
MEMORANDUM 
RM-3285-1-PR
FEBRUARY 1963

LEARNING, GENERALITY 
AND PROBLEM-SOLVING

Alien Newell

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

WIIID
SANTA MONICA • CALIFORNIA



MEMORANDUM 
RM-3285-1-PR
FEBRUARY 1963

LEARNING, GENERALITY 
AND PROBLEM-SOLVING

Alien Newell

This research is sponsored by the United States Air Force under Project RAND   
contract No. AF 49 (638)-700 monitored by the Directorate of Development Planning, 
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions 
contained in this Memorandum should not be interpreted as representing the official 
opinion or policy of the United States Air Force. Permission to quote from or repro 
duce portions of this Memorandum must be obtained from The RAND Corporation.

MOD
1700 MAIN SI • SANTA MONICA • CALIFORNIA'



-111-

PREFACE

This Memorandum is a discussion of the concept of 

learning in the field of artificial intelligence and its 

intimate relationship to other concepts such as generality 

and problem-solving. It is part of a continuing RAND 

research effort in these areas.

The long range goals of artificial intelligence imply 

the ability for programs to be truly general purpose, in 

the sense of being able to acquire from their environment 

the information necessary to develop successfully in ways 

T( not envisioned in detail by their designers. The analysis

given here shows that learning is generally viewed as the 

means to accomplish this. These issues are fundamental 

not only to the field of pure artificial intelligence, but 

to the whole attempt to develop more sophisticated infor 

mation processing, such as in Command and Control systems.

To illustrate some of the questions brought up in 

the paper, a discussion is given of some very recent work 

done at RAND on a learning scheme for the General Problem- 

Solver (GPS). More details and specifications of this 

scheme will be given in a subsequent RAND Memorandum.

This revision of RM-3285-PR incorporates several 

changes and additions designed to present a more straight-
T

forward approach to the subject matter.
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The work formed the basis of an invited presentation 

by the author at the International Federation for 

Information Processing Congress, 1962, at Munich, Germany 

on August 29, 1962.
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SUMMARY

Learning plays a peculiar and subtle role in the 

field of artificial intelligence. Emphasis is placed on 

it in a way that seems to indicate it is a special concern, 

different from the other topics--problem-solving, pattern 

recognition, etc.--that also receive attention in the 

field.

An analysis of learning is presented to support the 

argument that the usual paradigm of learning (i.e., if 

the performance of a program on a task changes over time, 

then learning has occurred) does not get to the heart of 

the matter. This is done by showing that problem-solving 

programs are also learning programs by these standard 

criteria. A little more analysis supports the contention 

that the key features are the uses of the past for general 

utility and the use of genuine induction and generalization 

Further probing reveals that we are really concerned with 

generality--with producing a machine general enough to 

transcend the vision of its designers. Learning is viewed 

as the major means to achieving this end.

Turning to the question of how to use experience, a 

review is made of the various techniques and ideas which 

have been used. It is argued that the standard schemes 

of repetition with the modification of statistical weights 

is not the most fruitful way to proceed. Rather, attention
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is directed to the problem of representation, to the work 

on programs that construct programs, to the feature 

constructing pattern recognition programs, and to the 

programs for interpreting natural language.

To provide a concrete illustration of alternative 

ways to explore in developing learning programs, a modi 

fication of GPS is discussed that learns its own dif 

ferences from an examination of the operators it is given 

with which it manipulates the objects of the problem. 

This scheme makes use of EPAM, a program for simulating 

the way humans do rote memory. Although this scheme does 

not involve either repetition, the piling up of statistical 

experience, or the use of success or failure data, it is 

clearly a learning program in its use of past experience 

for an indefinite future and its use of genuine techniques 

of generalization.



   -vii-

r
CONTENTS

PREFACE ............................................ iii

SUMMARY ............................................ v

Section

I. INTRODUCTION ................................. 1

II. THE PROBLEM OF LEARNING ...................... 3

III. THE PROBLEM OF GENERALITY .................... 9

IV. REPRESENTATIONS .............................. 11

V. AN EXAMPLE FROM GPS .......................... 17

REFERENCES ......................................... 33



-1-

r
I. INTRODUCTION*

In the field of artificial intelligence we are en 

gaged in constructing mechanisms that reproduce the in 

formation processing we see in man. Sometimes we wish 

only to match or surpass his external performance; some 

times we are at pains to simulate his behavior in detail. 

For this memorandum the distinction is of little importance 

For many sufficiently-limited, symbolic tasks, such as 

multiplication, we both understand the task and can greatly 

exceed man's performance; interest fades from these. We 

are more concerned with performances that seem highly 

sophisticated and elaborate, where we understand completely 

neither the task nor how to accomplish it. Yet we demand 

a certain clarity: dreaming, reverie, and wit still lie 

outside the operational boundaries of artificial intelli 

gence in 1962.

Among the functions that do concern us, learning 

plays a peculiarly crucial and subtle role. For instance, 

the following typical questions are asked with great 

regularity by sophisticated visitors:

"I understand that your program plays chess, but 
does it learn to play better?" "No."      

"Oh," (with an intonation of disappointment).

JL

I am much indebted to my colleague H. A. Simon for 
discussions on the issues raised in this paper.
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'Will your chess program repeat itself exactly if
it is played against in the same way?" "Yes." 

"I see," (with a hint of satisfaction: the program
has failed some crucial test).

Throughout the field of artificial intelligence emphasis 

is placed on learning. Pattern recognition programs 

continually underplay the performance of recognition, 

emphasizing instead the ability to learn to recognize new 

patterns. When Samuel's checker player^ ' is cited in 

discussions of problem-solving, its learning is usually 

stressed as a crucial feature.

Why does learning play this crucial role? What is 

its special power? I would like to explore these questions 

and their implications for progress in artificial intelli 

gence.
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r
II. THE PROBLEM OF LEARNING

Learning is a broad, but well-established, concept 

that stands for a cluster of notions, many of which are 

implicit. Discussions of learning, such as the following, 

are not attempts at precision; they constitute hypotheses 

about what are the important features of the existing 

concept.

If we observe that a performance of X is a function 

of its experience in the past, then we say that X learned 

from its experience. This corresponds generally to the 

man-in-the-street's notion of learning. There are so

r~ many things wrong with it that the psychologists long ago

elaborated it to the paradigm of Figure 1. At time T we 

observe the performance of X on a specific task; if at T' 

its performance on the same task has changed, it has 

learned something from its previous performance and inter 

vening experience. The task may be repeated over and over 

again in order to study the course of learning. With a 

few caveats, this paradigm has sufficed in the psychological 

laboratory.

The paradigm is also much used in the study of arti 

ficial intelligence. It has even been elaborated slightly, 

since we can determine the internal structure of our learning 

machines precisely. The machine consists of a performance
4***

program for doing the task and a learning program that
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r
modifies the performance program as a function of its 

behavior on the task.

Does this paradigm express the aspects of learning 

that are really important to us? Let me test it against 

existing problem-solving programs. By common consent 

these are not learning programs witness the dialogues 

just quoted on the chess program. Yet they fit the

paradigm exactly. Figure 2 shows the top-level flow diagram
(2)of LT, one of the early theorem-proving programs. v '

The executive routine is performed repeatedly in the same 

situation. On first performance it usually does not 

solve the problem and on some later performance it does.
r*

Its eventual success that is, its change in performance-- 

is due to the experience accumulated from the intervening 

trials. Even LT's internal structure corresponds to the 

structure of a learning machine. The top box with the 

subproblem tree corresponds to the performance program. 

This includes the Substitution Method, which is the only 

method in LT that can actually solve problems. The second 

box in the diagram corresponds to the learning program. 

It contains the Detachment and Chaining Methods, which 

create new subproblems and add them to the subproblem 

tree--that is, modify the performance program. This part 

is called into play only after the performance program 

y_t fails. Learning occurs only on failure. And the modi 

fication is adaptive, since by construction it generates
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r
new subproblems that increase the probability of success 

on later trials.

This example is not a trick. LT can in fact be said 

to learn the solution. However, LT is still not usually 

considered a learning program, nor do I consider it one. 

Important elements exist in our concept of learning besides 

those given in the standard paradigm.

The most important way the problem-solvers seem deficient 

as learning machines is in the use they make of their 

experiences. All the information is accumulated to obtain 

a single result: to prove the original theorem. Once this

is done, the experiences have no more value. In contrast,
r~"

the devices we do call learning machines use their experience

to prepare for a whole range of future situations. Pattern 

recognizers use the learning trials to extract information 

from which innumerable varying exemplars can be recognized. 

Samuel's checker player improves its function for evaluating 

positions, which is used in all future play. Significant 

learning seems to imply obtaining something of general 

utility from the experience.

We also seem to require a learning program to use 

genuine generalization and induction in processing its 

experiences. The problem-solvers are again deficient on 

this score, since what is learned from each new experience  

^ from each new subproblem is primarily that it is not a

solution. In contrast, some basic postulate of generalization
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is a prominent part of all current learning machines. 

Often this is simply, 'what has worked in the past will 

work in the future," but it always exists.
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r
III. THE PROBLEM OF GENERALITY

These added factors--general utility and induction  

which imply significant learning, as opposed to learning 

that simply satisfies the paradigm, reveal a deep concern 

in artificial intelligence to construct a machine general 

enough to transcend the vision of its designer.* Learning 

is viewed as the maj or means for achieving this. Man has 

the ability to get along on his own and to define for him 

self the terms on which he will enter into dependencies with 

parts of his environment. In artificial intelligence we 

face the prospect of externally special-purpose machines, 

^ brilliant within a narrow range, but always encased within

an artificial universe bounded by the limited vision of its 

designers.

Generality, then, is one of our major goals: the 

ability to cope with the range and diversity of the real 

world. Theoretically, we do not care how we get such a 

machine. We would accept a perfectly constructed general 

problem-solver. Such a machine would not need to learn at 

all! That we reject this possibility--as by common consent 

I believe we do expresses the conviction that the real 

world is too diverse, too full of details, and too complex

This same concern is expressed, although improperly, 
in the question of whether a machine can outperform its 
designer. This question was laid to rest long ago, both 
trivially in tasks like multiplication and non-trivially 
in tasks like checkers.
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to permit any pure "performance" device to achieve per 

fection. Continuous learning is the price of generality.

When learning is emphasized as the basic solution to 

the problems of generality, we must include all the ways 

experience might be processed to prepare for future action. 

The world itself determines what regularities exist over 

time and place to be exploited by learning; their nature 

determines in large measure the kind of processing that 

must be used.

However, current learning machines utilize an extremely 

narrow range of mechanisms. The central ideas are well 

known: repetition, simple reinforcement, statistically 

determined weights. They derive in many ways from taking 

seriously the paradigm of Figure 1, as realized in animal 

experimentation. The range of relevant processes is 

clearly broader than this, however difficult it may be to 

visualize the possibilities. Our horizons need expanding 

on the varieties of mechanisms that are relevant and re 

quisite to achieving generality.
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r
IV. REPRESENTATIONS

All learning requires an internal representation of 

the experiences to be made available for later use. This 

may be as simple as a recorded fact, as obscure as the 

connectivity of a network, or as elaborate as a detailed 

map, but it must exist. The representation forms a crucial 

bridge, not just between the moment of gathering and the

moment of using information, but between descriptions of
/3\ 

the environment and determinations of action. v ' The

representation is pulled in two directions. Processes must 

translate from the raw experience to the representation; 

^ to simplify this translation, the representation should be

simple in terms of the environment. But processes must 

also translate from the representation to action; to simplify 

this translation, the representation should be simple in 

terms of the action principles of the machine. Complexity 

of translation can be exchanged between the encoding and 

decoding processes by an appropriate choice of representation.* 

In all events, a certain gap must be bridged to get from 

the environment to its implications for action. The 

representation remains the filter through which all 

information must pass.

Representations of experience are crucial in another 

way. They form not only limits to what can be accomplished

r _____
There is a nice discussion of this in Lindsay.^ '
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by the machine, but limits to what can be envisioned by the 

designer. New forms of learning require the invention of 

representations that can express new potentialities--that 

make variable what was previously fixed structure. These 

extensions are rarely suggested by existing structures; 

they constitute true inventions. For example, LT never 

learned new methods because we could not invent a space of 

possible methods expressed in a language that LT could 

manipulate. A consequence of this paucity of good repre 

sentations is that existing learning programs tend to cluster 

around the few existing representations. Here, above all, 

we need our horizons extended.

Most of the representations currently in use are 

extremely close to the action scheme of their machines. 

This is quite natural, since the easiest way to get a 

learning scheme is to generalize some feature of the way 

an existing machine performs. The problem of translation 

from the representation to action is thereby solved, since 

the representation is already in terms directly understood 

by the performance program. However, translation of the 

raw experience into the representation must still occur. 

Our excessive tendency to describe an environment solely 

by the dichotomy, "succeed" or "fail," may partly reflect 

the difficulties of this translation.

Many learning programs use some collection of numerical 

parameters of the action scheme as a representation, which
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r
are then optimized by experience. From our viewpoint 

here, these are the least interesting kinds of learning 

precisely because they never lead beyond themselves--which 

does not deny their occasional effectiveness. The variety 

of the world is far richer than can be represented by a 

fixed set of numbers controlling a machine of fixed structure.

More interesting are representations using extremely 

general languages of action. Rich of the work in learning 

machines has used networks of linear threshold elements, 

the set of threshold values serving as the representation 

of experience. If I dismiss this work somewhat summarily, 

it is only because this representation still seems toor~
limiting to express, without great organizational innovation, 

the kind of detail and complexity, both of action and 

environment, that we see in the world.

Programming languages, the one known class of action 

languages able to express truly complex behaviors, are 

more intriguing. However, programs are extremely obdurate 

languages for encoding descriptive experiences, which is 

why they have not been used much in learning programs. Early 

examples, such as Friedberg 1 s,^ ' did not incorporate enough 

power and structure to fashion programs that could accomplish 

useful tasks. Work by Kilburn, Grimsdale, and Sumner^ ' 

removed some of the deficiencies, and was considerably more 

f-^ successful. Currently, at least two efforts are developing

programs that construct programs. One, by Saul Amarel,^ '
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takes a set of examples of the desired inputs and outputs 

and tries to discover a program that yields these; the
/Q\

other, by H. A. Simon,^ ' takes general defining statements 

about the input and output and attempts to find the program, 

These programs are not learning programs, in the same 

way as LT is not one.* They solve the problem of con 

structing a program that meets certain conditions. Their 

significance lies in developing techniques for translating 

from descriptive information to a language of action rich 

enough to express complex behavior. Continued advance 

along these lines should finally permit representations 

of experience which are much richer and more directly 

reflect the environment than the action-oriented representa 

tions we use currently.

Another kind of action language is worth noting. 

Pattern recognition of the non-network variety tends to use 

a set of features of the sample to be identified, along 

with learning schemes for selecting and weighting these 

features. The representational limitations of sets of 

weights have already been mentioned. Recently, programs 

have been written that produce their own features. The 

most advanced scheme is that of Uhr and Vossler.

Nevertheless, the early programs called themselves 
learning programs.

**This program was also reported on at the IFIP 
Congress. Interestingly, the very early program of
Selfridge^ ' and Dineen^ ' also created its own features.
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r
From our viewpoint the advance of these programs derives 

from representing past experience not merely as numerical 

weights, but as features.

The ways of representing experience discussed above 

were developed directly out of the action structure of the 

machine. If we turn to the other side to representations

that mirror the environment--less has been done. The work
(12)* 

of Remus v ' moves in this direction by basing actions

directly on a descriptive classification of the environ 

ment. More generally, these would be programs that seek 

to construct models, theories, or explanations of their

-v. environment, independent of particular action implications.
(13) A hypothesis-testing program by Feldman, Tonge, and Kanter v '

is an example. Programs designed to obey natural language^ ' ' 

also constitute exceptions, since they face the problem 

of first understanding what is being said. These latter 

programs, by exploring the possibilities for environment- 

oriented representations, have great relevance for generality 

and learning, even though they are not cast directly in 

the form of learning machines.

I have been emphasizing the critical role of the 

internal representation of experience, and the limits it 

puts on our vision in constructing general machines. 

Whole ranges of mechanisms seem to me to lie outside the

Also presented at the IFIP Congress.
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view of much of the current work on learning machines, 

limited as they are by implicit assumptions about how 

experience should be inducted and represented. Conse 

quently, I have been stressing those areas of research-- 

programs that construct programs, recognizers that create 

new features, and programs that build descriptive models 

of the environment which expand our horizons by making 

available new forms of representation. An example will 

illustrate further the possibilities for using experience.
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r
V. AN EXAMPLE FROM GPS

Most readers are probably acquainted with the program

called GPS, which was described at the International
(15) 

Conference on Information Processing, Paris, 1959, ' and

has been reported several times since.* GPS is a computer 

program for solving problems, a member of the class of game- 

playing and theorem-proving programs. It has been used 

both for explorations into artificial intelligence and for 

detailed simulation of human problem-solving.^ ' ' Its 

performance in both of these aspects has been dominated
/I 0\

by the problems it has presented in program organization. v ' 

f^ To refresh your memory, Figure 3 shows the general scheme

by which GPS operates. Much goes on under the surface 

of this diagram; yet it is still the most adequate simple 

picture. GPS is a program for accepting a task environment 

defined in terms of discrete objects, operators that mani 

pulate these objects, and particular tasks like transforming 

one object into another. It performs these tasks by growing 

a structure of goals. Each goal is a data structure that 

describes some state of affairs to be achieved and gives 

ancillary information about methods, history, and en 

vironment. Different types of goals exist, each with its

GPS is the joint work of J. C. Shaw, H. A. Simon, and 
the author. I am indebted to Charles Bush for his help 
in running GPS.
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own methods. The three methods shown are the crucial 

ones. To transform an object A into an object B, the 

first method matches the two objects; if they are not the 

same, a difference is found, which leads to setting up a 

subgoal of reducing that difference. If this subgoal is 

attained, a new object A 1 is produced, which hopefully 

is more like B. The subgoal is then set up to transform 

A 1 into B. Secondly, the principal method to reduce a 

difference is to find an available operator relevant to 

that difference, and to set up the subgoal of applying it. 

In the third method, to apply an operator the operand is 

matched to the conditions required by the operator. This 

may lead to a difference, which requires setting up a 

subgoal to reduce it, similar to the earlier case. The 

methods, these three along with others, grow a tree of 

subgoals in the process of solving a problem. In addition, 

GPS has devices for pruning and shaping the tree of sub- 

goals: checking for duplicate objects and goals, rejecting 

goals as unprofitable, and selecting goals as especially 

worthwhile.

With this brief sketch, let me consider some of the 

issues raised earlier. A problem for GPS is basically defined 

by objects and operators. The differences are the constructs 

that mediate between them, that allow GPS to select artfully 

the operators that are appropriate to transform one object 

into another. Figure 4 shows the table of connections for
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r
logic, whereby differences lead to relevant operators. 

The differences are not given explicitly by either the 

task environment or the specific task; clearly GPS should 

learn them for itself. The fact of the program is other 

wise: we, GPS's designers, give it differences as part of 

its equipment to deal with a task when we define a task 

environment. Thus, differences represent a sensitive point 

of dependence of GPS upon its designers.

Three years ago in an article entitled MA Variety of 

Intelligent Learning in GPS,"' ' we discussed these same 

issues, and there also focused on the differences. First 

we observed that, although a simple standard learning para- 

' digm could be used to learn the connections in the table

of Figure 4, the information could be generated directly. 

If the input and output forms of the operators were matched, 

the differences so found would be the table entries that 

is, the operators were relevant to precisely those dif 

ferences they produced. Looking, rather than learning 

from repetitive trial, was the appropriate way to gain 

experience here.

We went on to consider how the differences themselves 

might be generated by GPS. As initially created, each 

difference was simply a symbol, linked to a machine language 

program to detect the difference. From GPS's viewpoint 

^ differences were unanalyzable unities; from ours they were

members of the class of all programs. From either viewpoint
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no learning was possible. We first had to invent a repre 

sentation of differences in terms of a simpler programming 

language one in which differences, though programs, were 

represented as objects. We then gave GPS operators to 

construct and modify these difference programs, and dif 

ferences to detect features of these programs. We thus 

cast the learning of differences into the form of a pro 

blem for GPS in terms of objects and operators, a problem 

it could handle by the same means it handles all problems. 

We carried this effort through a small hand simulation, 

problems of program organization still preventing our 

simulating it in the metal. Our exploration went far enough 

to make the point that intelligent learning might look more 

like problem-solving than like a stochastic learning process,

I would like now to consider the matter along an 

alternative path, although I shall make much the same 

point. Again, GPS is to obtain somehow its own differences. 

However, GPS cannot be given only the objects and operators; 

some elementary form of perceptual discrimination must be 

available to it. We assume that for each elementary 

attribute of an object structure, GPS can tell its location 

in the structure, and whether corresponding attributes of 

two expressions have the same or different values. If 

we provided GPS with less perceptual capability than this, 

we would be hiding some of the environment from it.
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In the best of all worlds, GPS would have an operator 

available to remove directly every elementary difference 

between a given object and a desired object. If at position 

P attribute A for the given object had the value X while 

for the desired object it had the value Y, then an operator 

would exist which would change X to Y without disturbing 

anything else. In reality, GPS must work with operators 

that are not nearly so obliging as these operators of 

immediate perception. (Real saws produce sawdust, as well 

as cut.) Matching can be looked on as an act of wishful 

thinking--of seeing the problem in terms of the immediate 

perceptual operations that would make one expression like 

the other. By way of example, Figure 5 shows two simple 

logic expressions as GPS would see them. Each consists of 

a collection of nodes, linked together by the attributes. 

If the two expressions are matched, the difference structure 

shown below them is obtained; it specifies all the elementary 

things one would do (if one could) to change the first 

expression directly into the second.

That the real-world operators are inconvenient and do 

not allow such direct transformations, does not make them 

unpatterned. Each one can be seen as a composite, made up 

of these same elementary perceptual operations. Figure 6 

shows the difference structure derived by matching the 

input form to the output form of an operator. Thus, the
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basic bridge from environment to action is built; both 

objects and operators are described in a common language 

of immediate perceptions.

The price paid for this becomes evident as soon as we 

attempt to construct the table of connections from differences 

to operators. When the differences were specified by the 

designers, each difference represented a macroscopic 

change (some pattern of the simple differences just 

discussed), known to be of utility in solving problems 

in terms of the set of operators available. Thus there 

was a difference, change of position, and operators, such 

as A.B^B.A, AvB ̂  BvA, and AD B =^-B ̂  -A, which dealt 

simply and directly with this difference. The table of 

connections was formed between the names of the individual 

differences and the names of the individual operators. 

With the elementary differences we are now considering, 

this is no longer possible, since each operator has a 

complicated structure of differences.

I will borrow a technique from the work of two of my 

colleagues to deal with this. E. A. Feigenbaum and H. A. 

Simon have reported on a program called EPAM.' ' 

Basically, EPAM consists of a very simple but intriguing 

scheme for discriminating among a collection of objects 

by growing a tree of tests when confronted with the task 

of sorting the objects. GPS already uses EPAM-like trees. 

During the course of problem-solving each newly created
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structure (either a goal or an object) is sorted through 

a tree, which normally grows to accommodate it. However, 

if an identical structure has already been stored in the 

tree, it is discovered, since the new structure comes to 

rest at the same place in the tree. Appropriate action is 

then taken. For example, by this sorting process GPS 

immediately recognizes the final desired object if it 

ever generates it, independently of its reason for gener 

ating it. GPS does not have to ask the question deliberately 

of each new object, "Are you the final answer?"

An EPAM net will be used for the table of connections, 

growing it under the impact of the operators that are avail 

able for a problem. Figure 7 shows the tree that might be 

produced by discriminating the standard set of logic op 

erators. The difference structure of each operator was 

sorted down this tree until it came to rest either at an 

unoccupied slot, or at a place holding a previously stored 

difference structure. In the latter case, the two difference 

structures were matched and the most important difference 

between them was used to define a test from which new 

branches would develop to discriminate the two operators. 

Once the tree of operators has been grown, it can be used 

to select operators for reducing the differences found 

between two objects. Their difference structure can be 

sorted down this tree to select the operators that most 

closely fit the pattern of elementary differences in the 

structure.
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Let us consider the total operation of GPS with such 

a modification. In a new task area, GPS first explores 

the environment by processing the operators as has been 

shown; the tree that is grown represents the set of op 

erators in their capacity to modify differences in this 

environment. Then GPS is prepared to turn to particular 

tasks, using this representation as a central part of its 

prob1em-s oIving.

One aspect of this description is still missing. 

Generalization was a central feature of the discussion of 

learning; one part of the environment is relevant to another 

only by an inductive leap. In most learning problems one 

is trying to pass between essentially analogous situations, 

and the basis of induction from one to the other is usually 

some form of invariance: what was good there is good here. 

In the present arrangement, although the inductive bases 

are different, generalization is by no means absent.

At least three generalizing assumptions are incorporated 

in this scheme. The most important is the assumption of 

"conservation of symbols." A term in a desired expression 

must come from somewhere: if SvT is to transform into TvS, 

then it is a fair assumption that the T in the second ex 

pression "comes from" the T in the first. Thus GPS creates 

a generalized difference structure by replacing each term 

in the raw difference structure with an expression repre 

senting the location of that term in the expression.
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Figure 8 shows the generalized difference structures for 

the two examples of Figures 5 and 6.

The second generalizing assumption is spatial invari- 

ance: most operators in logic can be applied at any 

location in the expression. Hence the position of the total 

pattern of differences in the total expression is irrelevant. 

Consequently, the lowest node of the raw difference 

structure that covers all differences is made the top 

node of the generalized difference structure. This 

assumption is quite analogous, both in its power and in 

its inductive basis, to the transformations, such as centering, 

focusing, and smoothing, that are standard in many pattern 

recognizers.

The third generalizing assumption concerns the sign of 

the logic expressions. Whenever operations on a binary 

variable (say with values + and -) are symmetric in the 

values, it is possible to describe both changes from + 

to - and from - to 4- simply as "change value." This is a 

familiar transformation in all work with Boolean variables. 

As shown in Figure 8, the generalized difference structure 

is transformed this way.

GPS, of course, neither learns nor discovers these 

bases of generalization. To do so would require inventing 

a representation of the environment that would include in 

a plausible way many possible bases. Neither GPS, nor its 

designers, know yet how to specify such a representation.
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Surely what we have been describing here is learning, 

even though there is no repetition of experience, no 

success or failure, no piling up of statistical data about 

the past. The key features of learning--preparation for 

an indefinite future and the use of generalization to bridge 

separate experiences--are both clearly present. Something 

akin to an analysis of the environment is going on. So, 

does one problem-solving program slowly grow independent 

of its designers.
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