-

11. Dineen, G. P., "Programming Pattern Recognition,"
Proceedings of the Western Joint Computer Conference,
1955, Institute of Radio Engineers, New York, 1955,
pp. 94-100.

12. Remus, H., "Simulation of a Learning Machine for
Playing GO," International Federation for Infor
mation Processing Congress, 1962.

13. Feldman, J., F. Tonge, and H. Kanter, Empirical
Explorations of a Hypothesis-Testing Model of
Binary Choice Behavior, SP-546, System Development
Corporation, Santa Monica, California, 1961.

14. Green, B. F., A. K. Wolf, C. Chomsky, and K. Laughery,
"Baseball: An Automatic Question-Answerer," Pro
ceedings of the Western Joint Computer Conference,
1961, Institute of Radio Engineers, New York, 1961,
"£pT"219-224.

15. Newell, A., J. C. Shaw, and H. A. Simon, "Report on
a General Problem-Solving Program," Information
Processing, UNESCO, Paris, 1959, pp. 256-264.

16. Newell, A., and H. A. Simon, "GPS, A Program That
Simulates Human Thought," H. Billings (ed.),
Lemende Automaten, Oldenbourg, Munich, 1961.

17. Newell, A., and H. A. Simon, "Computer Simulation of
Human Thinking," Science, Vol. 134, No. 3495,
December 22, 1961, pp. 2011-2017.

18. Newell, A., Some Problems of Basic Organization in
Problem Solving Programs, The RAND Corporation,
RM-3283, November 1962. Presented at Conference
in Self Organizing Systems, Chicago, May 1962.

19. Newell, A., J. C. Shaw, and H. A. Simon, "A Variety
of Intelligent Learning in a General Problem
Solver," M. C. Yovits and S. Cameron (eds.),
Self Organizing Systems, Pergamon, New York, 1960.

20. Feigenbaum, E. A., and H. A. Simon, Generalization
of an Elementary Perceiving and Memorizing Machine,
International Federation for Information Processing
Congress, 1962. The RAND Corporation, P-2555,
March 1962.

