
Reprinted from the COMMUNICATIONS o? THE ASSOCIATION FOR COMPUTING MACHINERY
Volume 3, Number 4, April 1960

Made in U.S.A.

An Introduction to Information Processing Language V

A. NEWELL AND F. M. TONGE, The RAND Corp., Santa Monica, California

Introduction

This paper is an informal introduction to Information
Processing Language V (IPL-V), a symbol and list-struc­
ture manipulating language presently implemented on the
IBM 650, 704 and 709. It contains a discussion of the
problem context in which a series of Information Proc­
essing Languages has developed and of the basic concepts
incorporated in IPL-V.1 A complete description of the
language can be found in the IPL-V Programmer's Manual
[4, 5].

Development of the IPL Series

There exist many tasks that men can perform reasonably
well without knowing in detail how they perform them.
Playing chess, making a business decision, or proving
theorems are examples. At some level, the computer can
behave only in a manner that its users have specified.
Getting the computer to play chess or prove theorems,
using the same problem-solving techniques as humans,
poses communication problems with the machine far
beyond those of expressing formal algebraic manipulations.
The user must somehow communicate to the machine his
incomplete knowledge of how to behave in these complex
situations. The IPL series of programming languages has
been developed as an aid in constructing problem-solving
programs using the adaptive, cut-and-try methods
("heuristics") characteristic of human behavior as a re­
search tool in the study of heuristic problem-solving.

IPL-I originated as a language for expressing a theorem-
proving program in the sentential calculus [6] and was
never implemented on a computer. IPL-II and IPL-III
were coded for The RAND Corporation's JOHNNIAC and
used for the Logic Theorist [7].

Next, a group at Carnegie Institute of Technology pre­
pared an IPL for the IBM 650 [8], a project that has de­
veloped into IPL-V. At the same time a similar system,
IPL-IV, was coded for the JOHNNIAC and is being used for
a chess program [9] and a heuristic program to balance
production assembly lines [10]. Major programs are being
run or debugged in IPL-V in the simulation of human
cognitive processes. These include work in the fields of

* Presented at the meeting of the Association, Boston, Mass.,

1959.
1 The name "Information Processing Language" was given to

the series in its early days, and seems appropriate. But certainly
LISP [1], FORTRAN List Processing Language [2], COMIT [3],
and others yet to come are just as truly information processing
languages as the IPL series.

discrimination learning [11], binary choice [12], and
theorem-proving in certain formal areas [13].

The last IPL to date, IPL-VI [14], was written as an
order code proposal for a computer that would realize an
information processing language directly and hence
achieve far more rapid execution than the current interpre­
tive realization on conventional machines.

Problem Interests

We summarize below the characteristics of problems for
which the IPL's were developed. This also indicates the
type of problems for which IPL-V is a sensible program­
ming system.

(1) The problem basically involves manipulating sym­
bols that have other than numerical meaning and in other
than algebraic systems.

(2) The particular storage requirements of the problem-
solving program cannot be specified in advance; complex
data structures are developed as the program proceeds.
For example, a program [11] for memorizing lists of non­
sense syllables builds up a net of discriminations for recog­
nizing the different syllables. The size, shape and elaborate­
ness of this net depend entirely on the particular list of
syllables presented to the program.

(3) The relationships between elements of data are re­
structured during the program's operation. New associa­
tions must be represented and old ones deleted.

(4) The problem-solving process is naturally expressed
at several levels of discourse, each built upon the lower
levels. Thus, in the chess program there is a language for
talking about the board and the pieces, a higher language
for talking about particular pieces as a consequence of their
position (for example, bearing on a particular square), and
a still higher language for talking about desirable situations
(as, control of the center).

(5) The problem-solving procedure will be modified fre­
quently as the program is developed and tested. This
change reflects the use of the computer as a means of study­
ing and learning about the problem. Consequently, the
program must permit easy modification at various levels
and with a minimum of interaction with the rest of the
program.

The IPL Computer

IPL-V is a formal language in terms of which informa­
tion can be symbolized and processes specified for manipu­
lating the information. IPL-V allows two kinds of expres­
sions: data list structures, which contain the information

Communications of the ACM 205

to be processed, and routines, which define information
processes. We use the term "IPL Computer" to refer to
the IPL-V system as implemented on one of our object
machines 650, 704, or 709.

The IPL Computer consists of:
(1) a set of cells that hold IPL words known as the

total available space;
(2) a stock of symbols used to form IPL expressions

(within the computer all symbols are addresses, and thus
name cells);

(3) a set of primitive processes which the computer can
carry out without further IPL interpretation;

(4) an interpreter that interprets routines and performs
the processes they define.

Representation of Data

Symbols. Two types of symbols are available to the
programmer regional and local. Regional symbols consist
of an alphabetic character followed by a relative number
 as, A27, C5, G1000. These are the relative symbols of
normal programming usage. Local symbols are expressed
as a regional character 9 followed by an arbitrary num­
ber as, 9-7, 9-100. Local symbols are treated as pure
symbolics, with their meaning constant within a particu­
lar IPL expression. The same local symbols are used with
different meanings in different routines or data list struc­
tures.

All symbols not explicitly used by the programmer, and
the cells they name, are available to the program during
processing and are called internal symbols.

Lists. Generally, a larger unit of data than a single
symbol is needed. In IPL, the list is this unit of data, and
basic processes for manipulating lists exist. Normally,
each cell in use holds an IPL word, consisting of two pre­
fixes, P and Q, and two symbols, SYMB and LINK. Symbols
are linked together in lists in the manner indicated in
figure 1, which shows a list of the symbols SI, S2, S3. LO
is the name of the list and of the cell called the head of
the list. The names of the list cells are internal symbols.
The LINK of each cell holds the name of the cell holding
the next symbol on the list. The final list cell has the
termination symbol, 0, as its LINK. By convention, the
first symbol on a list is stored in the first list cell, the
SYMB part of the head being reserved for another use.
(The internal symbols linking cells of a list are normally
omitted, since they are supplied by the IPL system and
need not concern the programmer.) Thus, several symbols
can be associated into a unit of data by placing them on
a list. These symbols may be the names of other lists or of
more complicated structures.

Description Lists. A list can have associated with it
certain descriptive information that can be added to,
altered or deleted at will. This is accomplished through
the description list mechanism. The symbol stored in the
head of a list is the name of the list's description list. The
symbols on a description list are considered in pairs, the
first member of the pair being the attribute and the second

member being its value. Each attribute corresponds to a
function, with a value for the particular argument (unit
of data) being described. Thus, for the unit of data "grass"
the value of attribute "color" would be "green." Figure
2 illustrates a list, LI, with symbols S4 and S5, which is
described by the two attributes Al and A2.

The IPL-V primitive process "find the value of at­
tribute Al of LI" would produce the symbol VI. Addi­
tional descriptive information can be associated with a
list during processing by performing the primitive process
that assigns an attribute and its value to a symbol. Simi­
larly, new values can replace the present ones, or an
attribute and its value can be deleted entirely. The pro­
grammer needs no knowledge of the actual structure of
the description list. All necessary processing is done by
the appropriate primitive processes, which search the
list for the desired attribute and take appropriate action.

Data Terms. Thus, symbols are given meaning by the
list that they name and by descriptive information asso­
ciated with them. Symbols can also name information
beyond the scope of the Information Processing Language
itself such as integer or floating point numbers, binary
fields, or alphanumeric information. Such information is
encoded into the cell named by the symbol being defined
and is manipulated by IPL processes operating on the
symbol. The symbol and the associated encoded informa­
tion are known as a data term. Primitive processes in
IPL-V perform arithmetic operations on numerical data
terms and print all types of data terms just mentioned.
Other new types of data terms can be defined and ap­
propriate primitive processes introduced into the system
easily.

List Structures. More complicated units of data can be
defined through the use of local names. A list structure
consists of a main list, having a regional or internal name,
and all those structures named on the main list having
local names. Figure 3 illustrates a data list structure con­
sisting of the main list, L2, description list 9-1 with data

Name

LO
36

508
13

PQ Symb

0

SI

S2
S3

Link

36
508

13
0

FIG. 1. Simple List

Name PQ Symb

LI 9-1
S4
S5

9-1 0
Al
VI
A2
V2

Link

0

0

FIG. 2. Description List

206 Communications of the ACM

term 9-10 (the integer 15) as the value of attribute A5 and
sublists 9-7 and 9-5.

Primitive processes in IPL create, copy, erase and
move to auxiliary storage a list structure as a single entity.
Also the necessary processes exist so that a program can
scan and process list structures in other ways.

Push-Down Lists for Storage Cells

The programmer can also use cells as working storage;
that is, he can store symbols in their SYMB part. In this
case the LINK of the storage cell holds the termination
symbol.

Often it is desirable to store information in a storage
cell without destroying the information already in the
cell. For example, as is developed in more detail later, the
interpreter always holds the name of the cell containing
the current IPL instruction in a particular storage cell,
named HI. If that instruction designates a subprocess to
be interpreted, the interpreter must keep its location in
the subprocess, but without losing its place in the higher
routine. Indeed, since the subprocess may itself execute a
subprocess, and so forth, an indefinite number of locations
in various routines must be saved.

This problem is resolved through the preserve and restore
operations. To preserve a cell is to take an unused cell
from available space and copy into it the total contents of
the cell being preserved. The name of this copy cell is
then stored in the LINK of the preserved cell. Other sym­
bols can then be stored in the cell without destroying its
original contents. The original state of the cell is returned
by the inverse operation, restore. The list of preserved
symbols associated with a cell is called its push down list,
and' the operations preserve and restore are also called
push down and pop up.

Figure 4 shows the status of cell HI, initially holding

Name

L2

9-1

9-7

9-10
9-5

PQ Symb

9-1

9-7

G4

0

Al
VI
A5
9-10
0
S4
9-5

1

Zl
L2

Link

0

0

0
15

0

0

FIG. 3. List Structure

Name PQ Symb Link

HI Q5 387
387 K3 0

FIG. 4. Push Down List

K3, immediately after it has been preserved and the
symbol Q5 stored in it.

Thus, the interpreter, in beginning interpretation of a
subprocess, pushes down HI before recording the name
of the subprocess as the new current instruction address.
And, upon completing a subprocess, the interpreter pops
up HI to obtain the last current instruction address of the
higher routine.

Available Space List

As lists in storage are built up and altered, cells are
continually brought into use and discarded as in push
down and pop up operations. Some system is needed to
keep track of which cells in storage are unused. In IPL
all currently unused cells are linked together on a list, the
available space list, named H2. Any process, or the in­
terpreter, desiring a cell takes the first one on this list.
Likewise, cells no longer needed are returned to the avail­
able space list. This device frees the programmer from
problems of memory assignment, and allows him to apply
at will various processes that modify the structure of
memory.

Interpretation

Routines. An IPL routine is a list of instructions. (The
format of instructions is explained later.) During inter­
pretation the IPL interpreter examines each instruction
word in sequence and carries out the process it designates.
This process may be execution of some other routine. The
rules for forming routines in IPL and the manner in which
interpretation is mechanized insure that every routine is
a closed subroutine usable by any routine, including itself.
All routines are forced into a subroutine format, and all
programs into a hierarchical organization, through a
particular mechanization of the linkage between routines
and conventions about specification of parameters and use
of working storage.

Linkage the Current Instruction Address List. As was
mentioned above, the address of the cell holding the cur­
rent instruction is stored in a particular cell, HI. If this
instruction designates a subprocess to be interpreted, HI
is pushed down before interpretation of the subprocess
begins and is popped up after that interpretation is com­
pleted. Thus, the return linkage for a routine is held in
the push down list associated with HI, called the Current
Instruction Address list. The programmer simply desig­
nates the subprocess to be executed by name; linkage is
handled automatically by the interpreter.

Specification of Inputs and Outputs the Communication
Cell. The inputs to any process are specified by storing
them in the Communication Cell, named HO. HO is pre­

served before each input is entered, so that the set of
inputs to a process are the top symbols in HO's push down
list. By convention, each process removes its inputs from
HO. Likewise, each process leaves any outputs it produces
in HO.

Communications of the ACM 207

Q = 0 S = SYMB
Q = 1 S = Symbol in cell named SYMB
Q = 2 S = Symbol in cell named by symbol in cell named

SYMB.
For example, given the following two cells:

Name PQ Symb Link

CO BO
BO KO

we have as the designated symbol, S:
OCO = CO
ICO = BO
2CO » KO

FIG. 5. Designation Operation

P - 0 EXECUTE S. S is assumed to name a routine or a primi­
tive. The process it specifies is carried out.

P = 1 INPUT S. The Communication Cell HO is preserved;
then a copy of S is put in HO.

P = 2 OUTPUT TO S. A copy of the symbol in HO (hereafter
abbreviated as (0)) is put in cell S; then HO is restored.

P = 3 RESTORE S. The symbol most recently placed in the
push down list of cell S is moved into S; the current sym­
bol in S is lost.

P = 4 PRESERVE S. A copy of the symbol in cell S is placed in
the push down list of S; the symbol remains in S.

P = 5 REPLACE (0) BY S. A copy of S is put in HO; the cur­
rent (0) is lost. (This is analogous to the normal "load
accumulator.")

P = 6 COPY (0) IN S. A copy of (0) is put in cell S; the current
symbol in S is lost and (0) is unaffected. (This is analo­
gous to the normal "store accumulator.")

P = 7 BRANCH TO S IF H5-. If H5 is +, LINK names the
cell containing the next instruction to be performed.
(This is the normal sequence of instructions.) If H5 is ,
then S names the cell containing the next instruction to
be performed.

FIG. 6. Operation Code

Working Storage. A set of ten cells, WO-W9, are reserved
for Public Working Storage (through a process may use
any available cell for working storage if it so desires.) If
routines using a public working storage cell first preserve
the cell, thus adding the information in the cell to the
push down list associated with the cell, and when through
restore the cell, any routine can execute any routine, in­
cluding itself, as a subprocess without the danger that its
information in working storage will be violated.

By convention, the Communication Cell and the Public
Working Storage are safe cells. That is, any process using
them is morally bound to first preserve them and when
finished restore them. This explicit handling of the con­
text in which a routine operates offers flexibility in several
ways: outputs of a process can be left in the Communica­
tion Cell as inputs of a later one; each routine is an inde­
pendent subroutine with respect to working storage. It
has the drawback of requiring explicit handling of each
safe cell used.

Test Cell. Many processes, in addition to producing
other outputs, result in the information "yes" or "no":

as, "yes, I have found the location of that symbol on this
list," or "no, these two symbols are not identical." The
results of such binary decisions are symbolized in the Test
Cell, H5 (+ for "yes" and - for "no").

Instruction Format. Each instruction of a routine is ex­
pressed as an IPL word. The process to be carried out is
designated by the prefixes P and Q and by SYMB. LINK is
the name of the next cell on the routine list.

The Q prefix specifies a designation operation to be
performed upon SYMB. The result of this operation is the
designated symbol, S. This designation operation is a form
of indirect addressing. The three degrees of designation
available in IPL-V are illustrated in figure 5.

The P prefix specifies the operation to be performed upon
the designated symbol. These operations accomplish the
setup, execution and cleanup of routines. The eight P
prefixes are explained in figure 6.

Interpretive Cycle. The interpreter takes a program arid
interprets it as a sequence of primitive processes, execut­
ing each of these in turn. This interpretive process con­
sists of the cycle of operations illustrated by the flow
diagram in figure 7.

Basic Processes

The IPL-V system includes approximately 150 basic
processes. While clearly not a minimal set indeed, some
of the basic processes are coded in IPL-V itself experi­
ence with earlier IPL's indicates that this is a useful one.
The several classes of basic processes are described below.
The GENERAL processes include such instructions as
"no operation," "test if two symbols are identical," "set
the signal in H5 plus," and "halt."

Interpretive Cycle

Get routine
from auxiliary

Transfer to
primitive

FIG. 7. Interpretive Cycle

208 Communications of the ACM

Among the DESCRIPTION LIST processes are "find
the value of an attribute of an object," "assign a new value
to an attribute," and "erase an attribute and its value."

The PUBLIC WORKING STORAGE processes make
it possible to preserve, restore, or move symbols from the
Communication Cell into several of the W's with one
operation.

The LIST processes include such operations as "locate
the next symbol on a list," "insert a symbol on a list,"
"erase a list structure," and "copy a list structure."

The ARITHMETIC processes contain such operations
as "add," "multiply," and "test if a greater than 6."
The system also includes a basic operation that generates
random numbers within a specified range.

Through the DATA PREFIX processes the program­
mer can identify the various types of symbols and data
terms present in the system and so construct other list
structure processes. These processes include "test if a
symbol names a data term," and "make a symbol local."

The AUXILIARY STORAGE processes enable the
programmer to "file" data list structures in auxiliary
storage and to "move" filed data into immediate storage.

The INPUT-OUTPUT processes permit reading or
writing data list structures using any peripheral equip­
ment present on the object computer. Data punched out
on cards or written on external tapes is in the appropriate
form for re-entry either at loading or by the read process.
Full control of print column and line spacing is available
within the IPL system.

Repetitive operations can be handled in IPL-V with
loops, utilizing the conditional branch, or by a special
class of processes, called generators. A generator is a process
that produces a sequence of outputs and applies to each
output a specified process. The process that the generator
applies is an input to the generator and is called the sub-
process. The generator is associated with the kind of se­
quence it produces, and will apply any subprocess to the
elements of the sequence. (The subprocess must obey a
system convention on how to signal the generator to con­
tinue or stop producing elements.) Thus, the generator,
just like the "iteration" statements of algebraic compilers,
accomplishes a separation of the "production of elements"
part of a loop from the "processing" part.

The subprocess is executed for each element of the out­
put sequence as though it were a continuation of the
process firing the generator (the superprocess) that is,
as though the generator had made no use of the Communi­
cation Cell or Public Working Storage. Generators are
different from all other IPL processes in that two con­
texts of information in working storage must coexist in
the computer that of the generator and that of the
superprocess and subprocess. There is an alternation of
both control and context between the generator and the
subprocess. To produce an element of the sequence, the
generator must be in control and its context should occupy
the W's; to process the element, the subprocess must be
in control and its context (the context of the super-rou­

tine) should occupy the W's. Hence the strict hierarchy of
routines and subroutines is violated, and special pains
have to be taken to see that information remains safe and
that each process works in its appropriate context.

To handle this special housekeeping, the GENERATOR
HOUSEKEEPING processes are provided. These proc­
esses insure that the generator's context is hidden away
before the subprocess is executed, and returned to the
W's after the subprocess is completed. The programmer
uses these processes in coding generators. Some generally
useful generators "generate the symbols on a list,"
"generate the cells of a data list structure" and "generate
the cells of a tree structure" are included among the basic
list processes.

It is possible to prepare additional machine language
routines and append these to the basic system, entering
them with other programs during loading. These machine
language routines will generally be coded in the assembly
system appropriate to the object machine and assembled
prior to IPL loading.

Operating Aids

Debugging aids include selective tracing of any routines
desired, snapshots of any data (including system cells) at
the beginning and/or end of tracing, and a post mortem
dump of any data. The system also includes provision for
saving the program on tape or cards for later restart.

An Example of IPL Coding

As a simple example of coding in IPL, consider the
problem of testing if a given symbol occurs in a given tree.
A tree is a list structure in which no sublist occurs more
than once. The list structure of figure 3 is a tree.

We shall code this problem in two ways first using the
basic process for moving down a list cell by cell (J60),
then using the basic process for generating the cells of a
tree structure (J102).

The basic processes required are given below. (Just as
(0) stands for the symbol in HO, (1) indicates the symbol
one down in HO's push down list, (2) the symbol two
down, and so forth.)

J50: PRESERVE WO, THEN MOVE (0) INTO WO.
J60: LOCATE NEXT SYMBOL AFTER CELL (0). (0) is as­

sumed to be the name of a cell. If the next cell exists
(LINK of (0) not a termination symbol), the output (0)
is the name of the next cell and H5 is set -+ . If LINK is a
termination symbol, then the output (0) is the name of
the last cell i.e., input (0) and H5 set .

J132: TEST IF (0) IS A LOCAL SYMBOL. Set H5+ if (0) is
local; set H5 if not.

J2: TEST IF SYMBOL (0) = SYMBOL (1). Set H5+ if equal;
set H5 if not.

J30: RESTORE WO. (Same as 30WO.)
J131: TEST IF (0) NAMES A DATA TERM. Set H5+ if (0) is

data term; set H5 if not.
J5: REVERSE THE SIGN OF H5.
J8: RESTORE HO. (Same as 30HO).
J102: GENERATE CELLS OF TREE (1) FOR SUBPROCESS

(0). The subprocess named (0) is performed successively

Communications of the ACM 209

with the names of each of the cells of the tree (1) as input.
The order is that the cells of each sublist are generated be­
fore going on with the higher list. The subprocess signals
the generator to continue by setting H5+; it signals the
generator to stop by setting H5 . The generator ter­
minates with H5+ if it was not stopped by the subprocess,
and with H5 if it was stopped. Also, H5 is set + to the
subprocess if the input cell is the head of a sublist, and is
set otherwise.

Formally, EO is defined as:

EO: TEST IF SYMBOL (0) OCCURS IN TREE (1). Set
H5+ if (0) occurs; set H5 is it does not.

First, EO using J60 to move down the list examining each
symbol :
Name

EO
PQ Symb

J50

9-3

9-1
9-2

J60
70 9-1
12 HO
11 WO

J2
70 9-2
30 HO
12 HO

J132
70 9-3
12 HO

J131
70
12 HO
11 WO

EO
70 9-3

Link Comments

Push down WO and move the test symbol
to WO.
Locate the next cell of the tree
If no more cells, exit with H5
Input the symbol in the next list cell
Input the test symbol
Test if symbols are the same
If same, exit with H5+

J30 Discard list reference, pop up WO.
Input list symbol again
Test if local
If not local, continue down this list
Input list symbol again
Test if names data term

9-3 If data term, continue down this list
If not data term, names sublist
Input the test symbol
Apply this process to sublist

9-1 If found on sublist, exit with H5+

This same routine, using J102 to produce the cells of the
list structure :
Name PQ Symb Link Comments
EO J50 Push down WO and move the test symbol to

WO.
10 9-10 Input the name of the subprocess

J102 Generate cells of tree for subprocess 9-10.
J5 J30 Reverse final sign, pop up WO

9-10 70 J8 If head, discard without examining
52 HO Input symbol on list, destroying cell refer­

ence
11 WO Input test symbol

J2 J5 Test if identical; reverse sign

Note that the subprocess reverses the sign produced by
J2 for its signal to the generator. If the two symbols were
identical, the subprocess must stop the generator, and so
changes the + to . If the symbols were not identical,
the generator must continue and so the appropriate sig­
nal from the subprocess is +. The superroutine EO re­
verses the generator's signal since the subprocess would
stop the generator (with H5) only if it found the test
symbol.

A Final Remark
While the value of this system can be adequately as­

sessed only through its use, we feel that we have gained
considerably by this approach to symbol manipulation.

We have gained the flexibility to do many interesting
tasks, tasks that could not be done in any straightforward
way in more machine-oriented programming systems.
Both complex structures and complex processes can be
designated by a single symbol and manipulated as single
units. We have shaped the system to do easily those in­
formation processing tasks in which we are interested and
which we found difficult to specify in other commonly
used programming languages.

We have paid in operating speed and storage utiliza­
tion. This payment is quite severe for standard arith­
metic manipulations, for which conventional computers
were specifically designed. It becomes less severe as the
programs and data manipulations become more complex,
and elaborate housekeeping conventions of some sort are
required, no matter what the programming system.

Acknowledgment

In addition to the authors of this paper, E. A. Feigen-
baum (704 system), N. Saber of the University of Pitts­
burgh (650 system), G. H. Mealy of The RAND Corpora­
tion (formerly Bell Telephone Laboratories) (704 system),
and B. F. Green, Jr., and A. K. Wolf of Lincoln Labora­
tories (709 system) have participated in developing IPL-V.
The basic ideas stem from the work of A. Newell, J. C.
Shaw and H. A. Simon. C. Hensley of IBM participated
in the early design effort. The support of the Graduate
School of Industrial Administration, Carnegie Institute
of Technology, is gratefully acknowledged.

REFERENCES
1. MCCARTHY, J. Recursive functions of symbolic expressions

and their computation by machine (The LISP Programming
System), "Quarterly Progress Report No. 53, Research
Laboratory of Electronics, Massachusetts Institute of
Technology, Cambridge, Massachusetts, April 15, 1959.

2. GELERNTER, H. The FORTRAN List Processing Language.
IBM dittoed paper, 1959.

3. YNGVE, V. A programming language for mechanical transla­
tion, Mech. Translation 5 (July, 1958), 1.

4. NEWELL, A., F. M. TONGE, E. A. FEIGENBAUM, G. H.
MEALY, N. SABER, B. F. GREEN, JR., AND A. K. WOLF.
Information Processing Language V Manual, Section I:
The Elements of IPL Programming. The RAND Corpora­
tion Paper P-1897, 1960.

5. NEWELL, A., F. M. TONGE, E. A. FEIGENBAUM, G. H.
MEALY, N. SABER, B. F. GREEN, JR., AND A. K. WOLF.
Information Processing Language V Manual, Section II:
Programmers' Reference Manual, The RAND Corporation
Paper P-1918, I960.

6. NEWELL, A., AND H. A. SIMON. The Logic Theory Machine.
Transactions on Information Theory, Vol. IT-2, No. 3, IRE,
September, 1956.

7. NEWELL, A., AND J. C. SHAW. Programming the Logic Theory
Machine. Proceedings of the 1957 Western Joint Computer
Conference, IRE, February, 1957.

8. HENSLEY, C. B., A. NEWELL, AND F. M. TONGE. 650 IPL In­
formation Processing Language. C.I.P. Working Paper
No. 9, Carnegie Institute of Technology, April 30, 1958
(ditto).

9. NEWELL, A., J. C. SHAW, AND H. A. SIMON. Chess playing
programs and the problem of complexity. IBM J. Res.
Develop. 2 (Oct. 1958), 4.

210 Communications of the ACM

10. TONGE, F. M. Summary of a heuristic line balancing procedure. 13. NEWELL, A., J. C. SHAW, AND H. A. SIMON. Report on a

The RAND Corporation Paper P-1799, 1959. general problem-solving program. The RAND Corporation

11. FEIGENBAUM, E. A. An information processing theory of Paper P-1584, January, 1959.

verbal learning. The RAND Corporation Paper P-1817, 14. SHAW, J* C., A. NEWELL, H. A. SIMON, AND T. O. ELLIS.

October, 1959. A command structure for complex information processing.

12. FELDMAN, J. Analysis of predictive behavior in a two-choice Proceedings of the 1958 Western Joint Computer Conference,

situation. Unpublished doctoral dissertation, Carnegie IRE, May, 1958.

Institute of Technology, 1959.

Communications of the ACM 211

