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Children from age six onwards spend a large part of their lives in elementary 

schools, learning school subjects whose formal structure is not very different from that 

of the subjects they will study in high school and college. Hence, it is perhaps not 

inappropriate to report at this conference some research on individual differences in 

adult competence in a subject, elementary physics, that is typically taught in high 

school and college. An understanding of the bases of adult competence may cast light 

on the skills the child must attain enroute to such competence, in particular, 

prerequisite skills in arithmetic, reading, and algebra. Moreover, the method of 

analysis used here could also be used in studying the knowledge demands of 

elementary school subjects.

We shall follow the strategy used in other recent work in information processing 

psychology (e.g., Klahr & Wallace, 1976) of trying to establish what is learned before
t

i 
investigating how it is learned -- that is, of studying performance first, and then

 

learning. The task domain we shall examine is a part of elementary physics. More 

specifically, we shall be concerned with the topic of motion in a straight line, which
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occupies about one week of a one-year high school or Ist-year college physics 

course. Still more specifically, we shall use the treatment of this topic found in a 

widely used high school physics textbook that employs algebra but no calculus (Taffel, 

1973). We are interested in what it is that a studenf knows when he has mastered the 

chapter, and how he makes use of this knowledge when he goes about solving 

problems. Our method of study has been to gather problem-solving protocols from 

two subjects: (1) a subject with a strong mathematical background and wide 

experience in solving problems of this kind, and (2) a subject who had taken a single 

course in physics many years previously, and who had an adequate, but not unduly 

strong, background in algebra. From the comparison of the behavior of the more 

experienced and the less experienced subject, we shall seek to draw some conclusions 

about the learning process, and to comment on which part of the skill is least readily 

learned by standard methods of studying textbooks and working examples.

A small number of analyses of school subjects appear in the literature, but ftot 

always at the level of detail proposed here (and which we think essential for our 

purposes). Gagne (1963) pioneered in this kind of analysis with his studies of 

elementary arithmetic skills. Paige & Simon (1966; see also Bobrow, 1968) studied the 

processes involved in understanding and solving algebra word problems. Novak (1976) 

simulated the processes for solving physics problems in statics (levers). Marples 

(1974) has analysed the logical structure of problems in mechanics and electricity. 

Bundy (1975) and Bundy, §1 a[. (1977) have analyzed student performance in solving 

pulley problems; Larkin (1976) has analyzed simple dynamics problems. Greeno (1976, 

1977) has analyzed the performance of high school students solving several classes of 

geometry problems and has constructed a program that closely simulates their
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performance. Brown and Burton (1975) have constructed a computer program for 

tutoring students learning to solve electronics circuit problems. Bhaskar & Simon 

(1977) constructed a pr&gram. for generating problems in chemical engineering 

thermodynamics, and Bhaskar (1977) has analyzed human problem solving behavior in 

chemical engineering, cost accounting, and business policy cases.

The Task Content

Motion in a straight line is taken up in the fifth chapter of Taffel (out of 32), and 

occupies 22 pages (out of about 550). Previous chapters have already introduced 

methods and units for measuring length, time, mass and weight (Chapters 2 and 3), and 

the concepts of vector, force, and motion (Chapter 4), but not acceleration. The fifth 

chapter introduces the notions of uniform and accelerated motion, units of acceleration, 

average and instantaneous speed, relative speed, motion at constant speed, and

uniformly accelerated motion. The gravitational constants in English and metric systems
») t} 

(32ft/sec^ and 9.8m/sec , respectively) are also explained. The following formulas are

given, together with derivations and verbal explanations.
t

(1) S - v*T, 

where S is distance, v* is average speed, and T is time.

(2) S «* vT, for constant speed, v.

(3) a = (v-v0)/T, 

where a is acceleration, v is final speed, and VQ is initial speed.

(4) v «= VQ + aT

(5) v* - (vQ + v)/2

(6) v* - v0 + l/2(aT)

(7) S - vQT + l/2(aT2 )
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(8) v2 - v02 - 2aS

Equations are also given for the special case where the body starts from rest, 

i.e., where VQ = 0:

(9) v « aT

(10) S = l/2(aT2)

(11) v2 = 2aS.

Note that the symbol v is used both for constant speed and for final speed in 

uniformly accelerated motion. In other respects, the symbolism is unambiguous. The 

English-language text just preceding the introduction of each equation always specifies 

the condition (e.g., constant acceleration, constant speed) under which the equation 

holds.

The material we have just described occupies the second through the tenth 

pages of the chapter; the remainder of the chapter, which we shall not consider, is 

devoted to relative motion, graphical analysis of motion, and motion of falling bodies. 

The text and formulas are illustrated by seven sample problems, worked out step by 

step. These are followed by 15 "questions" and 25 "problems." The two subjects 

whose behavior we shall analyze read the text, answered the questions, and worked 

the problems in order.

The whole empirical and formal content of this chapter is modest, for it can be 

summed up in the 11 equations given above. Even these are not independent, for they 

can all be derived from the three relations: (1) S «= v*T, (4) v = VQ+AT, and 

(5) v* «= (vQ+v)/2. (To solve the problems, the student must also know the value of & 

the gravitational constant.) Without specifying precisely what a "thing" is, we may say 

that mastery of this chapter requires the student to learn not more than about ten
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"things." If this chapter is typical of the whole text, then a one-year physics course 

calls for the mastery of about 300 "things." Again, if this course is typical of high 

school courses, a student carrying four courses might be expected, during a school 

year, to learn more than 1,000 but less than 2,000 "things." We may compare these 

crude estimates with the estimate (Chase & Simon, 1973) that a chess master spends 

ten years or more learning about 50,000 chess patterns which he can recognize on a 

chess board. By way of further comparison, a Japanese elementary school child learns 

to read and write two to three hundred ideograms each year, and to associate with 

each the meanings and "readings" (pronunciations) it can have in different contexts.

Solution Times and P_a_ths_

As mentioned earlier, our data were obtained from two subjects, one quite 

expert in working problems of this Kind, although without recent practice, the other 

having fair skill in algebra, but essentially new to the subject of kinematics. Our 

expert subject, SI, and our novice, S2, each worked the 25 problems at the end of 

Chapter 5 under standard thinking-aloud instructions, using paper and pencil freely. 

S2 referred to the textbook when she needed to find or recall a relevant equation, but 

she made fewer and fewer such references as she proceeded, and none at all in 

handling the last six or eight problems. SI did nqt refer to the textbook. Their 

protocols for 19 of the 25 problems are analyzed here. Problems 1, 2, 4, 14, and 15, 

which dealt with relative motion, are omitted, as is Problem 22, which was more 

complex than the others (involving a pair of moving bodies, instead of only one);that 

problem will be discussed in a later section.
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Times and Protocol Lengths

Table 1 shows, for each subject, the total number of words in each protocol, the 

time in seconds required to solve each problem, and the average rate of speech in 

words per minute. It can be seen that SI solved some of the problems in less than 

half a minute, and required only 2.5 minutes for the hardest (Problem 16). Only four of 

these problems took him more than a minute. There was a small

Insert Table 1 about here

upward trend in his solution times from beginning to end of the sequence, but it 

must be remembered that the subjects solved the problems in the order in which they 

appeared in the textbook, and they had been arranged by the author so as to 

increase in difficulty. Hence, difficulty is confounded with practice. S2, the novice, 

took, on average, about four times as long per problem as SI. Her solution times 

ranged from about one minute to over 9 minutes (Problem 24). While al! of Si's 

solutions were correct, S2 arrived at incorrect answers for tv/o problems, both of 

which involved arithmetic errors.

SI produced, on average, about 160 v/ords per minute. His average rate of 

speech was slightly higher on the easy problems, and slightly lower on the hard ones. 

After allowance is made for differences in problem difficulty, there appears to be no 

trend in his rate of verbalization over the course of the problem-solving session. S2's 

speech was less than half as fast as STs, averaging about 70 words per minute, and 

the number of words in her protocols averaged about twice the number in STs.



Solving Physics Problems September 8, 1977

Characteristics of. the Protocols

Figures 1 and 2 nbout here

Figures 1 and 2 exhibit the protocols of these subjects on Problem 19. These 

protocols illustrate quite clearly the characteristic differences between the 

verbalizations of the two subjects, and can be regarded as reasonably typical of the 

other problems in the set. First, however, the similarities: Both subjects begin by 

reading the problem aloud, as they were instructed to do. They then evoke (or 

sometimes, in the case of S2, look up) appropriate equations to describe the physics 

of the situation, and then solve the equations to find the unknown quantities. They 

answer the two questions   about average speed and duration   in the order in 

which they were asked.

There are also important differences between the two protocols, the most 

obvious being the typical two-to-one ratio of their lengths. After reading through the

»

first question (Lines 1-4), SI simply calculates the average speed (Line 5), without 

mentioning the formula he has evoked from memory and is applying. He then reads the 

second question (Line 6), and again carries out the calculation without mentioning the 

formula (v* = S/T) he is using. He does mention the values of the givens (Lines 7-8), 

and then repeats them (Lines 9-11) before carrying out the computation successfully 

(Lines. 12-14). Even though the formulas are not mentioned explicitly, it is entirely 

clear from the computations that they are Equation 5 (specialized for VQ = 0) and 

Equation 1 (transformed to solve for T in terms of S and v*). S2, on the other hand, 

writes down the first given (Line 2) as she reads the problem (Lines 1-5), making a 

correction in a reading error as she goes. She then states explicitly the formula she is
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going to use (Lines 6-8), and applies it (Line 9). Next, she checks her result (Lines ID- 

17), in particular, the correctness of the formula she used. Now she interrupts herself 

(line 18) to comment on a possible mistake in the previous problem. She reads the 

second question (Line 19), repeats it (Line 20), evokes an appropriate formula 

(Lines21-22), transforms the formula to make T the dependent variable (Line 23), 

substitutes numerical values for the givens in the formula (Lines 24-25), and carries 

out the numerical computation (Lines 26-27). (The answer, although incorrect as 

verbalized, is correct on the worksheet.)

While a single verbalization covers STs evoking a formula, putting it in the 

appropriate form, and substituting the numerical values for the independent variables, 

each of these three steps is verbalized separately by S2. This may merely reflect a 

difference in the subjects' programs of verbalization. On the other hand, it may 

represent an automation of successive steps in STs program that results in the 

individual steps' being no longer available for verbalization. If the latter interpretation 

is adopted, then STs program calls for combining information from the problem 

statement with knowledge of physical laws at the earliest possible moment, by 

instantiating the laws with the given values of variables as soon as the former are 

evoked from long-term memory. Instantiation appears to be less automatic in S2's 

program: more time elapses before information from the two different sources are 

brought together, and in some protocols, formulas are produced in literal form without 

being immediately instantiated.

In STs protocols, almost ail of the verbalizations are directly descriptive of the 

calculations he is making. There are relatively few verbalizations of plans, or other 

"meta-statements" about the process. These occur mainly in protocols for the problems

8
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that took him 50 seconds or more. In Problem 19, for example, STs only meta- 

comment is "wait a while" (Line 9). 82, on the other hand, makes a number of such 

comments: "That's got to be right" (Line 12), "Why divided by 2? The average of the 

two speeds, right?" (Lines 15-16), "There's something wrong with that" (Line 18), and 

"So let's worry about that" (Line 26). In the last six problems (Problems 19-21, 23- 

25) S2 averages about five meta-comments per problem, while SI averages only one 

per problem.

The contents of the two subjects' meta-comments are similar: observations that 

a mistake has been made; a comment on the physical meaning of an equation; the 

question, "What do we know?" (i.e., what are the givens, or what formulas are 

available?); statements of plan or intent (e.g., "Let's just clear fractions."), evaluations 

(e.g., "Is that right?"); and a few others. S2 expresses uncertainty fairly often about 

the steps or calculations she has taken, SI very rarely.

Solution Paths

We observed in the previous section that the basic structures of the two 

protocols are quite similar. Immediately after reading the problem, they evoke an 

equation from long-term memory. The equation is instantiated by substituting in it 

quantities that are given in the problem statement, and then solved. This process is 

repeated (usually two or three times) until values have been found for the unknowns 

mentioned in the problem statement. This is the same basic structure as reported by 

Bhaskar & Simon (1977) in their studies of a subject solving thermodynamics problems 

and Marples (1974) in studies of subjects solving physics problems. The fundamental 

cycle can be described as:
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FIND EQUATION 
INSTANTIATE EQUATION 
SOLVE EQUATION

The scheme may be applied repetitively or recursively   that is, if values for all 

the independent variables in an equation are not Known, a new equation may be found 

in one of the unknowns, instantiated, and solved.

Although both subjects used this scheme, they often retrieved different 

equations from long-term memory to find the same unknowns. The 19 problems called 

for the values of 32 unknowns to be found. In 19,of these 32 cases, SI and S2 used 

essentially the same sequence of equations (solution path) to solve for an unknown; in 

13 cases, they used different paths (see Table 2, Columns 3 and 5).

Insert Table 2 about here

The most frequent difference (9 cases) was that SI used Equation 5 followed 

by Equation 1 to solve for S, while S2 used Equation 7 or its specialization, Equation 

10. The converse difference did not occur even once. Nor did SI on any occasion use

Equation 7, although he did use Equation 10 in five, problems. S2, on the other hand,

P 
used Equation 7 eight times and Equation 10 seven times. .

The other principal difference between the two subjects (3 cases) was that S2 

used Equations 8 or 11, while SI did not. In fact, SI reported that he was unfamiliar 

with Equations 8 and 11, and he was willing to accept them as correct after he had 

rederived them. Notice that these equations have no obvious direct physical

interpretation.

? Table 2 shows only successful solution paths. S2, especially, actuallymade a number

of false starts and corrections in solving most of the problems. However, the aim we 

set ourselves in this paper was to study the knowledge demands made on the student 

in solving this type of physic problem. The analysis in this and the following section 

reflects the way each of the subjects met these demands.

10
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A Production System

A rather close simulation of the behavior of both subjects   in particular, of 

their successful solution paths   can be obtained within the framework of a common 

program structure. The simulation attempts to account for the sequence in which 

required equations are retrieved from long-term memory and solved. The differences 

between SI and S2 are to be explained by rather modest differences in the way in 

which equations are cued by information in the problem and retrieved from long-term 

memory.

The simulations take the form of simple production systems. A production 

system (Newell & Simon, 1972) is a program consisting of an ordered set, or list, of 

productions. Each production consists of a condition part and an action part. The 

rules for the operation of the system are these: (1) the productions are arranged in 

linear order, and the conditions of each one are tested in turn; (2) if, upon testing, the 

conditions of a production are found to be satisfied, the action part of that production 

is executed; (3) after execution of a production, the testing process resumes, 

beginning with the first production on the list.

In the production systems under consideration, the conditions are the presence 

or absence of particular variables in an equation. Associated with each of the 

kinematics formulas is the name of its dependent variable, and the list of its

independent variables. As each problem is being solved, lists are kept, for that

i 
problem, of the variables whose values are known and of the variables whose values

are wanted. Tests can then be performed to determine whether the values of any of 

the independent or dependent variables in the formula are known, or whether they are 

wanted. Clearly, a particular formula can be solved only if the values of all

11
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independent variables are known; generally, there is a reason to solve the formula 

only if the value of the dependent variable is wanted. The tests used in the 

production systems for SI and S2 are based on these considerations. To be specific:

1. The condition for Si's productions is that the values of all independent 

variables be known. If they are, the action part of the production is executed   

that is, the equation is solved for the dependent variable.

2. The conditions for S2's productions are that: (1) the dependent variable of 

the production's formula be on the "wanted" list; and (2) the values of all its 

independent variables be known. If both conditions are met, the action part of the 

production is executed. If the first condition is met, but not the second, then the 

name of the first independent variable whose value is unknown is placed on the 

"wanted list", but the production is not executed.

The production systems for SI and S2 also differ in having different orderings 

of the productions. In all other respects they are identical. The lists of productions of 

the two systems are shown in Figures 3 and 4.

The production systems are even simpler than the lists suggest. In STs 

production system, only four distinct equations appear: Equations 1, 4, 5, and 7 of our 

original set, together with the equations obtained by permuting independent and 

dependent variables in these. Thus, PI, P4, and P6 correspond to Equation 4; P2, P3, 

and P7 to Equation 1; P5 to Equation 5; and P8, P9, and P10 to Equation 7. They are 

listed separately for simplicity in writing the system, and no psychological significance 

should be attached to this format. Moreover, SI actually only used Equation 10 

instead of the more general Equation 7, but P8, P9, and P10 have been kept in the 

general form to avoid having to express the condition, VQ = 0 in the production system.

12
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In the same way, S2's twelve productions correspond to only five distinct equations: 

PI, P5, and P12 to Equation 1; P2, P6, and Pll to Equation 7; P3 and P8 to Equation 8;
i

P4, P7, and P9 to Equation 4; and P10 to Equation 5. P3 and P8 appeared in her 

protocols only in the special case of Equation 11 (i.e., the special case where VQ = 0).

Table 2 compares the subjects' paths with the paths used by the simulation 

programs on each of the 19 problems. There is an extremely close correspondence. 

SI uses Equation 10 instead of Equations 5 and 1 to solve for S. in Problems 5, 11, and 

12. (These are the only problems involving both vertical motion and VQ «= 0, which 

may be the cues that divert SI to this path.) In Problems 23 and 25, the simulation, 

but not SI, computes the value of a, which is not called for by the problem statement.
 

In Problem 24, SI performed complex manipulations using Equations 10 and 9 to find 

the time, and then applied Equation 9, as did his simulation, to find the acceleration. 

(See pp. 17-18 for a fuller discussion of his solution of this problem.) In Problem 13, 

SI solves for a and v first, then for v*, while the simulation reverses the order 

(thereby following the order in which they are asked in the problem text). In this 

problem, SI also uses v*5 instead of v*l, which can be found directly from the givens. 

In the case of S2, the match between simulation program and human protocol is even 

closer, the paths differing only for Problems 18, 19 and 25. In Problem 18, S2 uses 

Equations 5 and 1, instead of her customary Equation 10, to solve for S. In Problem 

19, she solves first for v*, then uses Equation 1 to solve for T, while the simulation 

solves successively for A, T, and v*.

In Problem 25 she also solves first for V* and then applies SI; the simulation 

first finds A so that it can use Equation 7 to find S. The only other difference is that 

in Problem 16 the simulation reversed the requested order in finding the dependent 

variables.

13
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The production systems, therefore, appear to capture very well the processes 

the two subjects are using to solve these 19 problems. What do they tell us about the 

nature of skill and expertness? There are two ways to characterize the differences 

between the two systems. First, Si's system represents a "working forward" strategy 

while S2's represents a "working backward" strategy. That is to say, SI operates 

from the givens in the problem, solving successively the equations that can be solved 

with these givens, without much attention at the outset to the particular variables that 

the problem statement asks him to evaluate. Only in Problem 16, which took him the 

longest time to solve, and Problem 24, the second longest, does SI make any comments 

that can be interpreted as means-ends analysis. In the course of solving Problem 16, 

he remarks, "no, what am I doing. I'm finding .. ah .."... "no, I don't want the ]j 

where are we now?" . . . "So we have to find the time first." And while solving Problem 

24 he says, "and what do we know? What we know is the final velocity." S2, on the 

other hand, evokes equations in which the desired quantities are dependent variables, 

and if not all the independent variables in these are known, sets up subgoals to solve 

for them.

Viewed in this way, S2's behavior seems more goal directed than STs   at first 

blush a surprising result. However, this phenomenon has also been observed in 

subjects working thermodynamics problems (Bhaskar & Simon, 1977; see also Marples, 

1974). When the problem is very easy, the expert knows that he can solve it simply 

by solving equations as he comes to them, so to speak. When the problem is harder, 

his behavior becomes more purposeful and is guided by a means-ends analysis of the 

goals he is seeking to reach. Thus, the more "primitive" approach of SI is to be 

attributed to his confidence that forward search will lead quite directly to a solution of
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the problem, and will not generate a large and inefficient search. This confidence is 

based on his experience with the problem domnin.

A Comment on Physical Intuition

Physicists and engineers often refer to "physical intuition" as an essential 

component of skill in solving physics problems. Sometimes, solving a problem with the 

help of physical intuition is contrasted with solving it "simply by plugging in the 

formulas." The facts that the idea of physical intuition is somewhat elusive and that it 

has not been defined operationally do not mean that the phenomenon underlying 'it is 

unimportant to problem solving skill. We should like to venture here an interpretation 

of physical intuition in information processing terms, and provide some evidence that 

SI made important use of it.

Physical intuition might be interpreted in the following way: When a physical 

situation is described in words, a person may construct a perspicuous representation 

of that situation in memory. By a perspicuous representation, we mean one that 

represents explicitly the main direct connections, especially causal connections, of the 

components of the situation. For example, in a statics problem involving a ladder 

leaning against a wall, the representation might be an associational structure with 

nodes for the ladder, the wall, the floor, and the points of contact between the ladder 

and the wall and the ladder and the floor. The force of gravity acting on the ladder 

would be associated with the ladder, and the forces at the points of contact would be 

associated with those points. Once this schema had been constructed in memory, it 

would be a straightforward matter to construct the equations of equilibrium for the 

situation. In fact, Novak (1976) has built a computer program for understanding statics

15
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problems stated in natural language that proceeds in exactly this way: first it 

constructs a schema representing the essential relations in the situation, then it sets 

up equations corresponding to.this representation. In our present terminology, we 

would say that the program exhibits physical intuition.

We claim that Si used physical intuition in solving our kinematics problems. That 

is, he first translated the English prose of the problem statements into physical 

representations, then used those representations to select and instantiate the 

appropriate equations. The representations reflected his causal view of uniformly 

accelerated motion, a view that can be summed up in two statements: (1) a distance is 

traversed in uniform motion by the cumulation of equal unit distances incremented over 

successive unit time intervals; and (2) a velocity is acquired, in uniform acceleration, by 

the cumulation of equal unit velocities incremented over successive unit time intervals. 

In this representation, velocity is measured by the unit distances traversed in unit 

times of statement (1), while acceleration is measured by the unit velocities of 

statement (2).3

What is the empirical basis for claiming that SI used a physical representation of

0 We have modeled these two statements on Galileo's definitions of uniform motion 
("one in which the distances traversed by the moving particle during any equal 
intervals of time, are themselves equal.") and uniform acceleration ("A motion is said to 
be uniformly accelerated, when starting from rest, it acquires, during equal time- 
intervals, equal increments of speed.") in Dialogues Concerning Two New Sciences. 
translated by Henry Crew and Alfonso de Salvio, Evanston: Northwestern University 
Press, 1939, pp. 154 and 162, respectively. Since Galileo was deriving, for the first 
time, the kinematic laws of uniform motion and acceleration, he was striving in these 
pages to infer a mathematical description from a physical one; hence, these definitions 
and the passages surrounding them may plausibly be taken as indicating Galileo's 
physical representation of the situation. Galileo uses this physical representation to 
derive the equations that we have labeled Equations 2 and 9. He then proceeds, still 
working from the physical representation, to derive Equation 1, where average 
velocity is given by the definitional Equation 5 (ibid., pp. 173-174), and finally (ibid.. 
p. 174-175) the celebrated Equation 10.

16
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the sort just described, instead of going directly from the problem statements to the 

equations? The evidence is far from conclusive, and we will have to let the reader 

decide whether he finds it persuasive. First, we have the fact, already noted, that SI 

generally calculates distance from Equation 1 rather than Equation 10, even though this 

choice requires him first to solve Equation 5, and sometimes Equation 9. To be sure, 

SI does use Equation 10 in Problems 5, 11, 12, 13, and 16, but in three of these five 

cases (Problems 5, 13, and 16), he is not satisfied with his answer until he checks it, or 

tries to check it, using the other path. Thus, in Problem 5, after using Equation 10 to 

find the distance traversed by a rolling ball, he says: "That seems like a lot .. ah, oh, in 

4 seconds, sure, its final velocity was 12 meters per second so half of that is 6 meters 

per second and 4 seconds is 24. So that figures." Here he uses the known final 

velocity to find the average velocity, and the average velocity and the known time to 

check the distance. In Problem 11, SI actually begins by using Equation 9 to find final 

velocity from time and acceleration, but then (for no reason that can be discerned from 

the protocol) shifts to Equation 10. He does not, however, check his answer. In 

Problem 13, after using Equation 10 to find the acceleration from the time and 

distance, then the final velocity and average vel'ocity (4 meters per second), he 

concludes with: "I should have known that since it went down 12 meters in 3 seconds." 

In Problem 16, the distance and acceleration are given, and the time is called for. 

After using Equation 10 to solve the problem, SI says, "Another way to do that would 

have been to say it goes down 88.2 meters . . oh, no, I couldn't do that without first 

solving for the time, so that's ok." That is, he tries to check his calculation with 

Equation 1, but discovers that neither the time nor the average velocity is given. 

Problem 24 provides a striking example of checking. This is the only problem in which

17



Solving Physics Problems September 8, 1977

distance and terminal velocity are given, while acceleration and time are to be found. 

SI first evokes Equation 9, to splve for A, but realizes that T is not given ("oh, no, 

that's not quite as easy as that"). He then evokes Equation 10, but again observes that 

he has two unknowns. Reviewing what is given, he notes that he can eliminate A from 

Equation 10 by using Equation 9. He thereby obtains s = 1/2 vT,. pauses, and says, "oh, 

of course. The distance is one half times the velocity   the terminal velocity   times 

the time."

There are no problems in which SI proceeds in the opposite direction   that is, 

in which he uses Equation 1 to find the distance, and then checks his result with 

Equation 10. We conclude that the former equation has some priority over the latter, 

and we attribute this priority to the fact that Equations 1 and 9 (and Equation 4, which 

is the generalization of the latter) derive directly from the hypothesized physical 

representation. We would also (and still more speculatively) attribute STs assurance 

that he is using the correct equations to the fact that he is not simply recalling them 

from memory, but is either generating them from the physical representation, or at 

least using the latter to check his recall. When SI uses an equation that is not based 

directly on the physical representation (Equation 10), he exhibits no such assurance, 

and usually feels obliged to check his result.

There are only two comparable paragraphs in S2's protocols, in spite of her 

much more frequent use of Equations 7 and 10, where she checked using the other 

path. These occur in Problems 5 and 17. In Problem 18, she does the reverse: she
i

uses Equation 10 to check a result derived by the more intuitive path. Hence, there is 

little evidence that S2 used a physical representation as the source of her equations 

or to check her results.
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Our confidence in this explanation of STs superior performance is buttressed by 

evidence for the use of such physical representations in the literature. In particular, 

Paige & Simon (1966), who presented their subjects with algebra problems that 

corresponded to physically unrealizable situations, found that many of the subjects 

unintentionally transformed the problems into similar but physically realizable forms.

A More Difficult Problem

The 22nd problem at the end of TaffePs Chapter 5 is one of the more difficult 

ones. It reads:

At the moment car A is starting from rest and accelerating at

4m/sec , car B passes it, moving at a constant speed of 28m/sec. How

long will it take car A to catch up with car B?

The problem refers to two moments in time, which we will call tQ and t^. TQ is 

the time when car A starts from rest, just as car B passes it; tj is the time when car A 

catches up with car B. During the interval T = tj - tQ, the two cars travel the 

distance, S. That the two cars travel the same distance, S, in the same time, T, must be 

Inferred by the problem solver from the language of the problem statement.

There are a number of ways to solve this problem, three of which are 

reasonably direct:

(1) Remembering that T and S are the same for both cars, we have from the first 

sentence, together with Equation 10, S = 1/2(4T^). From the second sentence, 

together with Equation 2, we have, S «= 28T. Eliminating S between these two 

equations, we solve 2T^ «= 28T for T, obtaining T « 14.

(2) Starting with the two equations from the previous solution, we solve the
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second for T - S/28, and substitute this value in the first, obtaining S « 2(S/28) .

Substituting the solution, S = 392, in the second equation, we again obtain T « 14.
i

(3) The average speed, - v*, of car A over T must be the same as the average 

speed of car B, which is 28. But v* «  (VQ + v)/2. Since VQ = 0, it follov/s that the 

terminal velocity of car A is twice its average velocity, or 56. Using the equation 

v = 56 » 4T, we immediately obtain T = 14. This third path is the one that rests most 

directly on physical intuition, as we have defined that term.

Performance of $1 on Problem 22

The experienced subject used method (1) to solve Problem 22. His protocol is
 

so brief we quote it in full: 

[Reads problem]

1. Ah, well, that's a little trickier.
2. Ah, Car A goes a distance of 1/2 aT^
3. where acceleration is 4 meters per second.
4. So it's ... ah ... 2 T^ is the distance it goes,
5. And the other car goes a distance of 28 meters per second times T,
6. so 28 times T  
7. and so 2T2 = 28T
8. Which says that T = 14.
9. what . . . seconds, I guess.
10. Ah, so we will assume that that will catch up in 14 seconds.
11. Now, let's see if that makes any sense.
12. In 14 seconds that car would be .. ah ... going at a velocity of
13. ... ah ... whatever 14 times 4 is
14. which is 56.
15. So it would have gone ... um ... ah ... at an average 

velocity of 1/2 that
16. or 28,
17. which is right to catch up with the other one.

Thus, Subject 1 spoke 84 words while solving the problem, by the first of the 

three solution paths described above. He then spoke 56 words while checking his

20
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result by the third solution path. Although he used Equation 10 in solving the problem, 

we see that he checked his result by the third palh, giving us additional evidence for 

his reliance on a physical representation. The protocol provides no clues as to how he 

chose his steps. In lines 2 through 4 he simply translates the facts about Car A into 

an equation, and in lines 5 and 6, the facts about Car B. He then equates the two 

distances, in line 7, and solves the resulting equation.

On the basis of the information he uses, but without explicit support from the 

language of the protocol, we can infer that he must have used processes such as the 

following:

(a) He generated some kind of problem representation that incorporated the 

starting time, \Q, and location, SQ, and the terminal time, tj, and location, sj, thus 

defining the time interval, T, and distance, S.

(b) Mention of the constant acceleration of car A evoked from his long-term 

memory Equation 10, S = l/2(aT^).

(c) Similarly, mention of the constant speed of car B evoked from his long-term 

memory Equation 2, S = vT.

(d) He noticed that both of the equations had the same dependent variable, S, 

and he set the two equations equal.

(e) He noticed that the new equation contained only the single variable T, and 

he solved for it.

In this whole sequence, perhaps the most sophisticated processes are those 

involved in interpreting key terms in the original problem statement. The first 

sentence of the text is of the form:
 

At the moment X, Y,
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where X is a pair of events involving car A, and Y a pair of events involving car B. 

The sentence asserts that all of these events took place at one time, \Q: V(A,!Q) « 0, 

a(A,tr,) «= 4, v(B,t0) = 28, and B passes A. This last condition may be expressed 

algebraically by the assertion that cars A and B are in the same location at time (Q: 

s(A,t0) = s(B,tQ> = SQ. The "how long" of the second sentence implies a time interval, 

T, and hence a second point in time, t}, at which car A "catches up" with car B. The 

parser must be clever enough to know that the latter phrase means that the two cars 

have the same location at that time: s(A,tj) = s(B,tj). Furthermore, from the fact that 

cars A and B have the same locations at times (Q and tj, he must infer that they have 

gone the same distance, S = s^ - SQ, during the time interval, T = tj - IQ. Once these 

translations had been accomplished, a fairly straightforward set of "noticing" processes 

would be capable of evoking the appropriate equations.

Si's processing scheme for Problem 22 involves only a slight elaboration of the 

scheme he used in solving the simpler problems. The main components of this scheme 

are (1) parsing capabilities powerful enough to handle such phrases as "at the 

moment," and "catch up"; (2) capabilities for creating a semantic representation of a 

physical situation, and drawing inferences (e.g., that the times and distances are equal 

for the two cars); (3) capabilities for evoking physical relations (equations) from long- 

term memory, cued by suitable words or phrases in the text; and (4) capabilities for 

solving simultaneous equations. Again, there is no evidence jn the protocol that the 

subject planned the path he took -- and the brevity of the protocol argues against any 

elaborate planning effort. A simple set of productions could produce such a path 

without planning.

22
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Performance of S^ on Problem 22

S2's protocol for Problem 22 extends over 18 minutes until the problem is 

solved, and contains about 1200 words, which were encoded into some 150 statements. 

The protocol divides neatly into five major episodes. The first episode (lines 0-42), 

which took about 6:15 minutes, was occupied with reading the problem, translating its 

content into algebraic equations, making some inferences from the semantic 

representation of the problem, and evoking some physics equations from LTM. The 

second episode (lines 43-78), which took about 3:30 minutes, is occupied with 

rereading the problem statement, and summarizing the information that was generated 

in the previous episode. No new information is produced in the second episode. The 

third episode (lines 79-109, 3:30 minutes) begins with S2 setting some fairly specific 

goals, and then pursuing them. Up to this point, she has failed to evoke one of the 

physics equations essential for solving the problem (Equation 10). This failure is 

consistent with the production system we have postulated for S2, for the problem 

statement does not ask for a value for S, the dependent variable in Equation 10. The 

formula is finally evoked from LTM (line 92), and equations adequate for solving the 

problem are set up. The equations are judged to be "too complicated," and S2 

abandons this plan. The brief fourth episode (lines 110-117, 1:00 minute) involves an 

unsuccessful effort to execute an infeasible plan. In the fifth, and final, episode (lines 

118-150, 4:30 minutes), S2 returns to the plan of the third episode. This time she is 

not deterred by the complexity of the resulting expressions, and solves the problem.

The second of the three solution paths v/as employed. Ignoring, for the moment, 

S2's search activities, the solution path itself is longer than that of the expert subject, 

SI. For Car A, S2 uses the formula, S «- l/2(aT2 ), substituting 4 for a on the basis of
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the problem statement. For Car B, she uses S = vT, where v=28 is also given in the 

problem statement. From the semantics of tho problem, S2 has deduced that the STs

and the T's in the two equations are equal. Next she solves the second equation for

o 
T = S/v, and substitutes this value in the first, obtaining: S = 2(S/28) . She then

solves this equation for S, and, substituting the value in the second equation, finds T, 

the desired answer.

As with the simpler problems, S2 is much more meticulous than SI in mentioning 

and writing down in algebraic notation all of the facts mentioned in the problem 

statement (e.g., in lines 2-16 of her protocol).. By line 19, however, she has 

constructed a representation of the situation that permits her to infer that the times 

and distances are the same for the two cars. In lines 24-32, she deliberately evokes 

physics formulas that may be relevant to the problem, recalling Equations 2 and 9, but 

not the crucial Equation 10. These formulas are not evoked, however, as translations 

of particular statements about cars A and B, but as general laws of physics   e.g., "We 

know that distance equals velocity times time," which is true only for the constant 

velocity of car B, or the unknown average velocity of car A.

These steps have taken S2 more than 6 mjnutes. She takes the next 3:30 

minutes to summarize and recopy this information. In the next 1:30 minutes, S2 

arrives at a solution plan, and evokes the missing formula, Equation 10. The rest of 

the protocol consists of attempts, first unsuccessful then successful, to carry out this 

plan.

Both subjects, very early in their search, retrieve from memory a physical law 

to describe the motions of each of the two cars. For SI, the laws are Equations 10 

and 2, whose simultaneous solution leads immediately to the solution of the problem.
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S2, however, (line 27) retrieves Equation 9, v = aT, instead of 10, S - l/2(aT^), to 

describe the motion of car A, and Equations 9 and 2 cannot be solved simultaneously 

because they have more than fwo unknowns (S, v, and v*). S2 notices this almost 

immediately (line 34), but does not then evoke Equation 10. That equation, which 

involves the variable S, is only evoked after S2 notices (line 87) that the problem can 

be solved as well in terms of S as in terms of T. She then puts S on the "want list." 

The planning episode, lines 79-94, is so crucial to the solution effort that it is 

reproduced here:

79. Now, we have some things that relate these;
80. we ought to be able to get one in terms of the other.
81. If ... the . . . We know the velocity 

and that seems to be sort of crucial.
82. So, let's see if we can relate those two.
83. So the distance
84. Let's see, no here, time or
85. time equals distance over velocity.
86. And since it's the time we want to find . . .
87. Oh, well, it doesn't really matter.
88. So let's say the distance equals the distance for B,
89. or distance, it doesn't matter for either of them 

since they're equal,
90. distance for B equals 28 times the time.
91. And what do we know about the distance in terms of the other?
92. S also equals one half of the acceleration times the time squared
93. or one half of the acceleration, which is 2,
94. times T squared.

The context makes it reasonably clear that the "relate these" of line 79 refers to 

time and distance. The goal of relating time and distance for car B evokes Equation 2, 

and the goal of relating them for car A evokes Equation 10. S2 now has all of the 

information she needs to solve the problem. She is not confident of this, however, for 

she engages in two brief episodes (lines 95-98 and 110-117) where she attempts to 

use relations in terms of velocity.

S2 employs the second solution strategy. This strategy follows from the method
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she uses for solving simultaneous equations: solve the first equation for one variable 

in terms of the other, then substitute that va'ue in the second equation and solve it. 

The alternative, setting the right-hand sides of the two equations equal to each other, 

does not appear to be in her repertory.

Problem 22 is more complex than the others we have considered, because it 

requires the solution of two simultaneous equations. Nevertheless, the performance of 

both subjects on this problem, and the differences in their ways of attacking it, are 

quite similar to their performances and the differences between them on the simpler 

problems. S2's difficulties on Problem 22 were exacerbated by her failure to evoke 

Equation 10 promptly, and her temporary abandonment of the correct path because of 

its complexity. Nearly ten minutes elapsed before a plan of attack was formulated   a 

delay related to the fact that S2 did not regard S as a "wanted" variable, and hence 

did not evoke Equation 10.

Implications for Learning

We can extract from this experiment two kinds of information that have 

implications for learning. First, we can see if there was any significant change in the 

behavior of either subject over the sequence of problems. Since SI was already 

experienced in these kinds of problems, we would not expect much change in his 

approach, but we might expect S2's behavior to resemble STs more closely on the 

later problems than on the earlier ones. A second implication for learning might be 

derived from the comparison of the two subjects' styles. What was it that S2 had not 

learned that would have facilitated her solving the problems? Is there anything we can 

say about the learning method she used (i.e., studying the chapter of the textbook) 

that would account for what she had learned and for what she had failed to learn?
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Progressive Changes m Behavior

There were no striking changes in the behavior of either subject from the
t i

earlier problems to the later ones. This is shown by the fact that a single production 

system can be written for each subject that predicts behavior quite well for the entire 

sequence of problems. Nor does STs advantage in solution times appear to decline 

over the sequence, as v/e might expect if S2 were learning rapidly.

On the other hand, S2's learning may be obscured by the fact that the later 

problems are, on average, more difficult than the earlier ones (for both subjects), and 

of more varied types. Three of the four problems SI found most difficult were the 

only problems of their type (the fourth, Problem 21, was the one where he started
 

with English instead of metric units). These same three problems were also difficult 

for S2.

There is one clear piece of evidence of learning in S2's behavior, and one that is 

more speculative. First of all, on a number of the earlier problems, she had to refer 

back to the textbook to find the appropriate equations, or to verify them. This 

dependence on the textbook disappeared fairly rapidly. The information was gradually 

transfered to, and became available from, long term memory. The more subtle change 

was that, on two occasions, S2 used different methods of solving two problems of the 

same type. Although Problems 6 and 18 are identical in structure (VQ, a, and v. given, 

T and S unknown), S2 uses Equation 10 to solve Problem 6, but finds distance in terms 

of average velocity in Problem 18. The same shift occurs from Problem 23 to 25 (VQ, 

y, and T given, S unknown). Hence, in two of the later problems (Problems 18 and 25), 

S2 uses the path more closely related to physical intuition, where earlier she had used 

the other path.
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We should not be surprised that other clear evidence of learning has not been 

discovered in the protocols. Even in a restricted task domain, working some two dozen 

problems does not represent an enormous amount of practice of the requisite skills. In 

domains of motor skill (playing the piano, riding a bicycle) we would not be astonished 

if this much practice yielded only modest gains.

Gaps m Skill

No single factor accounts for Si's greater skill in solving these kinematics 

problems. S2 takes each step in her solutions more slowly than SI, frequently 

expressing lack of confidence that she is on the right track. She takes a considerable 

amount of time summarizing and recapitulating the information she obtains. When she 

evokes a formula, she does not always substitute into it immediately the values of the 

variables given in the problem statement. She is less skilled and sure than SI in both 

algebraic and arithmetic manipulation, and makes more arithmetic mistakes. Because of

her lack of confidence, she sometimes abandons a solution attempt when she is on the
i

right path.

Differences of these kinds might well account for the full difference in skill 

between the two subjects, but we have adduced evidence that another factor, too, is 

involved. If STs approach to these problems may be characterized as "physical," S2's 

is "algebraic." There is evidence, though less decisive than we should like, that SI 

generally moves from the problem statement to a representation of the physical 

situation, and from that representation to a set of equations. Most of our evidence for 

this claim is indirect   principally the fact that STs solution paths lie close to simple
 

physical representations of the phenomena.
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When we say that S2's techniques are "algebraic," we mean that she appears to 

go rather directly, in the manner of the production system with which we simulated 

her behavior, from the problem statements to the equations required to solve them. 

By studying the textbook chapter and the illustrative problems, S2 learned the algebra 

of kinematics, including the necessary equations for solving kinematics problems, but 

was only beginning to learn the physics   how to represent complex kinematics 

situations. The textbook seems to have been more successful in teaching equations 

than in inducing a high level of physical intuition.

Conclusion

In this study we have undertaken a detailed analysis of the task of solving 

simple kinematics problems. We have sought to describe not only the explicit 

Knowledge of physical laws that the student must acquire, but also how those laws 

must be organized and "indexed" in memory in order to provide a basis for problem- 

solving skills in this domain.

The physics content of the problems, which test about one week's work in a 

standard high school or college physics course, is quite limited, amounting to only 

about three or four laws and a few consequences that are derivable rather directly 

from them. Yet physics is not usually regarded as an easy school subject. What does 

the student need to learn besides the bare laws themselves? One approach to 

answering this question is to compare and contrast highly skilled performance on the 

problems with the performance of someone who is just beginning the study of
 

physics.

Using this strategy, we have examined the protocols of two subjects working
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physics problems under thinking-aloud instructions. The two subjects, one an expert 

and one a novice, spanned a wide range of skill in both physics and algebra. We have 

constructed production systems that provide a first-approximation theory of the 

processes the subjects were using in solving these problems, and we have studied in

»

detail both the differences between the processes of the two subjects and the 

deviations of each from this first-approximation theory.

The production systems that describe the behavior of the two subjects are quite 

similar in basic structure. The condition sides of the productions test whether the 

values of the independent and dependent variables in each of the physical laws are
 

known, and trigger the action of solving the corresponding equations for the 

dependent variables when the appropriate conditions are met. The conditions induce a 

"working forward" strategy in the expert, and a "working backward" strategy in the 

novice.

Much of the difference in skill between the two subjects can be explained in 

terms of a generalized "practice effect." The skilled subject has had vastly more 

experience in the kinds of algebraic and arithmetic manipulations required for solving 

problems of these kinds. This difference in experience shows up both as difference in 

a variety of skills and difference in confidence.

We believe that we have also identified a more important difference that may be 

labeled "physical intuition." To assert that an advantage in physical intuition accounts 

for the superior ability of physicists to solve physics problems should occasion no 

surprise. Physicists and teachers of physics have been saying that for years. What 

we hope to have contributed in this study is a reasonably operational definition of 

what constitutes physical intuition, and an indication of how it enters into the solution 

of physics problems.
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Some clear research tasks lie ahead. We must find more reliable means of 

detecting the presence or absence of physical intuition in problem solving behavior. 

We suspect that skilled subjects, will provide fuller and more revealing protocols if we 

give them harder problems than the ones used here, and that is a direction in which 

we Intend to move.

As a clearer picture of the nature of physical intuition emerges, it will become 

feasible to address some pedagogical issues. What kinds of experiences encourage the 

growth of physical intuition? How easy is it to learn to take the step from a physical 

representation of a problem to equations for solving it, and what training will facilitate
i

that step? Is high skill in a subject like physics attainable purely with algebraic skills, 

and without cultivating physical intuition? How can we diagnose a deficiency in 

physical intuition when a high level of algebraic skill is present? These questions seem 

to us central ones in facilitating development and instruction in school subjects that 

are concerned with understanding the physical world.
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Figure 1 

Protocol of SI on Problem 19

1. A bullet leaves the muzzle of a gun at a speed of 400 meters per second.

2. The length of the gun barrel is half a meter.

3. Assuming that the bullet is uniformly accelerated

4. what is the average speed within the barrel?

5. Well, obviously one half of 400 is 200 meters per second.

6. Ah...How long was the bullet in the gun after it was fired?

7. If the average speed was 200 meters per second,

8. and the barrel is a half of a meter,

9. then it would be 100...one...wait a while..

10. The average velocity is 200 meters per second,

11. and the length is half a meter....

12. Yeh, then...ah...it's a half meter.

13. and it's 200 meters per second,

14. then it would have to be one four-hundredth of a second.



Figure 2 

Protocol of S2 on Problem 19

1. A bullet leaves the nuzzle of a gun at a speed of 40 cetera per second. 

.2. V-zero equals 4C, no £00 caters per second. 

3» The length of the gun barrel is .5 meters.

4. Assuming that the bullet vas uniformly accelerated,

5. what is its average speed inside the barrel?

6. Its average speed inside the barrel vas from zero plus...to 400....

7. Urn....average velocity tines the tine it vas there,

8. tiae divided by two.

9. Its average velocity vas 200 maters per second.

10. Assuming that the bullet vas uniformly accelerated, vhat is the 

average speed inside the barrel?

11. Its average speed vas 200 deters per second*

12. That's got to be right.

13. The average speed is speed, is tho speed, is the v-zero, vhich vas zero,

14. plua v, vhich vas the other, divided by 2.....

15. Why divided by two?

16. Tha average of the tvo speeds, right?

17. Or 200 neters per second.

IB. There's something vrong vith that; maybe that's vhat I did something

wrong vith on the other one. Maybe I should have taken a square or 

 onething. I'll go back and look at it in a minute.

19. How long vas the bullet in the gun after it vas fired?

20. Row long vas the bullet in tho gun?

21. All right. The time.

22. If s equals v t,

23. t equals the distance divided by the average speed,

24. equals 200 meters.....

25. No, point 5 divided by 200 neters.

26. So let's worry about that.

27. Point 5 by 200 is 002.5

28. Time- equals .002.25 seconds.

29. Clearly, something is vrong vith Problem IB. Let's go bade and 

do that again based on one of the aample problems.
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SUBJECT SI 

Prod. Ind.Varf. Dep.Var.

PI
p?
P3
P4
P5
P6
P7
PS
P9
P10

vv0 l
v*T
Sv*

vvQa
v0v
vQaT
ST
v0aS
SvQT
vnaT

a
S
T
T
v*

V
V*

T
a
S

Equation
 

a «= (V-VQ)/T 
S = v*T 
T » S/v* 
T = (v-v0 )/a 
v* = (v0 4V)/2 
v

a 
S

S/T

2(S-v0T)/T 
vQT-«-.5aT 2

Figure 3. PRODUCTION SYSTEM FOR SI

SUBJECT 52

Prod. Ind.Vatf.

PI
P2
P3
P4
P5
P6
P7
PS
PQ
P10
PI 1
P12

Sv*

vQaS
aSv0
vQaT
v*T

vQaT
vvQT
vvQS
vvoa
VQV

SvQT
ST

Dep.Var.

T
T
v
v
S
S
a
a
T
v*

a

Equation 

T « S/v*

V «

S - v*T
S - v0T+.5aT2

a » (v2 -v02 )/2S 
T » (v-v0)/a 
v* » (vQ ^v)/2 
a » 2(S-v0T)/T2 
v* - S/T

Figure 4. PRODUCTION SYSTEM FOR S2



Table 1

Number of Words, Time and Rate Used 

in Solving 19 Physics Problems

Problem 

Number

3

5

6

7

8

9

10

11

12

13

16

17

18

19

20

21

23

2k

2$

Number 

of Words

54

120

102

100

60

100

82

116

50

149

351 C

106

116

142

141

197

67

258

87

SI

T i me in 

Seconds

16

54

36

36

19

43

28

52

26

79
152C

50

40

45

55

80

25

no

35

Words per 

Minute

203

133

170

167

189

140

176

134

115

113
139°

127

174

189

153

148

160

141

150

Number 

of Words

100

270

167

176

208

285

a

700b

63

591

341

597

a

271

312

138

311

514

137

S2

T i me in 

Seconds

85

233

163

169

184

240

a

513b

48

560

246

545

a

195

260

120

295

555

135

Words per 

Minute

70

70

60

62

68

71

a

82b

79

63

83

66

a

83

72

69

63

56

61

Protocol incomplete.

Minimum time first part of solution lost from tape.

Does not include checking time, which took 107 seconds, 212 words.



Table 2

Comparison of Solution Paths for Subjects 

and Simulations by Problem Type

Problem 

Type

Given F

VQAT

VQAT

V0AT

V0VT

VQVT

VQVA

Vs
Vs
Vs
VT
ST

i nd

VS

SV

S

S

AS

TS

AT

V*T

VT

V*V

V*

Key: Letter is
V4 means

Variables

Equat ion Type

Prob. 

i

5 
8
9
10

11

12
20
21

23 
25

7 
17

6 
18

24

19

16

13

3

variable
"Equat ion

: A, acce 
V, term

Equ ival

SI

Protocol Simulation

V4-S7 V4-V*5-S1 
V4~V"5~S1 V4~V"5~S1
V4~V''C 5~"S 1 V4~V"5~Sl
V4"~ V"5""S 1 V4~ V''C 5*~ S 1

V4-S7 V4-V*5-S1

S7 V4-V*5-S1 
V4~> V"5""S1 V4*"V''C 5~S1
V4~"V''r 5"~Sl V4"~V''C 5~S1

V*5~Sl A4-V*5-S1 
V*5-S1 A4-V-^5-Sl

%~v**l~l\ %~£l-l\

T4~V'^5~ S 1 T4~V"5~Sl 
T4~ V^'5"*S 1 T4~V"5~Sl

a y^c~Tl ~A4

V*5-T1 V*5-T1

T7-V4 T7-V4

Protocol

V4-S7
V4~" S7
V4-S7

V4-S7

S7 
S7
S7

A4-S7 
V*5-S1

"11]

£&-si

A8-T7

V*5-T1

V8-T7

S2

Simula

V4 °~S7
\fli— C"7

V4~S7
V4-S7

V4-S7

S7 
S7
S7

A!:^
A4-S7

T4-S7

A8-T7

t ion

A8-T7-V*5

T7-V8

A7-Vl|.V*5 V*1-A7-V4 A7-V8-V^5 A7-V8-V*5

V* 1 V* 1

to be solved for; number is
4 was used to solve for V."

leration; S, distance; T, t 
inal velocity; V*, average

ent equations, pp. 3~4

V*l

equation type

ime; V , initi 
veloci ty .

V*l

used; e.

al veloci

9- 1

ty;

1 
k
5
7
8

1,2 S = V-'-T, S = VT (constant speed)
3,4,9 A» (V-V.)/T, V = V n+AT, V = AT (where VA « 0)
5 V*=(Vn?V)/2 ° °
7,10 S = V T¥l/2(AT 2 ), S = 1/2(AT) 2 (where V « 0)
8,11 V 2 -V =2AS, V 2 = 2AS (where V = 0)

Anomolous solution. See Text.


