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There are several aspects of user-computer 
performance that system designers should 
systematically consider. This article proposes a simple 
model, the Keystroke-Level Model, for predicting one 
aspect of performance: the time it takes an expert user 
to perform a given task on a given computer system. 
The model is based on counting keystrokes and other 
low-level operations, including the user's mental 
preparations and the system's responses. Performance 
is coded in terms of these operations and operator 
times summed to give predictions. Heuristic rules are 
given for predicting where mental preparations occur. 
When tested against data on 10 different systems, the 
model's prediction error is 21 percent for individual 
tasks. An example is given to illustrate how the model 
can be used to produce parametric predictions and how 
sensitivity analysis can be used to redeem conclusions 
hi the face of uncertain assumptions. Finally, the model 
is compared to several simpler versions. The potential 
role for the Keystroke-Level Model hi system design is 
discussed.
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The design and evaluation of interactive computer 
systems should take into account the total performance 
of the combined user-computer system. Such an account 
would reflect the psychological characteristics of users 
and their interaction with the task and the computer. 
This rarely occurs in any systematic and explicit way. 
The causes of this failure may lie partly in attitudes 
toward the possibility of dealing successfully with psy­ 
chological factors, such as the belief that intuition, sub­ 
jective experience, and anecdote form the only possible 
bases for dealing with them. Whatever may be true of 
these more global issues, one major cause is the absence 
of good analysis tools for assessing combined user-com­ 
puter performance.

There exists quite a bit of research relevant to the 
area of user-computer performance, but most of it is 
preliminary in nature. Pew et al. [14], in a review of 40 
potentially relevant human-system performance models, 
conclude "that integrative models of human performance 
compatible with the requirements for representing com­ 
mand and control system performance do not exist at the 
present time." Ramsey and Atwood [15], after reviewing 
the human factors literature pertinent to computer sys­ 
tems, conclude that while there exists enough material to 
develop a qualitative "human factors design guide," 
there is insufficient material for a "quantitative reference 
handbook."

This paper presents one specific quantitative analysis 
tool: a simple model for the time it takes a user to 
perform a task with a given method on an interactive 
computer system. This model appears to us to be simple 
enough, accurate enough, and flexible enough to be 
applied in practical design and evaluation situations.

The model addresses only a single aspect of perform­ 
ance. To put this aspect into perspective, note that there 
are many different dimensions to the performance of a 
user-computer system:

 Time. How long does it take a user to accomplish a 
given set of tasks using the system?

 Errors. How many errors does a user make and how 
serious are they?

 Learning. How long does it take a novice user to 
learn how to use the system to do a given set of 
tasks?

 Functionality. What range of tasks can a user do in 
practice with the system?

 Recall How easy is it for a user to recall how to use 
the system on a task that he has not done for some 
time?

The authors of this report are listed in alphabetical order. A. 
Newell is a consultant to Xerox PARC. This paper is a revised version 
of [3]. For a view of the larger research program of which the study 
described in this paper is a part, see [5].

Communications
of
the ACM

July 1980 
Volume 23 
Number?



 Concentration. How many things does a user have 
to keep in mind while using the system?

 Fatigue. How tired do users get when they use the 
system for extended periods?

 Acceptability. How do users subjectively evaluate 
the system?

Next, note that there is no single kind of user. Users 
vary along many dimensions:

 Their extent of knowledge of the different tasks.
 Their knowledge of other systems, which may have 

positive or negative effects on the performance in 
the system of interest.

 Their motor skills on various input devices (e.g., 
typing speed).

 Their general technical ability in using systems (e.g., 
programmers vs. nonprogrammers).

 Their experience with the system, i.e., whether they 
are novice users, who know little about the system; 
casual users, who know a moderate amount about 
the system and use it at irregular intervals; or expert 
users, who know the system intimately and use it 
frequently.

Finally, note that there is no single kind of task. This 
is especially true in interactive systems, which are ex­ 
pressly built around a command language to permit a 
wide diversity of tasks to be accomplished. The number 
of qualitatively different tasks performable by a modern 
text editor, for instance, runs to the hundreds.

All aspects of performance, all types of users, and all 
kinds of tasks are important. However, no uniform ap­ 
proach to modeling the entire range of factors in a simple 
way appears possible at this time. Thus, of necessity, the 
model to be presented is specific to one aspect of the 
total user-computer system: How long it takes expert 
users to perform routine tasks.

The model we present here is simple, yet effective. 
The central idea behind the model is that the time for an 
expert to do a task on an interactive system is determined 
by the time it takes to do the keystrokes. Therefore, just 
write down the method for the task, count the number 
of keystrokes required, and multiply by the time per 
keystroke to get the total time. This idea is a little too 
simplistic. Operations other than keystrokes must be 
added to the model. Since these other operations are at 
about the same level (time grain) as keystrokes, we dub 
it the "Keystroke-Level Model." (The only other similar 
proposal we know of is that of Embley et al. [9], which 
we discuss in Section 6.1.)

The structure of this paper is as follows: Section 2 
formulates the time prediction problem more precisely. 
Section 3 lays out the Keystroke-Level Model. Section 4 
provides some empirical validation for the model. Sec­ 
tion 5 illustrates how the model can be applied in prac­ 
tice. And Section 6 analyzes some simpler versions of the 
model.

2. The Time Prediction Problem

The prediction problem that we will address is as 
follows:

Given: A task (possibly involving several subtasks); 
the command language of a system; the motor skill 
parameters of the user, the response time parameters of 
the system; the method used for the task.

Predict: The time an expert user will take to execute 
the task using the system, providing he uses the method 
without error.
Several aspects of this formulation need explication, 
especially the stipulations about execution, methods, and 
the absence of error.

2.1 Unit Tasks and Execution Time
Given a large task, such as editing a large document, 

a user will break it into a series of small, cognitively 
manageable, quasi-independent tasks, which we call unit 
tasks [4; 5, ch. 11]. The task and the interactive system 
influence the structure of these unit tasks, but unit tasks 
appear to owe their existence primarily to the memory 
limits on human cognition. The importance of unit tasks 
for our analysis is that they permit the time to do a large 
task to be decomposed into the sum of the times to do its 
constituent unit tasks. Note that not all tasks have a unit- 
task substructure. For example, inputting an entire man­ 
uscript by typing permits a continuous throughput or­ 
ganization.

For our purposes here, a unit task has two parts: (1) 
acquisition of the task and (2) execution of the task 
acquired. During acquisition the user builds a mental 
representation of the task, and during execution the user 
calls on the system facilities to accomplish the task. The 
total time to do a unit task is the sum of the time for 
these two parts:

Ttask = Ttacquire + Ttexecute

The acquisition time for a unit task depends on the 
characteristics of the larger task situation in which it 
occurs. In a manuscript interpretation situation, in which 
unit tasks are read from a marked-up page or from 
written instructions, it takes about 2 to 3 seconds to 
acquire each unit task. In a routine design situation, in 
which unit tasks are generated in the user's mind, it takes 
about 5 to 30 seconds to acquire each unit task. In a 
creative composition situation, it can take even longer.

The execution of a unit task involves calling the 
appropriate system commands. This rarely takes over 20 
seconds (assuming the system has a reasonably efficient 
command syntax). If a task requires a longer execution 
time, the user will likely break it into smaller unit tasks.

We have formulated the prediction problem to pre­ 
dict only the execution time of unit tasks, not the acqui­ 
sition time. This is the part of the task over which the 
system designer has most direct control (i.e., by manip­ 
ulating the system's command language), so its predic­ 
tion suffices for many practical purposes. Task acquisi-
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tion times are highly variable, except in special situations 
(such as the manuscript interpretation situation); and we 
can say little yet about predicting them.

Two important assumptions underlie our treatment 
of execution time. First, execution time is the same no 
matter how a task is acquired. Second, acquisition time 
and execution time are independent (e.g., reducing exe­ 
cution time by making the command language more 
efficient does not affect acquisition time). These assump­ 
tions are no doubt false at a fine level of detail, but the 
error they produce is probably well below the threshold 
of concern in practical work.

2.2 Methods
A method is a sequence of system commands for 

executing a unit task that forms a well-integrated ("com­ 
piled") segment of a user's behavior. It is characteristic 
of an expert user that he has one or more methods for 
each type of unit task that he encounters and that he can 
quickly (in about a second) choose the appropriate 
method in any instance. This is what makes expert user 
behavior routine, as opposed to novice user behavior, 
which is distinctly nonroutine.

Methods can be specified at several levels. A user 
actually knows a method at all its levels, from a general 
system-independent functional specification, down 
through the commands in the language of the computer 
system, to the keystrokes and device manipulations that 
actually communicate the method to the system. Models 
can deal with methods defined at any of these levels [4, 
11]. The Keystroke-Level Model adopts one specific 
level the keystroke level to formalize the notion of a 
method, leaving all the other levels to be treated infor­ 
mally.

Many methods that achieve a given task can exist. In 
general such methods bear no systematic relationship to 
each other (except that of attaining the same end). Each 
can take a different amount of time to execute, and the 
differences can be large. Thus, in general, if the method 
is unknown, reasonable predictions of execution time are 
not possible. For this reason, the proper prediction prob­ 
lem is the one posed at the beginning of the section: 
Predict the time given the method.

23 Error-Free Execution
The Keystroke-Level Model assumes that the user 

faithfully executes the given method. The user deviates 
from a postulated method when he makes an error. Up 
to a fourth of an expert's time can be spent correcting 
errors, though users vary in their trade-off between speed 
and errors. We are simply ignoring the tasks containing 
errors and only predicting the error-free tasks, for we do 
not know how to predict where and how often errors 
occur. But, if the method for correcting an error is given, 
the model can be used to predict how long it will take to 
make the correction. Indeed, experts handle most errors 
in routine ways, i.e., according to fixed, available meth­ 
ods.
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3. The Keystroke-Level Model

We lay out the primitive operators for the Keystroke- 
Level Model and give a set of heuristics for coding 
methods in terms of these operators. Then we present a 
few examples of method encoding.

3.1 Operators
The Keystroke-Level Model asserts that the execu­ 

tion part of a task can be described in terms of four 
different physical-motor operators: K (keystroking), P 
(pointing), H (homing), and D (drawing), and one mental 
operator, M, by the user, plus a response operator, R, by 
the system. These operators are listed in Figure 1. Exe­ 
cution time is simply the sum of the time for each of the 
operators.

Texecute =TK +TP+TH+TD +TM+ TR. (i)
Most operators are assumed to take a constant time for 
each occurrence, e.g., TK = fixfr, where I\K is the number 
of keystrokes and tx is the time per keystroke. (Operators 
D and R are treated somewhat differently.)

The most frequently used operator is K, which rep­ 
resents a keystroke or a button push (on a typewriter 
keyboard or any other button device). K refers to keys, 
not characters (e.g., hitting the SHIFT key counts as a 
separate K). The average time for K, fc, will be taken to 
be the standard typing rate, as determined by standard 
one-minute typing tests. This is an approximation in two 
respects. First, keying time is different for different keys 
and key devices. Second, the time for immediately caught 
typing errors (involving BACKSPACE and rekeying) should 
be folded into IK. Thus, the preferred way to calculate IK 
from a typing test is to divide the total time taken in the 
test by the total number of nonerror keystrokes, which 
gives the effective keying time. We accept both these 
approximations in the interest of simplicity.

Users can differ in their typing rates by as much as 
a factor of 15. The range of typing speeds is given in 
Figure 1. Given a population of users, an appropriate fc 
can be selected from this range. If a user population has 
users with large IK differences, then the population 
should be partitioned and analyzed separately, since the 
different classes of users will be likely to use different 
methods.

The operator P represents pointing to a target on a 
display with a "mouse," a wheeled device that is rolled 
around on a table to guide the display's cursor. Pointing 
time for the mouse varies as a function of the distance to 
the target, J, and the size of the target, s, according to 
Fitts's Law [2]:

tP = .8 + .1 logz (d/s + .5) sec.

The fastest time according to this equation is .8 sec, and 
the longest likely time (d/s = 128) is 1.5 sec. Again, to 
keep the model simple, we will use a constant time of 1.1 
sec for tp. Often, pointing with the mouse is followed by 
pressing one of the buttons on the mouse. This key press 
is not part of P; it is represented by a K following the P.
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Fig. 1. The Operators of the Keystroke Model.

Operator Description and Remarks Time (sec)

H

M 

R(l)

Keystroke or button press. 
Pressing the SHIFT or CONTROL key counts as a 
separate K operation. Time varies with the typing skill of 
the user; the following shows the range of typical values:

Best typist (135 wpm)
Good typist (90 wpm)
Average skilled typist (55 wpm)
Average non-secretary typist (40 wpm)
Typing random letters
Typing complex codes
Worst typist (unfamiliar with keyboard)

Pointing to a target on a display with a mouse. 
The time to point varies with distance and target size according 
to Fitts's Law. The time ranges from .8 to 1.5 sec, 
with 1.1 being an average time. This operator does not 
include the button press that often follows (.2 sec).

Homing the hand(s) on the keyboard or other device.

Drawing (manually) AO straight-line segments
having a total length of /D cm. 
This is a very restricted operator; it assumes that drawing is 
done with the mouse on a system that constrains all lines to 
fan on a square .56 cm grid. Users vary in their drawing skill; 
the time given is an average value.

Mentally preparing for executing physical actions. 

Response of f sec by the system.
This takes different times for different commands in the system. 
These times must be input to the model. The response time 
counts only if it causes the user to wait

.08« 

.12a 

.20* 

.28b 

.50« 

.75* 

1.20*

1.10C

.40d

.9nD+ .16/De

1.35f

b This is the average typing rate of the nonsecretary subjects in the experiment described in 
Section 4.1.

c See [2].
" See [2, 4].
* The drawing time function and the coefficients were derived from least squares fits on the 

drawing test data from the four MARKUP subjects. See Sections 3. 1 and 4. 1.
'The time for M was estimated from the data from experiment described in Section 4.1. See 

Section 4.2.1.

The mouse is an optimal pointing device as far as time 
is concerned; but the tP is about the same for other 
analog pointing devices, such as lightpens and some 
joysticks [2].

When there are different physical devices for the user 
to operate, he will move his hands between them as 
needed. This hand movement, including the fine posi­ 
tioning adjustment of the hand on the device, is repre­ 
sented by the H ("homing") operator. From previous 
studies [2, 4], we assume a constant tn of .4 sec for 
movement between any two devices.

The D operator represents manually drawing a set of 
straight-line segments using the mouse. D takes two 
parameters, the number of segments (/ID) and the total 
length of all segments (/D). to(n/>, ID) is a linear function 
of these two parameters. The coefficients of this function 
are different for different users; Figure 1 gives an average 
value for them. Note that this is a very specialized 
operator. Not only is it restricted to the mouse, but also 
it assumes that the drawing system constrains the cursor 
to lie on a .56 cm grid. This allows the user to draw
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straight lines fairly easily, but we would expect //? to be 
different for different grid sizes. We make no claim for 
the generality of these times or for the form of the 
drawing time function. However, inclusion of one in­ 
stance of a drawing operator serves to indicate the wide 
scope of the model.

The user spends some time "mentally preparing" to 
execute many of the physical operators just described;, 
e.g., he decides which command to call or whether to 
terminate an argument string. These mental preparations 
are represented by the M operator, which we estimate to 
take 1.35 sec on the average (see Section 4.2.1). The use 
of a single mental operator is, again, a deliberate simpli­ 
fication.

Finally, the Keystroke-Level Model represents the 
system response time by the R operator. This operator 
has one parameter, /, which is just the response time in 
seconds. Response times are different for different sys­ 
tems, for different commands within a system, and for 
different contexts of a given command. The Keystroke- 
Level Model does not embody a theory of system re-
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sponse time. The response times must be input to the 
model by giving specific values for the parameter /, 
which is a placeholder for these input times.

The R times are counted only when they require the 
user to wait for the system. For example, a system re­ 
sponse counts as an R when it is followed by a K and the 
system does not allow type-ahead, and the user must 
wait until the response is complete. However, when an 
M operation follows a response, the response time is not 
counted unless it is over 1.35 sec, since the expert user 
can completely overlap the M operation with the re­ 
sponse time. Response times can also overlap with task 
acquisition. When a response is counted as an R, only 
the nonoverlapping portion of the response time is given 
as the parameter to R.

3.2 Encoding Methods
Methods are represented as sequences of Keystroke- 

Level operations. We will introduce the notation with 
examples. Suppose that there is a command named PUT 
in some system and that the method for calling it is to 
type its name followed by the RETURN key. This method 
is coded by simply listing the operations in sequence: 
MK[p] K[u] K[T] K[RETURN], which we abbreviate as M 
4K[p u T RETURN]. In this notation we allow descriptive 
notes (such as key names) in square brackets. If, on the 
other hand, the method to call the PUT command is to 
point to its name in a menu and press the RED mouse 
button, we have: H[mouse] MP[pux] K[RED] H[keyboard].

As another example, consider the text editing task 
(called Tl) of replacing a 5-letter word with another 5- 
letter word, where this replacement takes place one line 
below the previous modification. The method for exe­ 
cuting task Tl in a line-oriented editor called POET (see 
Section 4) can be described as follows:

Method for Task Tl-Poet
Jump to next line 
Call Substitute command 
Specify new 5-digit word 
Terminate argument 
Specify old 5-digit word 
Terminate argument 
Terminate command

MK[LINEFEED]
MK[S]
5K[word]
MKfRETURN]
5K[word]
MK[RETURN]
K[RETURN]

Using the operator times from Figure 1 and assuming 
the user is an average skilled typist (i.e., fc = .2 sec), we 
can predict the time it will take to execute this method:
Texecute = 4tM + l5tK = 8.4 sec.

This method can be compared to the method for 
executing task Tl on another editor, a display-based 
system called DISPED (see Section 4):

Method for Task Tl-Disped:
Reach for mouse 
Point to word 
Select word 
Home on keyboard 
Call Replace command 
Type new 5-digit word 
Terminate type-in

H[mouse]
Pfword]
K[YELLOW]
Hfkeyboard]
MK[R]
5K[word]
MK[ESC]

execute 2tH 6.2 sec.

Fig. 2. Heuristic rules for placing the M operations.

Begin with a method encoding that includes all physical operations and 
response operations. Use Rule 0 to place candidate Ms, and then cycle 
through Rules 1 to 4 for each M to see whether it should be deleted.

Rule 0. Insert Ms in front of all Ks that are not part of argument 
strings proper (e.g., text strings or numbers). Place Ms in front 
of all Ps that select commands (not arguments).

Rule 1. If an operator following an M is fully anticipated in the operator 
just previous to M, then delete the M (e.g., PMK -» PK).

Rule 2. If a string of MKs belong to a cognitive unit (e.g., the name of 
a command), then delete all Ms but the first

Rule 3. If a K is a redundant terminator (e.g., the terminator of a
command immediately following the terminator of its
argument), then delete the M in front of the K.

Rule 4. If a K terminates a constant string (e.g., a command name), 
then delete the M in front of the K; but if the K terminates a 
variable string (e.g., an argument string), then keep the M.

Thus, we predict that the task will take about two seconds 
longer on POET than on DISPED. The accuracy of such 
predictions is discussed in Section 4.

The methods above are simple unconditional se­ 
quences. More complex or more general tasks are likely 
to have multiple methods and/or conditionalities within 
methods for accomplishing different versions of the task. 
For example, in a DisPED-like system the user often has 
to "scroll" the text on the display before being able to 
point to the desired target. We can represent this method 
as follows:

.4(MP[SCROLL-ICON] K[RED] R(.5)) P[word] K[YELLOW].

Here we assume a specific situation where the average 
number of scroll jumps per selection is .4 and that the 
average system response time for a scroll jump is .5 sec. 
From this we can predict the average selection time:

+ \AtK + lAtP + .4(.5) = 2.6 sec.

For more complex contingencies, we can put the opera­ 
tions on a flowchart and label the paths with their 
frequencies.

When there are alternative methods for doing a 
specific task in a given system, we have found [4] that 
expert users will, in general, use the most efficient 
method, i.e., the method taking the least time. Thus, in 
making predictions we can use the model to compute the 
times for the alternative methods and predict that the 
fastest method will be used. (If the alternatives take 
about the same time, it does not matter which method 
we predict.) The optimality assumption holds, of course, 
only if the users are familiar with the alternatives, which 
is usually true of experts (excepting the more esoteric 
alternatives). This assumption is helped by the tendency 
of optimal methods to be the simplest.

33 Heuristics for the M Operator
M operations represent acts of mental preparation 

for applying subsequent physical operations. Their oc­ 
currence does not follow directly from the method as
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defined by the command language of the system, bui 
from the specific knowledge and skill of the user. The 
Keystroke-Level Model provides a set of rules (Figure 2) 
for placing M's in the method encodings. These rules 
embody psychological assumptions about the user and 
are necessarily heuristic, especially given the simplicity, 
of the model. They should be viewed simply as guide­ 
lines.

The rules in Figure 2 define a procedure. The pro­ 
cedure begins with an encoding that contains only the 
physical operations (K, P, H, and D). First, all candidate 
M's are inserted into the encoding according to Rule 0, 
which is a heuristic for identifying all possible decision 
points in the method. Rules 1 to 4 are then applied to 
each candidate M to see if it should be deleted.

There is a single psychological principle behind all 
the deletion heuristics. Methods are composed of highly 
integrated submethods ("subroutines") that show up 
over and over again in different methods. We will call 
them method chunks or just chunks, a term common in 
cognitive psychology [17]. The user cognitively organizes 
his methods according to chunks, which usually reflect 
syntactic constituents of the system's command language. 
Hence, the user mentally prepares for the next chunk, 
not just the next operation. It follows that in executing 
methods the user is more likely to pause between chunks 
than within chunks. The rules attempt to identify method 
chunks.

Rule 1 asserts that when an operation is fully antici­ 
pated in another operation, they belong in a chunk. A 
common example is pointing with the mouse and then 
pressing the mouse button to indicate a selection. The 
button press is fully anticipated during the pointing 
operation, and there is no pause between them (i.e., 
PMK becomes PK according to Rule 1). This anticipa­ 
tion holds even if the selection indication is done on 
another device (e.g., the keyboard or a foot pedal). Rule 
2 asserts that an obvious syntactic unit, such as a com­ 
mand name, constitutes a chunk when it must be typed 
out in full.

The last two heuristics deal with syntactic termina­ 
tors. Rule 3 asserts that the user will bundle up redundant 
terminators into a single chunk. For example, in the 
POET example in Section 3.2, a RETURN is required to 
terminate the second argument and then another RETURN 
to terminate the command; but any user will quickly 
learn to simply hit a double RETURN after the second 
argument (i.e., MKMK becomes MKK according to Rule 
3). Rule 4 asserts that a terminator of a constant-string 
chunk will be assimilated to that chunk. The most com­ 
mon example of this is in systems that require a termi­ 
nator, such as RETURN, after each command name; the 
user learns to immediately follow the command name 
with RETURN.

It is clear that these heuristics do not capture the 
notion of method chunks precisely, but are only rough 
approximations. Further, their application is ambiguous 
in many situations, e.g., whether something is "fully
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anticipated" or is a "cognitive unit." What can we do 
about this ambiguity? Better general heuristics will help 
in reducing this ambiguity. However, some of the vari­ 
ability in what are chunks stems from a corresponding 
variability in expertness. Individuals differ widely in 
their behavior, their categorization into novice, casual, 
and expert users provides only a crude separation and 
leaves wide variation within each category. One way that 
experts differ is in what chunks they have (see [6] for 
related evidence). Thus, some of the difficulties in plac­ 
ing M's is unavoidable because not enough is known (or 
can be known in practical work) about the experts 
involved. Part of the variability in expertness can be 
represented by the Keystroke-Level Model as encodings 
with different placements of M operations.

4. Empirical Validation of the Keystroke-Level Model

To determine how well the Keystroke-Level Model 
actually predicts performance times, we ran an experi­ 
ment in which calculations from the model were com­ 
pared against measured times for a number of different 
tasks, systems, and users.

4.1 Description of the Experiment
A total of 1,280 user-system-task interactions were 

observed, comprised of various combinations of 28 users, 
10 systems, and 14 tasks.

Systems. The systems were all typical application 
programs available locally (at Xerox PARC) and widely 
used by both technical and nontechnical users. Some of 
the systems are also widely used nationally. Three of the 
systems were text editors, three were graphics editors, 
and five were executive subsystems. The systems are 
briefly described in Figure 3.

Together, these systems display a considerable diver­ 
sity of user interface techniques. For example, POET, one 
of the text editors, is a typical line-oriented system, which 
uses first-letter mnemonics to specify commands and 
search strings to locate lines. In contrast, DRAW, one of 
the graphics systems, displays a menu of graphic icons 
on the CRT display to represent the commands, which 
the user selects by pointing with the mouse.

Tasks. The 14 tasks performed by the users (see 
Figure 4) were also diverse, but typical. Users of the 
editing systems were given tasks ranging from a simple 
word substitution to the more difficult task of moving a 
sentence from the middle to the end of a paragraph. 
Users of the graphics systems were given tasks such as 
adding a box to a diagram or deleting a box (but keeping 
a line which overlapped it). Users of the executive sub­ 
systems were given tasks such as transferring a file 
between computers or examining part of a file directory.

Task-system methods. In all there were 32 task-system 
combinations: 4x3 = 12 for the text editors, 5x3 = 15 
for the graphics systems, and one task each for the five
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executive subsystems. For each task-system combination, 
the most efficient "natural" method was determined (by 
consulting experts) and then coded in Keystroke-Level 
Model operations. For example, the methods for Tl- 
POET and T1-DISPED are given in Section 3.2. (A complete 
listing of all the methods can be found in [3].)

Experimental design. The basic design of the experi­ 
ment was to have, ten versions of each task on each 
system done by four different users, giving 40 observed 
instances per task-system. No user was observed on more 
than one system to avoid transfer effects. Four tasks were 
observed for each of the text-editing systems, five tasks 
for each of the graphics systems, and one task for the 
executive subsystems.

Subjects. There were in all 28 different users (some 
technical, some secretarial): 12 for the editing systems, 
12 for the graphics systems, and 4 for the executive 
subsystems. All were experts in that they had used the 
systems for months in their regular work and had used 
them recently.

Experimental procedure. Each user was first given 
five one-minute typing tests to determine his keystroke 
time, tK. In addition, users of MARKUP (the only system 
requiring manual drawing) were given a series of draw­ 
ing tasks to determine the parameters of their drawing 
rate (as discussed in Section 3.1).

After the preliminary tests, the user was given a small 
number of practice problems of the sort to be tested and 
was told the method to use (see above). In most cases, 
the methods presented were those users claimed they 
would have used anyway; in other cases, the method was 
easily adopted. Users practiced tasks until they were 
judged to be at ease with using the correct method; this 
was usually accomplished in three or four practice trials 
on each task type.

After practicing, the user proceeded to the main part 
of the experiment. The user was given a notebook con­ 
taining several manuscript pages with the tasks to be 
done marked in red ink. Text-editing and graphics tasks 
appeared in randomized order. Executive subsystem 
tasks were always in the order Til, T12, T13, T14. All 
ten instances of task T10 were done in succession.

Each experimental session, lasting approximately 40 
minutes, was videotaped and the user's keystrokes re­ 
corded automatically. Time stamps on the videotaped 
record and on each keystroke allowed protocols to be 
constructed in which the time of each event was known 
to within .033 sec. These protocols are the basic data 
from which the results below are derived.

4.2 Results of the Experiment
Each task instance in the protocols was divided into 

acquisition time and execution time (see Section 2.1) 
according to the following definitions. Acquisition time 
began when the user first looked over to the manuscript 
to get instructions for the next task and ended when the 
user started to perform the first operator of the method. 
Execution time began at that point and ended when the
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Fig. 3. Systems measured in the experiment.

System Description

Text Editors

POET*

SOS6

DISPED* 

Graphics Systems

MARKUP6

DRAW4 

SIL«

Executive Subsystems

LOGIN"
FTP" 

CHAT8

DIR* 

DELVER*

Line-oriented with relative Hne numbers. 

Line-oriented with "sticky" line-numbers. 

Display-oriented; full-page; uses mouse for pointing.

Uses mouse to draw and erase lines on a bitmap 
display; commands selected from a hidden menu, 
which must be re-displayed each time.

Lines defined by pointing with mouse to end points; 
commands selected with mouse from a menu.

Lines defined by pointing with mouse to end points; 
boxes defined by pointing to opposite vertices; 
commands selected by combinations of mouse 
buttons.

TENEX command for logging in.

Program for transferring fifes between computers.

Program for establishing a "teletype" connection 
between two computers.

TENEX command for printing a file directory; has a 
subcommand mode.

TENEX command for deleting old versions of a We.

* POET is a dialect of the QED editor [7].
"See [16].
c See [13, ch. 17].
d See [12].
' Experimental systems local to Xerox PARC, designed and implemented 

by many individuals, including: Roger Bates, Patrick Baudelaire, David Boggs, 
Butler Lampson, Charles Simonvi, Robert SprouU, Edward Taft, and Chuck 
Thacker.

Fig. 4. Tasks for the experiment.

Editing Tasks (used for POET, SOS. DISPED)

T1. Replace one 5-letter word with another (one line from previous task).

T2. Add a 5th character to a 4-letter word (one line from previous task).
T3. Delete a line, aH on one line (eight lines from previous task).

T4. Move a 50-character sentence, spread over two lines, to the end of its 
paragraph (eight Hnes from previous task).

Graphics Tasks (used for MARKUP. DRAW. SIL)

T5. Add a box to a diagram.

T6. Add a 5-character label to a box.

T7. Reconnect a 2-stroke line to a different box.

T8. Delete a box, but keep an overlapped Hne.
T9. Copy a box.

Executive Tasks

T10. Phone computer and log in (4 char name, 6 char password).
T11. Transfer a file to another computer, renaming it.
T12. Connect to another computer.

T13. Display a subset of the file directory with file lengths.
T14. Delete old versions of a file.
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user looked over to the notebook for the next task. (On 
the protocol the first measured time at the beginning of 
an execution is always the end of the first K of the 
method. Thus, operationally, the beginning of execution 
time was estimated by subtracting from this first K time 
the operator times for this first K plus all the operators 
that preceded it.)

Those tasks on which there were significant errors 
(i.e., other than typing errors) or in which the user did 
not use the prescribed method were excluded from fur­ 
ther consideration. After this exclusion, 855 (69 percent) 
of the task instances remained as observations to be 
matched against the predictions. No analysis was made 
of the excluded tasks.

The resulting observed times for task acquisition and 
execution were stable over repetition. There was no 
statistical evidence for task times decreasing (learning) 
or increasing (fatigue) with repetition.

4.2.1 Calculation of execution time. Execution time 
was calculated using the method analysis for each task- 
system combination together with estimates of the times 
required for each operator. All times, except for the 
mental preparation time, were taken from sources out­ 
side of the experiment. Pointing time, tp, and homing 
time, tH, were taken from Figure 1. Typing time, IK, and 
drawing time, to(no, ID), were estimated from the typing 
and drawing tests by averaging the times of the four 
users involved in each task-system. System response 
time, TR, for each task-system was estimated from in­ 
dependent measurements of the response times for the 
various commands required in each method. For task 
T10, logging in to a computer, a telephone button-press 
was assumed to take time /*. Moving the telephone 
receiver to the computer terminal modem was estimated 
to take .7 sec, using the MTM system of times for 
industrial operations [10].

Mental preparation time, t\t, was estimated from the 
experimental data itself. First, the total mental time for 
each method was estimated by removing the predicted 
time for all physical operations from the observed exe­ 
cution time. Then tu was estimated by a least-squares fit 
of the estimated mental times as a function of the pre­ 
dicted number of M operations. The result was tn « 1.35 
sec (R 2 = .84, standard error of estimate = .11 sec, 
standard error about the regression line = 2.48 sec). A 
rough estimate of the SD of t M is 1.1 sec, which indicates 
that the M operator has the characteristic variability of 
mental operators [4].

Execution times for each task-system combination 
were calculated by formula (1) in Section 3. The calcu­ 
lations of the execution times are summarized in Figure 
5, which also gives the observed execution times from 
the experiment for comparison.

4.2.2 Execution time. The predicted execution times 
are quite accurate. This can be seen in Figure 6, which 
plots the predicted versus the observed data from Figure
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5. The scales are logarithmic, since prediction error 
appears to be roughly proportional to duration. The 
root-mean-square (RMS) error is 21 percent of the average 
predicted execution time. This accuracy is about the best 
that can be expected from the Keystroke-Level Model, 
since the methods used by the subjects were controlled 
by the experimental procedure. The 21 percent RMS error 
is comparable to the 20-30 percent we have obtained in 
other studies on text-editing with more elaborate models 
that also predict the method [4].

The distribution of percentage prediction errors is 
fairly evenly spread, as an analysis of Figure 6 will show. 
No particular systems or tasks make excessively large 
contributions. Predictions are not consistently positive or 
negative for systems or tasks, except that all the executive 
subsystem tasks were overpredicted. Examination of the 
individual observations does not reveal any small set of 
outliers or particular users that inflate the prediction 
error.

Prediction accuracy is related to the duration of the 
attempted prediction. The results above are for individ­ 
ual unit tasks. Since unit tasks are essentially indepen­ 
dent, prediction of the time to do a sequence of tasks 
will tend to be more accurate. This can be seen directly 
in the present data, since each user ran all the tasks for 
a given system. For example, consider predicting by the 
model how long it took to do all four editing tasks. The 
average RMS error is only 5 percent. The corresponding 
RMS error for the graphics editors over the five tasks is 
only 6 percent.

Ideally, all of the parameters of the model should be 
determined independently of the experimental situation. 
This was achieved for all the physical operation times, 
but not for the mental operation time, IM> We did not 
have available an appropriate independent source of 
data from which to determine tM. The accuracy of the 
model is somewhat inflated by the determination of one 
of its parameters from the data itself. The substantial 
variability of IM indicates that this inflation is probably 
not too serious, which is to say that small changes in the 
value of IM do not make much difference. For example, 
if a tM as small as 1.2 sec or as large as 2.0 sec were used 
in the predictions, the RMS error for the Keystroke-Level 
Model would only increase from 21 to 23 percent. It 
should be noted that the t\t estimated from this experi­ 
ment is now available as an independent estimate for use 
by others.

The variability of the observed task times is of interest 
per se, since user behavior is inherently variable. In our 
data the average coefficient of variation (CV = SD/ 
Mean) of the individual observations over each task is 
.31, which is the normal variability for behavior of this 
duration [4]. In comparing the predictions of the model 
against any actual behavior, the prediction error will 
always be confounded with some error from the process 
of sampling the behavior. The sampling error for each 
of our observed task times is indicated in the SE column 
of Figure 5. The average standard error is 9 percent.
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Fig. 5. Calculated and Observed Execution Times in the Experiment.

Task- 
System

T1-POET

T1-SOS
T1-DISPED

T2-POET
T2-SOS
T2-D1SPED

T3-POET
T3-SOS
T3-DISPED

T4-POET
T4-SOS
T4-DISPED

T5-MARKUP
T5-DRAW
T5-SH-

T6-MARKUP
T6-DRAW
T6-SIL

T7-MARKUP
T7-DRAW
T7-SH.

T8-MARKUP
T8-DRAW
T8-SU.

T9- MARKUP
T9-DRAW

T9-SH.

T10-LOQIN
T11-FTP
T12-CHAT
T13-DIR
T14-DELVER

Calculated*

(MC)

23
.22
23

.28

.23
24

.19

.23

.23

.19
23
24

.25

.25
27

.26
25
27

24
.19
28

26
21
27

.25
22
28

.29
30
.31
.30
32

"u

4
4
2

4
4
2

3
2
1

13
12
2
-
7.6
1

1
1
--

--
5
1
-
1
1

2
--
--

2
5
1
2
2

«K «H

15 ••
19 -
8 2

14 --
18 --
4 2

12 --
7 --
2 1

92 •-
47 ..
6 1
3.2 •-

12.6 --
4 0.4

7 2
7 1
6 1.4
8.6 --

13 -•
8 ••

8 ••
5 --
5 0.7

8 --
5.7 --
5 0.3

28 --
31 «
11
20 ••
20 --

np nD

• - »-

..
1
..
..
1
..
..
1
..
..
3

2.5 4
5
2

1
1
1

4.8 6
8
5

8 1
3
2

6.5 --
5.7 --
3
..
..
..
..
•-

D W execute 

(cm) («) (sec)

Q.tf
9.6
6.4«

9.4
9.5
5.6

6.3
4.3
3.3

35.3
26.8

3.8 11.6

24.9 -- 11.1
18.9
4.8

5.0
4.6
3.3

13.6 -• 15.1
18.0
9.1

4.0 •• 12.3
5.7
5.2

3.5 15.4
7.5
4.8

15.9 27.41
10.1 26.1
8.3 13.1
0.5 92
0.4 9.4

Observed

Texecute
M ±SE(Nf 
d«) (tec)

7.8 ± 0.9(27)
9.6 ±0.8(31)
5.7 ±0.3(31)

8.9 ± 0.7(17)
9.7 ± 0.8(32)
4.1 ± 0.3(32)

6.3 ± 0.4(24)
4.0 ± 0.3(37)
3.5 ± 0.2(38)

37.1 ± 4.3(20)
32.7 ±1.8(1 6)
14.3 ±1.1 (33)

10.5 ±1.1 (27)
12.5 ±3.0(22)
5.4 ± 0.7(32)

62 ± 0.4(34)
5.9 ± 0.4(34)
3.6 ± 0.3(19)

15.0 ±2. 1(29)
182±1.9( 9)
12.3 ±2.1(23)

9.3 ± 0.4(22)
5.3 ± 0.3(25)
4.1 ± 0.2(33)

13.0 ± 2.5(26)
10.5 ±1.0(25)
6.0 ±1.0(28)

25.1 ± 0.7(29)
19.7 ± 0.7(29)
11. 5 ±0.6(36)
6.6 ± 0.3(32)
7.5 ± 0.4(33)

Pred. 
Error11

11%
1%

11%
5%

- 3%
26%

0%
8%

- 7%

- 6%
-22%
-23%

6%
34%

-12%

-23%
-29%
- 9%

2%
- 1%
-36%

24%
7%

20%

15%
-40%
-24%

9%
24%
12%
26%
20%

* The calculations are done according to formula (1) using the operator times in Figure 1, except 
for tK.

6 fjc is the average time from the typing tests for the subjects on a given system. Each subject's 
time is weighted by the correct number of instances for that subject on a given task (see Section 
4.2.1).

e SB is the standard error of estimation of the population mean for samples of size N.
d The prediction error is given as a percentage of the calculated time, To***.
* The calculated times for these tasks are different from the calculated times in the examples in 

Section 3.2, because different tK are used.
' The execute time for this task also includes .7 sec for the operation of moving the telephone 

receiver (see Section 4.2.1).

That the prediction error of the Keystroke-Level Model 
is over two times larger than this indicates that most of 
the prediction error is due to the inaccuracy of the model 
and not just unreliable observations.

4.23 Acquisition time. Turning from the execution 
part of the task to the acquisition part, the data shows 
that it took users 2 sec, on the average, to acquire a task 
from the manuscript. This number may be refined by 
breaking the tasks into three types: (a) those tasks that 
the user already had in memory (the executive subsystem 
tasks that were done each time in the same order); (b) 
those tasks for which the user had to look at the manu­ 
script each time (all the graphics tasks, the POET and sos 
tasks, and task Til); and (c) those tasks for which the

404

user had to look at the manuscript, then scan text on the 
CRT to locate the task. The times for these three types of 
acquisition are given in Figure 7. Users took only .5 sec 
when the task was in memory, 1.8 sec to get the task 
from the manuscript, and 4.0 sec to get the task from the 
manuscript and scan the CRT. These tunes are similar to 
results obtained in previous experiments [4]. It is inter­ 
esting to note that, although display editors are generally 
faster to use, they impose a 2 sec penalty by requiring 
the user to visually scan the text on the display.

We can use the acquisition times in Figure 7, along 
with the predicted execution times in Figure 5, to predict 
the total task times. The RMS error of these predictions is 
21 percent, which is just as accurate as predicting the 
execution times alone.
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Fig. 6. Predicted vs. observed execution times in the experiment.
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5. Sample Applications of the Keystroke-Level Model

The experiment has provided evidence for the Key­ 
stroke-Level Model in a wide range of user-computer 
interactions. Given the method used, the time required 
for experts to perform a unit task can be predicted to 
within about 20 percent by a linear function of a small 
set of operators. This result is powerful in permitting 
prediction without having to do any measurements of 
the actual situation and in expressing the prediction as 
a simple algebraic expression. Its limitation lies in re­ 
quiring that the method be completely specified at the 
level of keystrokes and in being limited to error-free 
expert behavior.

In this section we illustrate how the Keystroke-Level 
Model can be used, both to exploit its power and to work 
within its restrictions. The basic application to predict 
a time for a specific situation by writing down a method 
and computing the value has been sufficiently illus­ 
trated in the course of the experiment, where such point 
predictions were made for 32 different tasks involving 
10 highly diverse systems. We now show three further 
uses: (1) calculated benchmarks for systems; (2) para­ 
metric analysis, where predictions are expressed as func­ 
tions of task variables; and (3) sensitivity analysis, where 
changes in the predictions are examined as a function of 
changes in task or model parameters.

5.1 Calculated Benchmarks
Given the ability to predict tasks, it is possible to 

calculate the equivalent of a benchmark for a system and 
hence to compare systems. This has obvious cost advan­ 
tages over obtaining actual measurements. More impor­ 
tantly, it permits benchmarking at design time, before 
the system exists in a form that permits measurement.
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The analysis for the experimental data lets us illustrate 
this easily.

Consider the three text editors, POET, sos, and DISPED. 
Let the benchmark be the four tasks Tl to T4. We can 
use the Keystroke-Level Model to compute the total time 
to do the benchmark for each system. The answer comes 
directly from Figure 5 by summing the calculated Texecute 
for T1-T4 for each editor. This gives 59.8 sec, 50.2 sec, 
and 26.9 sec as the predicted execution times, respec­ 
tively, for POET, sos, and DISPED. Taking the POET time 
(the slowest) as 100, we get ratios of 100:84:45. Thus, as 
we might have expected, the two line-oriented editors 
are relatively close to each other and the display editor 
is substantially faster. Since we have also done the 
experiment, we can compare these calculated bench­ 
marks with the observed benchmarks (by summing the 
observed Texecute from Figure 5). We get 60.1 sec, 56.0 
sec, and 27.6 sec, respectively. This gives experimentally 
determined ratios 100:93:46, which is essentially the same 
result. This agreement between the calculated and ob­ 
served benchmark provides confidence only in using the 
calculated benchmark in place of a measured one. It 
does not provide evidence for the validity of the partic­ 
ular benchmark (tasks T1-T4) or whether benchmarks 
are generally a valid way to compare editors.

A similar analysis can be performed for the three 
graphics systems, using tasks T5-T9 as the benchmark. 
This yields predicted ratios of 100:93:46 for MARKUP, 
DRAW, and SIL, respectively, with observed ratios of 100: 
97:58. MARKUP and DRAW are close enough to raise the 
question of whether the predicted difference between 
them is too small to be reliable. The calculated difference 
between MARKUP and DRAW on the benchmark is 59.0 
-54.7 = 4.3 sec or 7 percent. The model has an RMS 
prediction error of 21 percent for a single unit task. Since 
this benchmark is essentially an independent sum of five 
unit tasks, the RMS error should theoretically be 21 
percent/SQRT(5) = 9 percent. Thus, the predictions for 
the two systems are within the RMS error of the model, 
and so the predicted difference between them can hardly

Fig. 7. Observed acquisition times in the experiment.

Task Typ« Task numbers Acquisition Time
M ± ££• (AO 

(sec) (we)

AH tasks

Repeated task, recalled 
from memory

Task acquired by looking 
at manuscript

Task acquired by looking at 
manuscript, then scanning 
for task on display

T1-T14

T10, T12, T13, T14

T1-T4 (POET, SOS), 
T5-T9, T11

T1-T4 (DISPED)

2.0 ± 2.0 (886)

0.5 ± 0.3 (130)

1.8 ± 1.9 (621)

4.0 ± 1.9 (134)

  SE is the standard error of estimation of the population mean for samples 
of size N.
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be reliable. The fact that the model correctly predicted 
that DRAW was slightly faster than MARKUP was lucky  
there is no reason to expect the Keystroke-Level Model 
to make such close calls.

5.2 Parametric Analysis
We illustrate the notions of parametric analysis and 

sensitivity analysis with a new example. Consider the 
following task: A user is typing text into an editor and 
detects a misspelled word n words back from the word 
he is currently typing. How long will it take to correct 
the misspelled word and resume typing?

In DISPED there are two methods for making the 
correction, which we wish to compare. Since the methods 
may behave quite differently depending on how far back 
the misspelled word is, we need to determine how long 
each method takes as a function of n. The first method 
makes use of the Backword command (called by hitting 
the CTRL key and then W), which erases the last typed in 
word:
Method W (Backword):
Set up Backword command 
Execute Backword n times 
Type new word 
Retype destroyed text

1"execute = (1 + H/C)tM H

MK[CTRL] 
n((l/c)MK[W]) 
5.5K[word] 
5.5(n -

= 1.6 + 2.16/1 sec. (2)

The execution time is a function not only of n, but 
also of another parameter, c. When a user has to repeat 
a single-keystroke command several times, such as the 
Backword command in the above method, he will tend 
to break the sequence into small bursts or chunks, sepa­ 
rated by pauses, which are represented as M operations, 
according to Rule 2 in Figure 2. Thus, we postulate a 
chunk size, c, which is the average number of Backword 
commands in a burst. This is used in the second step in 
the above method, where we count l/c M operations for 
each call of the Backword command. An exact value for 
c is unknown, but we use a "reasonable" value, c = 4, in 
our calculations (we will return to this decision in Section 
5.3). In the calculations we also assume an average 
nonsecretary typist (tx — -28 sec) and an average word 
length of 5.5 characters (including punctuation and 
spaces).

The second method is to get out of type-in mode, use 
the Replace command to correct the word, and then get 
back into type-in mode, so that input can be resumed:
Method R (Replace):
Terminate type-in mode
Point to target word and select it

Call Replace command
Type new word
Terminate Replace command
Point to last input word and select it

Reenter type-in mode

MKfESC] 
H[mouse] Pfword] 
KfYELLOW] 
Hfkeyboard] MK[R] 
4.5K[word] 
MK[ESC] 
H[mouse] P[word] 
K[YELLOW] 
Hfkeyboard] MK[I]

Texecute = 4tM + 10.5 tK + 4tH + 2tp
= 12.1 sec.
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The predicted time for each method as a function of 
n is plotted as the solid lines in Figure 8(a). As the figure 
shows, it is faster to use the Backword method up until 
a certain crossover point, «vra, after which it becomes 
faster to use the Replace method. Under the above 
assumptions, the crossover from the Backword method 
to the Replace method is found to be at 4.9 words.

Suppose a designer wants to add a feature to DISPED 
to improve performance on this task. We wish to deter­ 
mine, before implementation, whether the proposed fea­ 
ture is likely to be much of an improvement.

The designer proposes two new commands. The first 
is a Backskip command (CRTL s), which moves the 
insertion point back one word without erasing any text. 
The second is a Resume command (CTRL R), which 
moves the insertion point back to the end of the current 
type-in (where Backskip was first called). These com­ 
mands allow:
Method S (Backskip):
Set up Backskip command 
Execute Backskip n — 1 times 
Call Backword command 
Type new word 
Call Resume command

MKfCTRL]
(n - lX(l/c)MK[S])
MK[W]
4.5K[word]
M2K[CTRL R]

Texecute = (3 + (n - \)/c)tM + (n + 1.5)tK 
= 5.8 + .62n sec.

(3)

The predicted time for the Backskip method is plotted 
as the dashed line in Figure 8(a). With the addition of 
this method there are two additional crossover points, 
nws and WAS, between it and the other two methods. As 
can be seen, the Backskip method is faster than both of 
the other methods between nws and rigs, i.e., from 2.7 to 
10.2 words. Thus, a brief analysis provides evidence that 
the proposed new feature probably will be useful, hi the 
sense that it will be the fastest method over a region of 
the task space.

53 Sensitivity Analysis
How sensitive to variations in the parameters of the 

methods are the aforementioned calculations? The ques­ 
tion of interest is whether, over such variations, there is 
still a region in the task space in which the Backskip 
method is the fastest. An important parameter is the 
user's typing speed, /*. How much does the crossover 
between the Backword method and the Backskip method 
change as a function of typing speed? Setting eq. (2) 
equal to (3) and solving for n as a function of tK gives n 
= 1.2 + A3/tK . The crossover increases with faster typists 
(decreasing fa), going up to n = 6.6 words for the fastest 
typist (tK = .08 sec). That is to say, faster typists should 
prefer the old Backword method (which involves more 
typing) for larger n before switching to the new Backskip 
method (which involves less typing, but more mental 
overhead).

We can plot the crossover boundary between the two 
methods in the space of the two parameters: n (charac­ 
terizing different tasks) and tK (characterizing different 
users). The two boundaries of the new Backskip method 
are plotted in Figure 8(b). These boundaries define the
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Fig. 8(a). Execution time for three methods as a function of n.
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Fig. 8(b). Phase diagram for the fastest method. 
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Fig. 8(c). Phase diagram adjusted for different chunk sizes. 
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regions in the parameter space where each method is 
fastest. The circles mark the crossover points correspond­ 
ing to the ones in Figure 8(a) (i.e., at tx — .28 sec). This 
diagram clearly shows the shift of crossovers for fast 
typists. It also shows that, for any speed of typist, there 
are some tasks for which the Backskip method is the 
ifastest.

We are not sure of the exact chunk size, c, and so we 
must check whether our conclusions about the usefulness 
of the Backskip method are sensitive to the choice of a 
value for c. To do this, we rederive the crossover between 
the Backword and Backskip methods by setting eq. (2) 
equal to (3) and solving for n as a function of both c and 
/*; this gives n = 1.2 + A9/tx - .24/0**. Although we do 
not know an exact value for c, we can be reasonably 
confident that it will be between 2 and 6. With tK = .28 
sec, for example, the crossover varies between 2.5 and 
2.8 words as c varies between 2 and 6; so the value of c 
does not seem to have a great effect at this point.

The best way to see the overall affect of the value of 
c is to replot Figure 8(b) using the reasonable extreme 
values of c. The two crossover boundaries for the Back- 
skip method are plotted in Figure 8(c) as "fat" lines 
defined by setting c to 2 and 6 in the crossover equations. 
This diagram clearly shows that the value of c affects 
one boundary more than the other. The boundary be­ 
tween the Backword and Backskip methods is not af­ 
fected much by c, because the chunk size is involved in 
both methods in exactly the same way. But the boundary 
between the Backskip and Replace methods is greatly 
affected by the value of c, since c is not involved in the 
Replace method at all. Small chunk sizes, especially, 
penalize the Backskip method. Overall, however, varying 
c does not squeeze out the region for the Backskip 
method; and our basic conclusion that the new method 
is a useful addition still holds.

There are other aspects of the above methods for 
which we could do a sensitivity analysis. (For example, 
if the last two M operations of the Backskip method 
were eliminated according to Rule 1, how much would 
the value of the Backskip method increase?) However, 
the sensitivity analyses above illustrate how the Key­ 
stroke-Level Model can be used to evaluate design 
choices even when many aspects of the calculation are 
uncertain for the principal conclusions are often insen­ 
sitive to many of the uncertainties.

6. Simplifications of the Keystroke-Level Model

The question naturally arises as to whether further 
simplifications of the Keystroke-Level Model might do 
reasonably well at predicting execution time. One could 
(a) count only the number of keystrokes, (b) count just 
the physical operators and prorate the time for mental 
activity, or (c) use a single constant time for all operators. 
We show below that such simplifications substantially 
degrade accuracy. However, they provide useful approx­ 
imations where the lowered accuracy can be tolerated.
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6.1 Keystrokes Only
With this simplification, execution time is propor­ 

tional to the number of keystrokes:

T execute = K/lJC + T R.

We separate out the system response times, TR, so as not 
to confound the comparison. The constant of propor­ 
tionality, K, should be distinguished from IK, the typing 
speed, which is determined from standard typing tests. 
Estimating the value of K from a least-squares fit of the 
values of HK and the observed Texecute in Figure 5 gives 
K = .49 sec/keystroke. The correlation between the times 
predicted by this model and the observed times is .87, 
and the RMS error is 49 percent. The statistics for com­ 
paring all models are presented in Figure 9. As can be 
seen, using keystrokes only is substantially less accurate 
than the full Keystroke-Level Model. This simplification 
is inappropriate for tasks that are not dominated by 
keystroking. For example, it only predicts about a third 
of the observed time for the MARKUP tasks, which are 
dominated by pointing and drawing operations.

The above estimate of K is held down by one outlying 
point in the data, T4-POET (nK = 92). Estimating K with 
this one point removed gives K = .60 sec, a value close to 
another estimate obtained in an earlier benchmark study 
[1; 5, ch. 3]. T4-POET is the only task that requires any 
input-typing of text. One obvious refinement of the 
keystrokes-only model would be to distinguish two kinds 
of keystrokes: mass input-typing (at fa sec/keystroke) 
versus command-language keying (at K sec/keystroke). 
For this purpose, a K of .60 sec is the more reasonable 
value.

The model of Embley et al. [9] is formally similar to 
our keystrokes-only version. However, their model is 
conceptually different from ours. The Keystroke-Level 
Model is based on the notion of a unit task structure; 
Embley et al. use commands instead. Our model is 
restricted to skilled expert behavior, whereas they at­ 
tempt to model all kinds of users (essentially, by varying 
their versions of the parameters Tacguir* and K). Unfor­ 
tunately, they did not compare their model against any 
empirical performance data, so we cannot compare our 
results to theirs. The keystrokes-only model can, perhaps, 
be taken as an indicator of the accuracy of their model 
for expert behavior.

6.2 Prorated Mental Time
According to this simplification, execution time is the 

time required for the physical operations multiplied by 
a factor to account for the mental time:

Fig. 9. Comparison of the keystroke model with simpler variations.

Texecute = n(TK +TH+TP+ TD) + TR.
The idea is that the physical operations will require a 
certain average overhead of mental activity. Thus, in­ 
stead of trying to predict exactly how many mental 
operations there are, we can do fairly well by just using 
a multiplicative mental overhead constant, /i.

Using a least-squares analysis to determine ju from 
the sum of the calculated times for the physical opera-
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Model Variation Parameters Correlation (r)* RMS Error"

Keystrokes Only 
Prorated Mental Time 
Constant Operator Time

Keystroke Model

.49 sec/keystroke0
1.67
.43 sec/operator6

(See Figure 1)

.87
31
.92

as

49% 
45% 
34%

22%

* The correlations are between the execution times predicted by each of the 
models and the observed execution times from Figure 5.

b The RMS error is given as a percentage of the observed execution time, 
11.0 sec.

c More useful parameter values are K = .60 sec and T = .49 sec (see Sections 
6. land 6.3).

tions and the observed values of Texecute in Figure 5 gives 
/i = 1.67; i.e., there is a 67 percent overhead for mental 
activity. The correlation between predicted and observed 
times is .81, and the RMS error is 45 percent.

This simplification is also less accurate than the 
Keystroke-Level Model, as can be seen in Figure 9. This 
suggests that the extra detail in the Keystroke-Level 
Model, involving the placements of the mental prepar­ 
edness operator, M, is effective. It is this operator that 
qualifies the Keystroke-Level Model as a genuine psy­ 
chological model and not simply as an analysis of the 
physical operations.

There is an interesting relation between these two 
simpler models and the rules for placing occurrences of 
M in the Keystroke-Level Model (Figure 2). The initial 
placement of M's, by Rule 0, with certain K's and P's is 
essentially an assumption that mental time is propor­ 
tional to a subset of the physical operators. If Rule 0 had 
specified all physical operators, Rule 0 by itself would 
have been equivalent to prorating mental time. If the 
other physical operators (P, H, and D) had been ignored, 
this would have been equivalent to counting keystrokes 
only. Therefore, the deletion of the M's according to 
Rules 1 to 4 constitutes the ways in which the Keystroke- 
Level Model departs from these simpler models. The 
evidence for the superiority of the Keystroke-Level 
Model presented in Figure 9 is also evidence that Rules, 
1 to 4 had a significant effect. In fact, each of the rules 
individually makes a significant contribution, in the 
sense that its removal leads to a decrease in the accuracy 
of the Keystroke-Level Model.

63 Constant Operator Time
According to this simplification, execution time is 

proportional to the number of Keystroke-Level opera­ 
tions:

Texecute — T(/ljlf + rtK + lip + Tin + «fl) + TR,

The idea here is the statistical observation [18] that the 
accuracy of linear models is not sensitive to the differ­ 
ential weighting of the factors   equal weighting does 
nearly as well as any other weighting. Thus, we disregard 
the different operator times and use a single time, r, for
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all operators. Note that the constant-operator-time 
model is formally similar to the keystrokes-only model; 
the latter can be viewed as using ng as a crude estimate 
of the total number of operators.

Estimating r by a least-squares fit of the data in 
Figure 5 gives T   .43 sec/operator. The correlation 
between predicted and observed times is .92, and the RMS 
error is 34 percent. (For the reason discussed in Section 
6.1, it is useful to estimate T with the T4-POET task 
removed, getting T = .49 sec/operator.)

The constant-time model is quite a bit more accurate 
than the keystrokes-only model, which tells us that taking 
into account operators other than K is useful. In fact, 
most of the action in the constant-time model (over the 
set of data in Figure 5, at least) comes from counting 
only the K, P, and M operators. In any particular task, 
of course, any of the operators can be dominant. On the 
other hand, die constant-time model is still less accurate 
than the Keystroke-Level Model, showing that taking 
into account accurate estimates of each operator's time 
yields another increment of accuracy.

In summary, all of the simplifications presented in 
this section are less accurate than the Keystroke-Level 
Model. However, these simplified models are probably 
good enough for many practical applications, especially 
for "back-of-the-envelope" calculations, where it is 
too much trouble to worry about the subtleties of count­ 
ing the M's that the full Keystroke-Level Model 
requires.

7. Conclusion

We have presented the Keystroke-Level Model for 
predicting the time it will take a user to perform a task 
using a system. We view this model as a system design 
tool. We have shaped it with two main concerns in mind. 
First, the tool must be quick and easy to use, if it is to be 
useful during the design of interactive systems. The exist­ 
ing strengths of psychology and human factors methods 
are primarily in the design and analysis of experiments; 
but experiments are too slow and cumbersome to be 
incorporated into practice. Ease of use implies that the 
tool be analytical that it permit calculation in the style 
familiar to all engineers. Second, the tool must be useful 
to practicing computer system designers, who are not 
psychologists. This implies that the entire tool must be 
packaged to avoid requiring specialized psychological 
knowledge. We think that the Keystroke-Level Model 
satisfies these concerns, along with the primary consid­ 
eration of being accurate enough to make design deci­ 
sions. We believe that the Keystroke-Level Model be­ 
longs in the system designer's tool-kit.

It is possible to formulate more complicated and 
refined models than the Keystroke-Level Model by in­ 
creasing its accuracy or by relaxing some of its serious 
restrictions (e.g., models that predict methods or that
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predict errors). One of the great virtues of the Keystroke- 
Level Model, from our own perspective as scientists 
trying to understand how humans interact with computer 
systems, is that it puts a lower bound on the effectiveness 
of new proposals. Any new proposal must do better than 
the Keystroke-Level Model (improve on its accuracy or 
lessen its restrictions) to merit serious consideration.

The Keystroke-Level Model has several restrictions: 
The user must be an expert; the task must be a routine 
unit task; the method must be specified in detail; and the 
performance must be error-free. These restrictions are 
important and must be carefully considered when using 
the model. Yet, we believe that the Keystroke-Level 
Model model represents an appropriate idealization of 
this aspect of performance and that it is a flexible tool 
allowing the system designer to deal systematically with 
this aspect of behavior.

The Keystroke-Level Model predicts only one aspect 
of the total user-computer interaction, namely, the time 
to perform a task. As we discussed at the beginning of 
this paper, there are many other important aspects of 
performance, there are nonexpert users, and there are 
nonroutine tasks. All of these must be considered by the 
system designer. Designing for expert, error-free per­ 
formance time on routine tasks will not satisfy these 
other aspects. We would like to see appropriate models 
developed for these other aspects. However, even with a 
collection of such models, the designer still must make 
the inevitable trade-offs. Scientific models do not elimi­ 
nate the design problem, but only help the designer 
control the different aspects.
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