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Abstract: The book presents the case that cognitive science should turn its attention to developing theories of human cognition that 
cover the full range of human perceptual, cognitive, and action phenomena. Cognitive science has now produced a massive number 
of high-quality regularities with many microtheories that reveal important mechanisms. The need for integration is pressing and will 
continue to increase. Equally important, cognitive science now has the theoretical concepts and tools to support serious attempts at 
unified theories. The argument is made entirely by presenting an exemplar unified theory of cognition both to show what a real 
unified theory would be like and to provide convincing evidence that such theories are feasible. The exemplar is SOAR, a cognitive 
architecture, which is realized as a software system. After a detailed discussion of the architecture and its properties, with its relation 
to the constraints on cognition in the real world and to existing ideas in cognitive science, SOAR is used as theory for a wide range of 
cognitive phenomena: immediate responses (stimulus-response compatibility and the Sternberg phenomena); discrete motor skills 
(transcription typing); memory and learning (episodic memory and the acquisition of skill through practice); problem solving 
(cryptarithmetic puzzles and syllogistic reasoning); language (sentence verification and taking instructions); and development 
(transitions in the balance beam task). The treatments vary in depth and adequacy, but they clearly reveal a single, highly specific, 
operational theory that works over the entire range of human cognition. SOAR is presented as an exemplar unified theory, not as the 
sole candidate. Cognitive science is not ready yet for a single theory   there must be multiple attempts. But cognitive science must 
begin to work toward such unified theories.
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The book begins by urging on psychology unified theories
of cognition:

Psychology has arrived at the possibility of unified 
theories of cognition - theories that gain their power by 
positing a single system of mechanisms that operate 
together to produce the full range of human cognition.

I do not say they are here, but they are within reach and
we should strive to attain them.
My goal is to convince the reader that unified theories 

of cognition are really worth striving for - now, as we 
move into the nineties. This cannot be done just by 
talking about it. An exemplar candidate is put forth to 
illustrate concretely what a unified theory of cognition 
means and why it should be a goal for cognitive science. 
The candidate is a theory (and system) called SOAR (Laird 
et al. 1987).

The book is the written version of the William James 
Lectures, delivered at Harvard University in spring 1987. 
Its stance is personal, reflecting the author's thirty years 
of research in cognitive science, although this precis will 
be unable to convey much of this flavor.

Chapter 1: Introduction

The first chapter describes the enterprise. It grounds the 
concerns for how cognitive science should proceed by 
reflecting on a well-known earlier paper entitled "You

can't play 20 questions with nature and win" (Newell 
1973a), which even then fretted about the gap between 
the empirical and theoretical progress in cognitive psy­ 
chology and called for more integrative theories. This 
book may be seen as a step toward answering that call.

The nature of theories. Chapter 1 discusses the notion 
of theory, to ground communication, building on some 
concrete examples: Fitts's Law, the power law of practice, 
and a theory of search in problem spaces. There is nothing 
special about a theory just because it deals with the 
human mind. It is important, however, that the theory 
make predictions, not the theorist. Theories are always 
approximate, often deliberately so, in order to deliver 
useful answers. Theories cumulate, being refined and 
reformulated, corrected and expanded. This view is 
Lakatosian, rather than Popperian: A science has invest­ 
ments in its theories and it is better to correct one than to 
discard it.

What are unified theories of cognition? Unified theories 
of cognition are single sets of mechanisms that cover all of 
cognition - problem solving, decision making, routine 
action, memory, learning, skill, perception, motor ac­ 
tivity, language, motivation, emotion, imagining, dream­ 
ing, daydreaming, and so on. Cognition must be taken 
broadly to include perception and motor activity. No 
unified theory of cognition will deal with the full list above
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all at once. What can be asked is a significant advance in 
its coverage.

As the title indicates, the book is focused on the plural, 
on many unified theories of cognition. This is not eclecti­ 
cism, but a recognition of the state of the art. Cognitive 
science does not have a unified theory yet. Many candi­ 
dates will arise, given the current practice of theorizing in 
cognitive science, where every scientist of note believes 
himself a major theorist. This point is important, since the 
book works with a single exemplar (SOAR). An exemplar is 
not the unified theory, and not necessarily even a 
candidate.

Why strive for unified theories, beyond the apple-pie 
desire of all sciences to be unified? The biggest reason is 
that a single system (the mind) produces behavior. There 
are other reasons, however. Cognitive theory is radically 
underdetermined by data, hence as many constraints as 
possible are needed and unification makes this possible. A 
unified theory is a vehicle of cumulation simply as a 
theoretically motivated repository. A unified theory in­ 
creases identifiability and allows theoretical constructs to 
be amortized over a wide base of phenomena.

The human mind can be viewed as the solution to a set 
of multiple constraints. Exhibiting flexible behavior, ex­ 
hibiting adaptive (goal-oriented) behavior, operating in 
real time, operating in terms of the four-dimensional 
environment of perceptual detail and a body with many 
degrees of freedom, operating in a world requiring im­ 
mense knowledge to characterize, using symbols and 
abstractions, using language, learning from experience 
about the environment, acquiring abilities through devel­ 
opment, operating autonomously but also within a social 
community, being self-aware with a sense of self are all 
essential functionalities of the mind. A system must 
satisfy these constraints to be mind-like. Humans also 
have known constraints on construction: a neural system, 
grown by embryological processes, and arising through 
evolution. How necessary these constructive processes 
are, so that only systems built that way can be minds, is 
currently an open question, but the major point is that the 
embodied minds we see satisfy all these constraints and 
any theory that ignores any appreciable number of them 
loses important sources of direction.

Is psychology ready for unified theories? Cognitive sci­ 
ence is well into its fourth decade; it is no longer a young 
child of a science. Indeed, behaviorism reached its own 
peak in fewer years. Cognitive science must take itself in 
hand and move forward. This exhortatory point is not 
made to suggest that cognitive science has made little 
progress. The strongest reason cognitive science should 
attempt unified theories now is that it has accumulated a 
vast and elegant body of regularities, highly robust and 
often parametric. This is especially the product of cogni­ 
tive psychology and psycholinguistics, which have devel­ 
oped an amazing experimental engine for discovering, 
exploring, and confirming new regularities. Other sci­ 
ences (e.g., biochemistry) have many more regularities, 
but they all fit within a theory that is integrated enough so 
that they never pose the challenge cognitive science now 
faces. If we do not begin integration now, we will find 
ourselves with an increasingly intractable task as the years 
go by while the engine of regularities works ever more 
industriously.

Though cognitive science does not yet have unified 
theories, there are harbingers: Many local theories make 
evident what cognitive mechanisms must be operating. 
But important attempts at unified theories have also been 
made. John Anderson's work on ACT* (Anderson 1983) 
must be taken to have pride of place among such at­ 
tempts. [See also Anderson: "Is Human Cognition Adap­ 
tive" BBS 14(3) 1991.] Other examples are the Model 
Human Processor (Card et al. 1983), the CAPS theory (Just 
& Carpenter 1987), and a collection of efforts in percep­ 
tual decisions (Ratcliff 1985).

The task of the book. The book endeavors to make the 
case for serious work on unified theories of cognition. It 
adopts a specific strategy, presenting an exemplar theory. 
Any other way seems to involve just talk and exhortation, 
guaranteed to have little effect. There are lots of risks to 
such a course - it will seem presumptuous and people will 
insist on subjecting the exemplar to a Popperian criticism 
to falsify it. But, on the positive side, one can hope the 
reader will follow a frequent plea of Warren McCulloch's, 
issued in similar circumstances: "Don't bite my finger, 
look where I'm pointing" (McCulloch 1965).

Chapter 2: Foundations of cognitive science

Chapter 2 works through some basic cognitive-science 
concepts to provide a foundation for the remainder of the 
book. This is cast as a review, although some novel points 
arise.

Knowledge systems. A particularly important way of 
describing the human is as a knowledge system. The 
human is viewed as having a body of knowledge and a set 
of goals, so that it takes actions in the environment that its 
knowledge indicates will attain its goals. The term knowl­ 
edge is used, as it is throughout computer science and AI, 
as belief (it can be wrong and often is), not as the philoso­ 
pher's justified true belief. Knowledge systems are one 
level in the hierarchy of systems that make up an intel­ 
ligent agent. For current computers, this is physical 
devices, continuous circuits, logic circuits, register- 
transfer systems, symbol (or programming) systems, and 
knowledge-level systems, all of which are simply alterna­ 
tive descriptions of the same physical system. 
Knowledge-level systems do not give a set of mechanisms 
that determine behavior, the hallmark of all other de­ 
scriptive levels. Rather, behavior is determined by a 
principle of rationality that knowledge is used in the 
service of the agent's goals. This is analogous to other 
teleological principles, such as Fermat's principle of least 
time for optics. Lower-level descriptions (the symbol 
level) describe how a knowledge-level system is realized 
in mechanism. The knowledge level is useful to capture 
the notion of a goal-oriented system and abstract away 
from all details of processing and representation. How­ 
ever, humans can only be described approximately as 
knowledge-level systems, and the departure can be 
striking.

Representation. Knowledge must be represented in or­ 
der to be used. The concept of representation is captured 
by the representation law. In an external world, entity (X) 
is transformed (T) into entity (Y). A representation of X-T-
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Y occurs in a medium within some system when an 
encoding from X to an entity in the medium (x) and an 
encoding of T into an internal transformation in the 
medium (t) produces an internal entity (t/), which can be 
decoded to the external world to correspond to Y. Actual 
representations are comprised of myriad instances of the 
representational law to cover all of the specific represen­ 
tational connections that actually occur.

Obtaining a representation for a given external situa­ 
tion seems to require discovering an internal medium 
with the appropriate natural transformations - this is the 
essence of analog representation. But as external situa­ 
tions become more diverse, complex, and abstract, dis­ 
covering adequate analogs becomes increasingly difficult, 
and at last impossible. A radically different solution exists 
(the great move), however, where the internal medium 
becomes freely manipulable with combinatorially many 
states and all the representational work is done by being 
able to compose internal transformations to satisfy repre­ 
sentational laws. Sufficiently composable schemes of 
transformations allow the formation of highly general 
representational systems that simultaneously satisfy 
many of the requisite representational laws.

Computation. Computational systems are exactly those 
that provide composability of transformations. The prime 
question about computational systems is what functions 
they can produce. The great move to composable trans­ 
formations for representations occurs precisely because 
most machines do not admit much variety in their select­ 
able transformations. This leads to the familiar, but in­ 
credible, results from computer science about universal 
computational systems that can attain the ultimate in 
flexibility. They can produce, by being instructed, all the 
functions that can be produced by any class of machines, 
however diverse. Thus, systems (universal computers) 
exist that provide the universal composability of transfor­ 
mations needed to produce systems that can universally 
represent whatever needs to be represented. This also 
shows that computation does not in itself represent. It 
provides the wherewithal for a system to represent if the 
appropriate representational laws are satisfied.

Symbols. The book takes the term symbol to refer to the 
parts of expressions that represent, for example, the "cat" 
in "The cat is on the mat." Symbols provide distal access to 
knowledge-bearing structures that are located physically 
elsewhere within the system. The requirement for distal 
access is a constraint on computing systems that arises 
from action always being physically local, coupled with 
only a finite amount of knowledge being encodable within 
a finite volume of space, coupled with the human mind's 
containing vast amounts of knowledge. Hence encoded 
knowledge must be spread out in space, whence it must 
be continually transported from where it is stored to 
where processing requires it (distribution does not gain­ 
say this constraint). Symbols are the means that accom­ 
plish the required distal access.

Symbol systems are universal computational systems 
with the role of symbols made manifest. Symbol systems 
consist of (1) a memory, containing independently modi­ 
fiable structures that contain symbols; (2) symbols (pat­ 
terns in the structures), providing the distal access to 
other structures; (3) operations, taking symbol structures

as input and producing symbol structures as output; and 
(4) interpretation processes, taking symbol structures as 
input and executing operations (the structures thereby 
representing these operations). There must be sufficient 
memory and symbols, complete composability of struc­ 
tures by the operators, and complete interpretability (any 
sequence of operations can be represented).

Within this cognitive-science framework, the great 
philosophical puzzle of intentionality (Brentano 1874) - 
how symbols can be about external things - has a straight­ 
forward solution. There are knowledge-level systems. 
The knowledge in them is about the external world. 
Symbol systems implement knowledge-level systems by 
using symbols, symbol structures, and so on. Therefore, 
these internal symbol structures are about (i.e., repre­ 
sent) the external world. They will only approximate such 
representation if the symbol system cannot realize the 
knowledge-level system adequately. Moreover, as the 
amount of knowledge and the diversity of goals increases, 
it is not possible, even theoretically, to realize faithfully 
the knowledge-level description of a system. How a given 
system comes to have its knowledge is a matter of the 
system's history, including the knowledge available to the 
processes that created the system. This appears to be a 
satisfactory resolution to the vexed question of 
intentionality.

Architectures. Unified theories of cognition will be for­ 
mulated as architectures. The architecture of the mind is 
a major source of commonality of behavior, both within an 
individual and between individuals. The architecture is 
the fixed structure that realizes a symbol system. In the 
computer hierarchy this is the description at the register- 
transfer level; in biological systems it is the level of neural 
structure that is organized to provide symbols.

The important question about the architecture con­ 
cerns what functions it provides. The architecture pro­ 
vides the boundary that separates structure from content, 
but all external tasks require both structure and content 
for their performance. So the division of function is what 
in the architecture enables the content to determine task 
performance. An obvious part of the answer is that the 
architecture provides the mechanisms for realizing a 
symbol system, but two additional types exist. One is the 
mechanisms to exploit implementation technology for 
power, memory, and reliability - such as caches and 
parallelism. The other is the mechanisms to obtain auton­ 
omy of operation - interrupts, dynamic-resource alloca­ 
tion, and protection. What is understood about the func­ 
tions of the architecture comes entirely from engineered 
computers. Additional functions are surely involved in 
natural architectures for autonomous, intelligent 
creatures.

Architectures exhibit an immense variety. Universal 
computation might seem to require highly specialized 
systems for its realization. On the contrary, any specific 
symbol system can be realized in an indefinite variety of 
architectures, and any specific architecture can be imple­ 
mented in an indefinite variety of technologies. Any 
technology that can implement one architecture can im­ 
plement an indefinite variety of them. All these systems 
must perform the key functions of symbol systems, but 
these can be realized in an indefinite variety of ways. This 
potential for variety means that strong inferences are not
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possible from the structure of engineered digital compu­ 
ters to how architectures are realized in the brain.

Intelligence. The concept of intelligence is crucial for 
cognitive science. Unfortunately, its long, variegated 
history produced a multiplicity of notions that bear a 
family resemblance but serve different masters - often 
designed to block any unified concept of intelligence. 
Still, cognitive science (and any unified theory of cogni­ 
tion) must conceptualize the potential of a given task to 
cause difficulty to a person who attempts it and the 
potential of a given person for solving difficult tasks. A 
system is intelligent to the degree that it approximates a 
knowledge-level system. This is what emerges from the 
concept in the second chapter. The distinction between 
knowledge and intelligence is key. If a system does not 
have some knowledge, failure to use it cannot be a failure 
of intelligence, which can work only with the knowledge 
the system has. If a system uses all the knowledge it has 
and nothing improves its performance, then there is no 
role left for intelligence. Thus intelligence is the ability to 
use the knowledge the system has in the service of the 
system's goals. This notion answers many requirements of 
a concept of intelligence, but it does not lead directly to a 
quantitative measure of intelligence, because knowledge 
per se is not quantifiable.

Search and problem spaces. What processing is required 
to obtain intelligent behavior? How does a system bring 
its knowledge to bear to attain its goals? For difficult tasks 
the general answer is that the system will search. Search 
is not just another cognitive process, occurring alongside 
other processes (the view prior to the cognitive revolu­ 
tion), but the fundamental process for attaining tasks that 
require intelligence. There are two fundamental reasons 
for this. First, a difficult task is one in which the system 
does not always know how to behave. But to make 
progress means to generate some behavior, and when an 
error arises and is detected, to attempt to correct it - a de 
facto search step. When errors occur within errors, com­ 
binatorial search emerges. Second, search provides a 
method of last resort. If no other methods are available to 
a system, it can always posit a space within which goal 
attainment lies, and then search that space. No matter 
how little it knows, it can always posit a bigger space, so 
this method of "generate and test" can always be 
formulated.

An intelligent system is always operating in a problem 
space, the space of the system's own creation that at­ 
tempts to restrict the arena of action to what is relevant. 
The agent is at some current state in this space with a set 
of available operators. The system searches within this 
space to reach a desired state that represents task attain­ 
ment. This search is combinatorial in character, just as all 
the experience in AI attests. Solving problems in problem 
spaces is not just an arbitrary search. Knowledge can be 
brought to bear to guide the search. Given enough 
knowledge, no search at all will occur: The appropriate 
operator will be selected at each state and the desired 
state will be reached forthwith. For general intelligent 
systems (and humans), life is a sequence of highly diverse 
tasks and the system has available a correspondingly large 
body of knowledge. Thus, besides the problem search in 
the problem space there is also at every current state a

knowledge search to discover what knowledge can be 
brought to bear to guide the search fruitfully. Knowledge 
search is a major activity in general intelligent systems.

Summary. The concepts in this chapter constitute the 
cumulated yield of thirty years of attempting to under­ 
stand the nature of computation, representation, and 
symbols. As cast here, all the concepts are not equally 
familiar. The knowledge level is still not common in 
theoretical treatments, although it permeates the prac­ 
tice of cognitive and computer sciences. The separation of 
representation from computation is not sufficiently ap­ 
preciated. The concept of intelligence may even seem 
strange. Despite these traces of novelty, this chapter 
should be like a refresher course to the practicing cogni­ 
tive scientist.

Chapter 3: Human cognitive architecture

The concepts of Chapter 2 apply to humans and compu­ 
ters alike, but a unified theory of human cognition will be 
expressed in a theory of human cognitive architecture. 
This chapter attempts to discover some generally applica­ 
ble constraints on the human architecture. Any proposed 
specific theory of the architecture would take such con­ 
straints as given and not as part of its specific architectural 
proposal. The chapter is necessarily speculative, since 
general arguments are notoriously fragile.

The human is a symbol system. This chapter argues that 
human minds are symbol systems. The strongest argu­ 
ment is from the flexibility and diversity of human re­ 
sponse functions (i.e., responses as a function of the 
environment) - the immense variety of ways that humans 
generate new response functions, from writing books to 
reading them, to creating recipes for cooking food, to 
going to school, to rapping, to dancing. Other organisms 
are also adaptive, and in fascinating ways, but the diver­ 
sity and range of human adaptations exceeds these by all 
bounds, indeed it is beyond enumeration. Focusing on 
diversity of response functions links up directly with the 
defining property of symbol systems as systems that admit 
the extreme of flexible response functions. Any system 
that is sufficiently flexible in its response functions must 
be a symbol system (i.e., capable of universal computa­ 
tion). Actually, the argument holds only asymptotically: 
No one has the foggiest notion what a class of systems 
might be like that showed human-scale flexibility but 
weren't universal. In addition, the simplicity of the func­ 
tional requirements for symbol systems makes it most 
unlikely that such systems exist. Thus, the human mind is 
taken to be a symbol system, establishing a high-level 
constraint on the human cognitive architecture. It must 
support a symbol system.

Systems levels and the time scale of human action. Intel­ 
ligent systems are built up in a hierarchy of system levels. 
Each system level consists of a more abstract way of 
describing the same physical system and its behavior, 
where the laws of behavior are a function only of the states 
as described at that level. In computers, engineers work 
hard to make the levels perfect, so that nothing from a 
lower level ever disturbs the given level. Nature is not so 
compulsive and levels are stronger or weaker depending
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on how complete is the sealing off from effects from lower 
levels. Higher system levels are spatially larger and run 
more slowly than do lower ones, because the higher levels 
are composed of multiple systems at the next lower level 
and their operation at a higher level comes from the 
operation of multiple interactive systems at the next 
lower level. Increase in size and slow-down in speed are 
geometric, although the factor between each level need 
not be constant. The concern in this chapter is with time, 
not space. In particular, the temporal factor for a minimal 
system level is about a factor of 10, that is, an order of 
magnitude. It could be somewhat less, but for conve­ 
nience we will take X10 as the minimal factor.

Ranging up the time scale of action for human systems, 
a new systems level appears just about every factor of 10, 
that is just about as soon as possible. Starting at 
organelles, they operate at time scales of about 100 jjisecs. 
Neurons are definitely a distinct system level from 
organelles, and they operate at about 1 msec, X10 slower. 
Neural circuits operate at about 10 msec, yet another X10 
slower. These three systems can be taken to constitute 
the biological band. Continuing upward reaches what can 
be called the cognitive band — the fastest deliberate acts 
(whether external or internal) take on the order of 100 
msec, genuine cognitive operations take 1 sec, and above 
that, at the order of 10 sec is a region with no standard 
name, but consisting of the small sequences of action that 
humans compose to accomplish smallish tasks. Above the 
cognitive band lies the rational band where humans carry 
out long sequences of actions directed toward their goals. 
In time scale this ranges from minutes to hours. No fixed 
characteristic systems level occurs here, because the 
organization of human activity now depends on the task 
being attempted and not on the inner mechanisms. 
Above the rational band is the social band, dominated by 
the distributed activities of multiple individuals. As the 
scale proceeds upward, the boundaries become less dis­ 
tinct, due to the flexibility of human cognition and the 
dominance of task organization. The time scale of human 
action reflects both a theoretical view about minimal 
systems levels and an empirical fact that human activities, 
when ranged along such a scale, provide distinguishable 
system levels about every minimal factor.

The real-time constraint on cognition. That neurons are 
~1 msec devices and elementary neural circuits are  10 
msec devices implies that human cognition is built up 
from ~10 msec components. But elementary cognitive 
behavior patently occurs by 1 sec. Fast arcs from stimulus 
to response occur five times faster ( 200 msec), but their 
simplicity and degree of preparation make them suspect 
as cognition. Yet creative discourse happens in about one 
second. These two limits create the real-time constraint 
on cognition: Only about 100 operation times are avail­ 
able to attain cognitive behavior out of neural-circuit 
technology. This constraint is extremely binding. It pro­ 
vides almost no time at all for the cognitive system to 
operate. The constraint may also be expressed as follows: 
Elementary but genuine cognition must be produced in 
just two system levels. Neural circuits (at ~10 msec) can 
be assembled into some sorts of macrocircuits (one factor 
of 10) and these macrocircuits must then be assembled to 
produce cognitive behavior (the second factor of 10). This 
constraint is familiar (Feldman & Ballard 1982; Fodor

1983) and has been deployed mostly to deny the rele­ 
vance of the algorithms developed in AI for vision and 
natural language processing because they take too long. 
But the constraint is much more binding than that and can 
be used to make a number of inferences about the human 
cognitive architecture.

The cognitive band. The human cognitive architecture 
must now be shaped to satisfy the real-time constraint. A 
particular style of argument is used to infer the system 
levels of the cognitive band. Functions are allocated to 
the lowest (fastest) possible system level by arguments 
that they could not be accomplished any faster, given 
other allocations (and starting at the bottom of ~10 msec). 
Whether they could be slower is undetermined. But as 
they stack up, the upper limit of cognitive behavior at ~1 
sec is reached, clamping the system from the top, thereby 
determining absolutely the location of cognitive functions 
at specific system levels.

The upshot is that the distal accessing associated with 
symbols must occur at the level of neural circuits, about 
10 msec. Above this, hence at  100 msec, comes the 
level of elementary deliberations, the fastest level at 
which (coded) knowledge can be assembled and be 
brought to bear on a choice between operations. This 
level marks the distinction in cognition between auto­ 
matic and controlled processing. What happens within an 
act of deliberation is automatic, and the level itself per­ 
mits control over action.

A level up from elementary deliberations brings simple 
operations, composed of a sequence of deliberations with 
their associated microactions, hence taking of the order of 
1 sec. This brings the system up against the real-time 
constraint. It must be able to generate genuine, if ele­ 
mentary, cognitive activity in the external world. Simple 
operations provide this: enough composition to permit a 
sequence of realizations of a situation and mental reac­ 
tions to that realization, to produce a response adaptive to 
the situation. Thus, the real-time constraint is met.

With time, cognition can be indefinitely composed, 
though a processing organization is required to control it. 
Above the level of simple operations is the first level of 
composed operations, at  10 sec, characterized by its 
operations being decomposed into sequences of simple 
operations. An important bridge has been crossed with 
this level, namely, simple operations are a fixed reper­ 
toire of actions and now the operations themselves can be 
composed.

The intendedly rational band. Composition is recursive 
and more complex operations can exist whose processing 
requires many sublevels of suboperations. What prevents 
the cognitive band from simply climbing into the sky? 
Cognition begins to succeed; as the seconds grow into 
minutes and hours, enough time exists for cognition to 
extract whatever knowledge exists and bring it to bear. 
The system can be described increasingly in knowledge- 
level terms and the internal cognitive mechanism need 
not be specified. This becomes the band of rational - goal 
and knowledge driven - behavior. It is better labeled 
intendedly rational behavior, since the shift toward the 
knowledge level takes hold only gradually and can never 
be complete.
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Summary. This chapter has produced some general con­ 
straints on the nature of the human cognitive architec­ 
ture. These must hold for all proposed architectures, 
becoming something an architecture satisfies rather than 
an architectural hypothesis per se. The gain to theorizing 
is substantial.

The different bands - biological, cognitive, and (in- 
tendedly) rational - correspond to different realms of law. 
The biological band is solidly the realm of natural law. The 
cognitive band, on the other hand, is the realm of repre­ 
sentational law and computational mechanisms. The com­ 
putational mechanisms are described by natural law, just 
as are biological mechanisms. But simultaneously, the 
computations are arranged to satisfy representational 
laws, so that the realm becomes about the external world. 
The rational band is the realm of reason. Causal mecha­ 
nisms have disappeared and what determines behavior is 
goals and knowledge (within the physical constraints of 
the environment).

Chapter 4: Symbolic processing for intelligence

The chapter deals with the symbolic processing required 
for intelligence and introduces the SOAR architecture. 
The shift from general considerations to full details of an 
architecture and its performance reflects the cardinal 
principle that the only way a cognitive theory predicts 
intelligence is if the system designed according to that 
theory exhibits intelligent behavior. Intelligence is a 
functional capability.

The central architecture for performance. In SOAR all 
tasks, both difficult and routine, are cast as problem 
spaces. All long-term memory is realized as a production 
system in which the productions form a recognition mem­ 
ory, the conditions providing the access path, and the 
actions providing the memory contents. Unlike standard 
production systems, there is no conflict resolution, all 
satisfied productions put their contents into working 
memory. Thus SOAR is entirely problem-space struc­ 
tured, and the recognition of which productions fire 
constitutes the knowledge search.

Control over behavior in the problem space is ex­ 
ercised by the decision cycle. First, information flows 
freely from the long-term memory into working memory. 
New elements may trigger other productions to fire, 
adding more elements, until all the knowledge imme­ 
diately available in long-term memory is retrieved. In­ 
cluded in this knowledge are preferences about which 
decisions are acceptable or better than others. Second, a 
decision procedure sorts through the preferences to de­ 
termine the next step to take in the problem space: what 
operator to select, whether the task is accomplished, 
whether the problem space is to be abandoned, and so on. 
The step is taken, which initiates the next decision cycle.

The decision cycle suffices if the knowledge retrieved is 
sufficient to indicate what step to take next. But if not, an 
impasse occurs   the decision procedure cannot deter­ 
mine how to proceed given the preferences available to it. 
Impasses occur frequently, whenever knowledge cannot 
be found just by immediate pattern recognition. The 
architecture then sets up a subgoal to acquire the missing 
knowledge. Thus the architecture creates its own goals

whenever it does not have what is needed to proceed. 
Within the subgoal, deciding what problem space to use 
and what operators to select occurs simply by continuing 
with decision cycles in the new context. Impasses can 
arise while working on a subgoal, giving rise to a hierarchy 
of goals and subgoals, in the manner familiar in complex 
intelligent systems.

Chunking. The organization of productions, problem 
spaces, decisions, and impasses produces performance, 
but it does not acquire new permanent knowledge. 
Chunking provides this function. This is a continuous, 
automatic, experience-based learning mechanism. It op­ 
erates when impasses are resolved, preserving the knowl­ 
edge that subgoals generated by creating productions that 
embody this knowledge. On later occasions this knowl­ 
edge can be retrieved immediately, rather than again 
reaching an impasse and requiring problem solving. 
Chunking is a process that converts goal-based problem 
solving into long-term memory. Chunks are active pro­ 
cesses, not declarative data structures to be interpreted. 
Chunking does not just reproduce past problem solving; 
it transfers to other analogous situations, and the transfer 
can be substantial. Chunking applies to all impasses, so 
learning can be of any kind whatever: what operators to 
select, how to implement an operator, how to create an 
operator, what test to use, what problem space to use, and 
so on. Chunking learns only what SOAR experiences (since 
it depends on the occurrence of impasses). Hence, what is 
learned depends not just on chunking but on SOAR'S 
problem solving.

The total cognitive system. SOAR'S cognitive system con­ 
sists of the performance apparatus plus chunking. The 
total cognitive system adds to this mechanisms for percep­ 
tion and motor behavior. The working memory operates 
as a common bus and temporary store for perception, 
central cognition, and motor behavior. Perceptual sys­ 
tems generate elements in working memory, which are 
matched by the productions in long-term memory. 
Central cognition generates elements in working mem­ 
ory, which are interpreted as commands by the motor 
system. Perceptual processing occurs in two stages: the 
(sensory) mechanisms that deliver elements to working 
memory and the analysis and elaboration of these percep­ 
tual elements by encoding productions. Likewise on the 
motor side, decoding productions in long-term memory 
elaborate motor commands and produce whatever form is 
needed by the motor systems, followed by motor system 
proper that makes movements. The sensory and motor 
modules are cognitively impenetrable, but the encoding 
and decoding processes interact with other knowledge in 
working memory.

SOAR as an intelligent system. Intelligence is only as 
intelligence does. The chapter describes the range of 
different tasks, types of learning, and modes of external 
interaction that SOAR has exhibited. Two large SOAR 
systems are described in some detail. One, Rl-SOAR 
(Rosenbloom et al. 1985), does the task of Rl, a classical 
expert system (McDermott 1982), which configures VAX 
systems. Rl-SOAR does the same task. It shows that a 
single system can mix general (knowledge-lean) problem 
solving and specialized (knowledge-intensive) operation
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as a function of what knowledge the system has available. 
R1-SOAR also shows that experiential learning can acquire 
the knowledge to move the system from knowledge-lean 
to knowledge-intensive operation. The second system, 
Designer-SOAR (Steier 1989), designs algorithms, a diffi­ 
cult intellectual task that contrasts with the expertise- 
based task of Rl. Designer-SOAR starts with a specifica­ 
tion of an algorithm and attempts to discover an algorithm 
in terms of general actions such as generate, test, store, 
and retrieve, using symbolic execution and execution on 
test cases. Designer-SOAR learns within the span of doing 
a single task (within-task transfer), and also between tasks 
of the same basic domain (across-task transfer), but it 
shows little transfer between tasks of different domains.

Mapping SOAR onto human cognition. SOAR is an archi­ 
tecture capable of intelligent action. Next, one must show 
that it is an architecture of human cognition. Given the 
results about the cognitive band, deriving from the real- 
time constraint, there is only one way to interpret SOAR as 
the human cognitive architecture. Moreover, since these 
results have established absolute, though approximate, 
time scales for cognitive operations, this interpretation 
leads to an order-of-magnitude absolute temporal identi­ 
fication of the operations in SOAR as a theory of cognition. 
SOAR productions correspond to the basic symbol access 
and retrieval of human long-term memory, hence they 
take  10 msec. The SOAR decision cycle corresponds to 
the level of elementary deliberation and hence takes 
~ 100 msec. The problem-space organization corresponds 
to higher organization of human cognition in terms of 
operations. Operators that do not reach an impasse corre­ 
spond to simple operations, hence they take ~1 sec. SOAR 
problem spaces within which only simple (nonimpassing) 
operators occur correspond to the first level of composed 
operations. This is the first level at which goal attainments 
occur and the first at which learning (impasse resolution) 
occurs. Problem spaces of any degree of complexity of 
their operators are possible and this provides the hier­ 
archy of operations that stretches up into the intendedly 
rational level.

Summary. This chapter has a strong AI flavor, because the 
emphasis is on how a system can function intelligently, 
which implies constructing operational systems. A prime 
prediction of a theory of cognition is that humans are 
intelligent and the only way to make that prediction is to 
demonstrate it operationally. The prediction is limited, 
however, by the degree to which the SOAR system itself is 
capable of intelligence. SOAR is state of the art AI, but it 
cannot deliver more than that.

Chapter 5: Immediate behavior

The book now turns to specific regions of human behavior 
to explore what a unified theory must provide. The first of 
these is behavior that occurs in a second or two in 
response to some evoking situation: immediate-response 
behavior. This includes most of the familiar chronometric 
experimentation that has played such a large role in 
creating modern cognitive psychology.

The scientific role of immediate-response data. When 
you're down close to the architecture, you can see it,

when you're far away you can't. The appropriate scale is 
temporal and behavior that takes 200 msec to about 3 sec 
sits close to the architecture. Thus, immediate-response 
performance is not just another area of behavior to illus­ 
trate a unified theory, it is the area that can give direct 
experimental evidence of the mechanisms of the architec­ 
ture. Furthermore, cognitive psychology has learned 
how to generate large numbers of regularities at this 
level, many of which are quantitative, parametric, and 
robust. Literally thousands of regularities have been 
discovered (the book estimates  3000). Tim Salthouse 
(1986) provides an illustration by his listing of 29 reg­ 
ularities for just the tiny area of transcription typing (this 
and several other such listings are given and discussed 
throughout the remainder of the chapter and book). All of 
these regularities are constraints against the nature of the 
architecture. They provide the diverse data against which 
to identify the architecture. Thus, it is appropriate to start 
the consideration of SOAR as a unified cognitive theory by 
looking at immediate behavior.

Methodological preliminaries. SOAR is a theory just like 
any other. It must explain and predict the regularities and 
relate them to each other; however, it need not neces­ 
sarily produce entirely novel predictions: An important 
role is to incorporate what we now understand about the 
mechanisms of cognition, as captured in the microtheo- 
ries of specific experimental paradigms. A scientist should 
be able to think in terms of the architecture and then 
explanations should flow naturally. SOAR should not be 
treated as a programming language. It is surely program­ 
mable - its behavior is determined by the content of its 
memory and stocking its memory with knowledge is 
required to get SOAR to behave. But SOAR is this way 
because humans are this way, hence programmability is 
central to the theory. That SOAR is not only programmable 
but universal in its computational capabilities does not 
mean it can explain anything. Important additional con­ 
straints block this popular but oversimple characteriza­ 
tion. First, SOAR must exhibit the correct time patterns of 
behavior and do so against a fixed set of temporal primi­ 
tives (the absolute times associated with the levels of the 
cognitive band). Second, it must exhibit the correct error 
patterns. Third, the knowledge in its memory - its 
program and data - must be learned. It cannot simply be 
placed there arbitrarily by the theorist, although as a 
matter of necessity it must be mostly posited by the 
theorist because the learning history is too obscure. 
Finally, SOAR as a theory is underspecified. The architec­ 
ture continues to evolve, and aspects of the current 
architecture (SOAR 4 in the book, now SOAR 5) are known 
to be wrong. In this respect, a unified theory is more like a 
Lakatosian research programme than a Popperian theory.

Functional analysis of immediate responses. The tasks of 
immediate responding comprise a family with many com­ 
mon characteristics, especially within the experimental 
paradigms used by cognitive psychologists. These com­ 
mon properties are extremely constraining, and make it 
possible to specialize SOAR to a theory that applies just to 
this class of tasks. Immediate responses occur in the base- 
level problem space, where the elements generated by 
perception arise and where commands are given to the 
motor system. This base-level space is also the one that
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