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Abstract
KNACK is a specialized knowledge acquisition tool that generates expert systems for evaluating different 

classes of designs. The tool derives its power from exploiting the presupposed problem-solving method 
of the expert systems it generates. An important feature of KNACK is that it acquires knowledge from 
domain experts without presupposing knowledge engineering skills on their part. This is achieved by 

incorporating general knowledge about evaluation tasks in KNACK. Using that knowledge, KNACK 
builds a model of the domain through an interview process with the expert. During knowledge 

acquisition KNACK uses the domain model to elicit knowledge in a format familiar to the expert. 
KNACK expects the expert to communicate a portion of his knowledge as a sample report and divides the 
report into small fragments. It asks the expert for strategies of how to customize the fragments for 
different applications. KNACK generalizes the fragments and strategies, displays several instantiations of 
them, and the expert edits any of these that need it. The corrections motivate and guide KNACK in 
refining the knowledge base. This process of abstraction and completion results hi a knowledge base 
containing a large collection of generalized report fragments more broadly applicable than the sample 
report Finally, KNACK examines the acquired knowledge for incompleteness and inconsistency. 1

1. Introduction
KNACK [Klinker 87a] is a knowledge acquisition tool that can be used by domain experts to create 
expert systems that assist with the evaluation of different classes of designs. It exploits a presupposed 
problem-solving method as well as an explicit domain model and it takes a report-driven approach to 

acquire knowledge.

KNACK presupposes and exploits the problem-solving method of the expert systems it generates. A 

problem solving method is knowledge that establishes and controls the sequences of actions required to

lrThis research was sponsored by the Defense Nuclear Agency (DNA) and the Harry Diamond Laboratories (HDL) under 

contract DNA001-85-C-0027, the Bares Foundation, Boeing Computer Services (BCS), and Digital Equipment Corporation 
(DEC). The views and conclusions contained in this document are those of the author and should not be interpreted as 
representing the official policies, either expressed or implied, of DNA, HDL, the Bares Foundation, BCS, or DEC.
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perform some task. This control knowledge dynamically defines the order in which subtasks have to be 

solved in order to perform the overall task. It also defines the kind of domain specific knowledge that is 
applicable within each step. Thus, the problem solving method helps to identify and classify the domain 
knowledge. It makes the different roles knowledge plays in the design evaluation task explicit and 
suggests ways to organize the knowledge base according to the knowledge roles. It further defines how 
knowledge interacts during problem solving. The granularity of the problem solving method is 

determined by the demand that the knowledge represented by a knowledge role can be applied without 
further control knowledge, e.g. the order in which that knowledge will be brought to bear does not 

matter.

Like SALT [Marcus 87], KNACK can be used to develop expert systems that construct a solution 
compatible with a set of constraints. But whereas SALT-generated expert systems produce designs from 

scratch, i.e., typically one designer has complete knowledge about all constraints a solution has to satisfy, 
KNACK generates evaluation systems. Evaluation systems assume that multiple designers are involved 
in a design task and each designer only knows a subset of the constraints a solution has to satisfy. The 

designers have to work together to construct a design. They must communicate their partial solution to 
other designers who then refine the design. Evaluation systems are useful when designers have little or 
no knowledge about specialized design practices required by unfamiliar design techniques or 

environments. For example, this is the case when new techniques have been developed that are not yet 
common knowledge. Therefore, evaluation systems assist a designer hi refining a given design to take 

into account aspects of an unfamiliar environment. They evaluate designs from a different point of view 
not anticipated in the original design. Evaluation systems assume that an incomplete design exists that 
may be suboptimal under a particular perspective, compare the parameters of a given design with 
constraints imposed by a given environment, and propose fixes in case some constraints are violated.

Explicit knowledge about an assumed problem-solving method and its associated knowledge roles can be 
used during knowledge acquisition to guide a domain expert in defining, analyzing and testing a 

knowledge base. However, the expert is still required to enter knowledge in a structured format that may 
be unfamiliar to him. This imposes a learning burden on the expert. An important goal in the 
development of KNACK is that it acquires knowledge from domain experts without presupposing 

knowledge engineering skills on their part. Like OPAL [Musen 87], KNACK exploits a domain model 
during knowledge acquisition. The domain model contains a structural and functional definition of a 
particular evaluation domain. It describes the concepts experts use and their interdependences. KNACK 
uses the domain model to elicit knowledge in a format familiar to the expert and develop expectations 
about the knowledge the expert might provide. KNACK differs from OPAL in that the domain model can 

be customized for a particular domain and no knowledge engineering expertise is required to build a 

domain model.

Another characteristic of KNACK is its report-driven approach to acquiring knowledge. KNACK 

assumes that an expert can present his knowledge adequately in the form of a report. The expert must 
have a clear understanding of what constitutes an acceptable report describing and evaluating a design. 
This includes that the expert knows what information is needed, how to evaluate this information, and 

how a designer should present this information. We think this is a valid assumption for a variety of 
evaluation tasks. In general, someone whose job is to evaluate the work of others must have 

comprehensive and precise knowledge about that work.

The following sections describe the KNACK tool in detail. Section 2 introduces the KNACKr-generated 
expert systems and explicates their problem solving method and its knowledge roles KNACK assumes.

^i
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Section 3 discusses the approach KNACK takes to acquire knowledge and presents a sample interaction 
with KNACK. Section 4 jteTHeant to^ho^'how KNACK detects cues that its knowledge base might be 
incomplete or inconsistent. Section 5 describes the knowledge base KNACK generates as a result of a 
knowledge acquisition session. "^Section 6 w« introduce the systems we have built with KNACK so far. 
Section 7 compares KNACK to other knowledge acquisition systems.

2. The Presupposed Problem-solving Method and its Knowledge Roles
Each of the evaluation systems produced by KNACK is called a WRINGER. A WRINGER expert 
system assumes that an incomplete design exists that may be suboptimal under a particular perspective. 
Its purpose is to assist a designer in refining a given, incomplete design to take into account aspects of an 
unfamiliar environment It further presents this design, together with a preliminary design evaluation, in 
the form of a report. To evaluate designs, a WRINGER must have available an initial description of the 
design to be evaluated. Thus, a WRINGER first gathers the information describing an existing design and 
then evaluates the information. If, as a result of the evaluation, additional information is required, a 
WRINGER gathers that information. After that, another evaluation is performed. This iterative process 
ends when the designer is satisfied with the design.

To gather the information describing a specific design a WRINGER uses strategies to elicit information 
from the designer or to infer it. For example, it asks questions or computes numeric values using 
formulas. As it progresses, the gathering of information is driven by previously elicited information. 
This is a data-driven approach that modifies a WRINGER'S behavior according to the information 
specific to each design it is applied to.

The collected information is evaluated by a WRINGER for validity, consistency, completeness, and 
possible design flaws, i.e., a WRINGER checks the information describing a design for violations of 
constraints imposed by a given environment If indications of design flaws are found, a WRINGER 
pomts them out to the designer together with suggestions for improving the design. If the designer agrees 
with the fix, a WRINGER updates the design description using a truth maintenance system. Finally, 
when the designer is satisfied with the design, a WRINGER generates a report describing and evaluating 
the design.

Throughout the paper we will use the Design Parameters Report WRINGER (DPR WRINGER), one of 
the WRINGERS we have generated with KNACK, as an example to illustrate the WRINGERs and 
KNACK. The domain of the DPR WRINGER is nuclear hardening. Nuclear hardening implies the use 
of specific engineering design practices to increase the resistance of an electromechanical system to the 
environmental effects generated by a nuclear weapon. Designers of electromechanical systems usually 
have little or no knowledge about the specialized analytical methods and engineering practices of the 
hardening domain. The purpose of the DPR WRINGER is to assist a designer in improving given designs 
of electromechanical systems that may be suboptimal from a hardening perspective. The WRINGER 
assumes that the initial design describes a technically functional system. It evaluates the design from a 
hardening perspective. The suggested improvements are either extensions to the design or 
recommendations for using different design components. The WRINGER presents the design, together 
with the results of the evaluation, hi the form of a technical document that meets government 
requirements.

In detail, the DPR WRINGER documents a system description, analysis, design features, and assumptions 
required to assure the nuclear hardness and survivability of a system with respect to one nuclear
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environment: electromagnetic pulse (EMP). To evaluate a system, the WRINGER gathers detailed
information about an electromechanical system design ranging from the level of major components to the
level of individual semiconductors. After the gathered information is checked for completeness and
consistency, a worst-case analysis is carried out for each interface circuit in a system, determining
whether the EMP environment will induce transients above the operating voltage of the interface circuits.
This analysis indicates either that a system is sufficiently refractory of the EMP environment or may not
be. In the latter case a more detailedfecreen\analysis, and if necessary an even more precisef resistivej TTRXAG.   s
analysis, is conducted to identify inadequacies in a system's response to the EMP environment. When
such an inadequacy is pinpointed, the WRINGER suggests possible fixes, all of which are prechecked for
adequate strengthening properties in the interface circuits.

The above general description of a WRINGER and the specific example of the DPR WRINGER indicate 
that a WRINGERs problem-solving method has to perform two major tasks: gather the requisite 
information from the designer to describe an incomplete design, and perform a constructive evaluation of 
the design. The following describes thelpoblem-solving methocDand the associated knowledge roles for 
each of these tasks.

2.1. Information Gathering
A WRINGER first determines which piece of information to gather next. The goal is to reduce the 
burden placed on the designer in describing a system design. Generally only a fraction of a WRINGER'S 
knowledge is applicable to the evaluation of any particular design. To determine the knowledge relevant 
to the task at hand, a WRINGER selects the necessary information about a design in a data-driven 
manner; the decision to gather a particular piece of information is based on previously gathered 
information. But it is often the case that more than one piece of information can be gathered at any time. 
The order hi which the pieces of information are gathered may be important: the designer might feel 
more natural providing information in a certain order. For that reason a WRINGER follows the outline of 
the report it is expected to produce. That skeletal report organizes a WRINGER'S knowledge around 
related topics. In folio whig the outline of the report a WRINGER collects related information in a 
coherent manner.

Next, a WRINGERs ̂ problem-solving method {selects and applies a strategy! to gather the piece of
information determined in the previous step. To take into account the different sources of information
available to an evaluator, a WRINGER has^gverai\waysito\elicij information from the designer or to! infer/ .
it For example, it |gicg| information from the designer by (1) asking a question, (2) interpreting a "t^fi Sto^f^-
graphical design description, e.g. a drawing of a system's components, (3) asking the designer to fill in
the slots of a table, diagram, or form, or (4) askmg the user to choose among the items in a menu. A
WRINGERjJggSS} additional information based on previously gathered information. For example, it fills
in gaps by (5) {directly applying specific domain knowledge, (6) ^dmputinglnumeric values, or (7)
^ernng^o a database. Often more than one way exists to gather a piece of information. When this is the
case, a WRINGER fcdects_a_strategS how to gather it. It prefers inference strategies to avoid asking the
designer unnecessary questions. Once a strategy is selected, a WRINGER applies the strategy, checks the
provided pieces of information for synonyms, and updates the design description.

After that, another piece of information to gather next is determined. This iterative process ends when the 
information required for the evaluation is available.

The above described [problem-solving melhod] defines the following roles knowledge can play in the
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information gathering task:
  Skeletal Report

  Information Identification »\ h^^ri '' <* J3 dse^w^ "bi.

  Strategy

  Synonym

The SKELETAL REPORT role includes) knowledge aboutjwhich chapters, sections and subsections are part 
of the report a WRINGER is expected to produce, their order, and how to appropriately place report 
fragments within the report. Dependent on the designer's description of a particular design a WRINGER 
determines the appropriate chapters, sections, subsections, selects the fragments describing the particular 
design into the skeleton, and assembles the report The example below shows a part of the table of 
contents for the DPR WRINGER.2

1 . Evaluation of the EMP Hardness
1.1. Summary of the System Description
1.2. Shielding Requirement s for the 

Enclosures
1.2.1. Diffusion through the Skin of 

the Enclosure
1.2.2. EMP Leakage through the 

Apertures

INFORMATION IDENTIFICATION jmowledgejis used to identify pieces of information which are relevant to
each part of the report. It prganizgfl the required information around related topics.

The STRATEGY role describes the different[w^s3o gather a piece of information. Relying on previously 
elicited information and other pre-defined knowledge, if\detines the circumst^es? in which these 
techniques can be applied. It also includes ̂ instructions] about what to\expect| as a response and whaitodo] 
with the elicited information. The following example gives ajflavoAof the^jndjof questions the DPR 
WRINGER asks.

What enclosures are part of the COMMUNICATIONS 
UNIT system? : S-280C, Metal Box

Please, list the apertures of the S-280C 
enclosure. : window, cable entry panel

The STRATEGY knowledge further includes information about the validity of newly gathered information. 
This includes finding out whether input provided by the designer is^pbviousiv wrong of I merely" 

"unplausibie) In the first case, an answer might be outside of a predefined numeric range or it might not be 
a member of a predefined complete set of possible answers. In the second case an answer might be 
flagged as questionable because it is not a member of a predefined incomplete set of possible answers. 
For example:

2In this and the following examples a WRINGER'S and KNACK's prompts and messages appear in boldface, the users 
responses in underlined boldface. A word in brackets at the end of a WRINGER's or KNACK's prompts is the default response. 
The user may reply with the default by hitting return: <cr>.
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Please, list the cables of the COMMUNICATIONS 
UNIT system? : audio cable, power cable

I am not familiar with the term AUDIO CABLE. 
Some of the following terms are expected 
answers :

SIGNAL CABLE,
POWER CABLE

Please confirm or revise your answer. 
[ AUDIO CABLE ] : signal cable

The role SYNONYM is a way to represent knowledge about making a user's answer consistent with the 
common way of expressing that answer. For example, if a designer's answer to a question contains a 
synonym for a known expression, the WRINGER replaces it with that known expression.

2.2. Design Evaluation
The collected information is evaluated by a WRINGER^forj/ajiditv. consistency, completeness, and 
possible design flaws, i.e., a WRINGER checks the information describing a design for violations of 
constraints imposed by a given environment. If indications of design flaws are found, a WRINGER 
points them out to the designer. It selects among a number of fixes associated with each constraint 
violation. A truth maintenance system describes how a fix affects the data item that violated a constraint. 
If a fix resolves the constraint violation a WRINGER will suggests it to the designer.

Since a WRINGER did not construct the design from scratch, it is not aware of all the implications a 
proposed change might have. It therefore asks the designer to select one of the suggested fixes. A 
WRINGER then updates the system description. An applied fix might make additional information 
necessary and a WRINGER tries to elicit this information from the designer. If the designer cannot or 
does not want to provide the required information, a WRINGER assumes a worst-case value.

Finally, the description of the system design and the evaluation results are usually documented in some 
form. A WRINGER presents the gathered information and the results of the evaluation hi the form of a 
report. It uses the skeletal report to determine the structure and the report fragments to determine the 
content of a report about an actual design. It instantiates the selected report fragments with the 
information acquired from the designer and with values resulting from its evaluation. A WRINGER then 
generates the report. In some cases the designer will not agree with the results of the evaluation. For this 
reason a WRINGER allows the designer to add comments to a report.

The above described problem-solving method defines the following roles knowledge can play in the 
design evaluation task:

  Constraint

  Fix

  Report Fragment

CONSTRAINT knowledge defines how to uncover contradictory information. For example, the DPR 
WRINGER makes sure that a cable carrying power is not connected to a cable carrying a signal. 
CONSTRAINT knowledge further describes how to detect when information provided by the designer is 
incomplete. For example, the DPR WRINGER checks whether a power source is specified for the system 
and whether a defined antenna is connected to the rest of the system. Finally, CONSTRAINT knowledge
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describes how to identify problem cues that are associated with possible flaws in a design, i.e., how to 
identify violations of constraints imposed by a given environment. For example:

Screen analysis for SIGNAL LINE 2 INTERFACE «Urw 
CIRCUIT :

Junctions Vbd Sa£e-E. Threat -E. Eval.

D3 1N752A 200 1.34e-02 8.29e-03 HARD 
D4 1N1184 200 3.60e-04 8.29e-03 SOFT

The above diagram indicates problems with the SIGNAL LINE 2 INTERFACE CIRCUIT: The circuit 
contains two diodes in series with the SIGNAL LINE 2. The threat energy produced by the given BMP 
environment and coupled into the circuit via SIGNAL LINE 2 would damage diode D4.

FIX knowledge suggests how a design could be improved hi the case a flaw was found. It also determines 
worst-case values for the necessary pieces of information the designer could not provide. For example, if 
the energy coupled into an interface circuit through a cable exceeds an upper limit, the semiconductor 
devices of the interface circuit will be damaged. The DPR WRINGER will suggest using a terminal 
protection device to limit that energy to an acceptable level. The following demonstrates this for the 
above example.

The following TPDs will reduce the threat 
energy for SIGNAL LINE 2 INTERFACE CIRCUIT 
sufficiently:

Type E.diss 
[J]

Vover 
[V]

Vknee 
[V]

Ton 
[ns]

15KP280 6.00e+10 5.00e+02 3.45e+02 l.OOe-03 
V420LA10 6.00e+10 2.42e+03 1.20e+03 l.OOe-00

Which TPD would you like to use? [ 15KP280 ]: 
<cr>

A REPORT FRAGMENT describes a small possible piece of an actual report. This includes the text to be 
printed in a report and the variables containing the information that is specific to whichever system design 
is the subject of a WRINGER report. It also incorporates the gathered information into the report The 
report part used as the sample report in section 3 is also an example of a report part produced by the DPR 
WRINGER.

3. Acquiring Knowledge
KNACK is a knowledge acquisition tool that can be used by domain experts to create WRINGERs, expert 
systems that assist with the evaluation of different classes of designs. An important goal in the 
development of KNACK is, that is acquires knowledge from domain experts without presupposing 
knowledge engineering skills on their part. To reach that goal, KNACK* s approach for knowledge 
acquisition combines and uses existing AI techniques to derive a general description how to evaluate 
designs from a specific sample description. This is a process of abstraction (e.g. the specific sample 
description is variabilized) and completion (e.g. signs of incompleteness lead to the elicitation of 
additional knowledge).
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General knowledge about evaluating designs is incorporated into KNACK. In an initial questioning 
session with the expert, KNACK uses that knowledge to conduct an interview with the expert. The 
interview results in a preliminary model of a particular evaluation domain. During knowledge acquisition 
KNACK refines the preliminary domain model into a detailed structural and functional model of the 
domain. The domain model describes the concepts, their interdependencies, and the vocabulary the 
expert uses in performing an evaluation task. KNACK also requires a sample report as an initial input. 
The sample report is a document that exemplifies the description and the evaluation of a particular design.

Once the sample report is typed in and an initial domain model is defined, KNACK develops expertise in 
evaluating designs by integrating the specific sample report with the domain model hi successive 
interactions with the expert. This integration process generalizes the sample report, making it applicable 
to different systems. To demonstrate its understanding of the sample report and to predict and exemplify 
the performance an expert can expect from the WRINGER he is creating, KNACK instantiates the 
generalized report with known concept representatives taken from the domain model. It displays several 
differently instantiated examples for each generalized report fragment. The expert edits any examples 
that make implausible statements. KNACK uses this feedback as additional knowledge to correct its 
generalizations and refine the domain model.

Once the expert accepts KNACK's understanding of the sample report, KNACK elicits knowledge about
how to customize the generalized sample report for a particular application. The experfdefines strategies 
that a KNACK generated expert system, a WRINGER, will use to acquire values instantiating the 
concepts in the generalized fragments. Experts define strategies in the same way that report fragments are 
defined: by typing in samples. Strategies can be questions, formulas, inferences, and other forms. 
KNACK generalizes the strategies and displays some example instantiations of them for review and 
correction by the expert.

KNACK's knowledge acquisition approach results in a knowledge base the generated WRINGER expert 
system can use to evaluate a range of designs and to present the results in the form of a report However, 
the sample report covers only one simple design and almost certainly lacks some important concepts 
needed for the evaluation of a broader range of designs. For this reason, KNACK searches the knowledge 
base for report fragments or strategies that indicate gaps or conflicts with its domain model. If a possible 
flaw is found, KNACK asks the expert to correct the report, the strategies, or the domain model.

The following detailed description of KNACK's knowledge acquisition approach is organized around an 
example of an actual KNACK case: the creation of the DPR WRINGER. It leads through the process of 
typing hi a small part of a sample report, acquiring a partial domain model, generalizing the part of the 
sample report, and defining strategies. The analysis of the acquired knowledge is demonstrated in section 
4. In the interest of brevity, the excerpts used as examples are only a small fraction of the full KNACK 
case.

KNACK starts out with displaying the top level menu.

model 
report
generalize-report
strategy
generalize-strategy
analyze
exit

acquire domain model 
acquire report
generalize report 
acquire strategies 
generalize strategies 
analyze knowledge base 
exit KNACK
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KNACK's report-driven approach to acquire knowledge determines the expert's choices on the top level: 
define or update the domain model, sample report, or strategies; generalize the sample report or sample 
strategies; analyze the knowledge base for incompleteness or inconsistency. Once the sample report is 
typed in and an initial domain model is defined, the expert can choose any of the above functions. Our 
sample interaction starts with typing in the sample report.

3.1. Acquiring the Sample Report
KNACK requires a sample report as an initial input. The sample report is a document describing how the 
expert evaluates a particular design. It exemplifies what the expert intends the WRINGER to produce. It 
may be written specially for this purpose by a domain expert or group of experts, or selected from 
existing reports. It contains a description of the design and the given environment, a detailed evaluation 
of the design with regard to the environment, and suggestions to improve the design hi case design flaws 
are found. The sample report is a familiar and convenient medium for the expert to express his 
knowledge.

The selection of the REPORT option in the top level menu leads to the report menu shown below.
next
previous 
edit 
insert
delete 
quit

display next fragment 
display previous fragment 
edit current fragment 
insert fragments
delete current fragment 
quit sample report editor

It determines the top level features of a simple text editor that can be used to define, update, or leaf 
through the sample report. The INSERT function allows to input the sample report. The sample report is 
typed in to a file by any person familiar with text editors.

1. Evaluation of the EMP Hardness

1.1. Summary of the System Description

The system Communications Unit is designed to 
resist to EMP threat. It consists of a 
Computer, a Modem, a Radio, and a Motor 
Generator. Power is supplied from the Motor 
Generator to the Computer, Modem, and Radio by 
the Power Cable.

The Computer, Modem, and Radio are protected 
by a S-280C enclosure. The Motor Generator is 
protected by a Metal Box enclosure.

The S-280C enclosure has the following 
apertures; Window and Cable Entry Panel. The 
Metal Boat enclosure has the following 
apertures; Cable Entry Panel.

1.2. Shielding Requirements for the S-280C 
______Enclosure

1.2.1. Diffusion through the Skin of the 
Enclosure
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The S-280C enclosure is made of aluminum and 
is 30 mils thick. Aluminum has a 
relative-conductivity of 0.15 mhos/m. A plate 
of aluminum must be at least 20 mils thick to 
reduce the diffusion factor to an negligible 
level. Therefore, the diffusion factor can be 
neglected.

KNACK divides the report into fragments corresponding to paragraphs. In the above example, this 
results in 8 report fragments.

KNACK also requires a model of the domain as an initial input. Thus, our example continues with the 
definition of the domain model.

3.2. Acquiring the Domain Model
The sample report describes a particular system design in the terms familiar to the expert. To generalize 
the sample report, making it applicable to other designs, KNACK needs a model of the particular 
evaluation domain. The domain model contains a detailed structural and functional description of the 
evaluation task at hand. The structural part of the domain model describes a taxonomy of the concepts, 
vocabulary, and terms experts use and the interdependencies between concepts. This includes the 
relevant parameters of a design and the environment, the constraints, and possible fixes for violated 
constraints. The functional part of the domain model describes procedures how to determine, compare 
and propagate relevant parameters. Thus, the model customizes KNACK for a particular evaluation 
domain.

In addition to generaliz^ the sample report, KNACK uses the concepts and terms described hi the domain 
model to acquire knowledge in a format familiar to the expert The model further represents a preview of 
the knowledge base the expert wants to create. KNACK uses it to develop expectations about the 
knowledge the expert might provide. Based on these expectations KNACK checks the expert's input, 
generates knowledge pieces, and analyzes the resulting knowledge base. The expert then refines 
KNACK's expectations (as described in sections 3.4, 3.5, and 4) and, thus, refines the domain model.

At the beginning of knowledge acquisition, KNACK acquires a preliminary domain model. To acquire 
the preliminary model, it conducts an interview with the expert. This is an interactive process which 
takes a few hours of the expert's time. The interview is driven by KNACK's general understanding of the 
evaluation task. That understanding describes the knowledge Lcommgn to a range of evaluation domains 
on a high level of abstraction. KNACK views evaluation as partly analytic (i.e., determine whether a 
system will function in a given environment) and partly constructive (i.e., improve a system design so that 
it will function in a given environment). The example below gives a flavor of the knowledge applicable 
to a range of evaluation tasks:   .  j5 <

av\

<P
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Design Constraint Environment

comprises has ^^" -v. has comprises

% •**"———"""""Tk JC*""1——"**• K 
Design- Design- Environment- Environment
Component !?>P*r% Property Component

V comprisesf \pfopasos- T \.compr/ses 
/ \-fvc-for / 4 

'Design- Property- \ / Property- 
vConnectton Component \ / Component\ /;-proposes-a-fix-for \ \ I ) proposes-a-fix-for

^omprises ^ Design- 
Component

The general understanding is buijp'into KNACK. It describes a design that needs to be refined to take 
into account aspects of an unfamiliar environment. The nodes are concepts and the links between the 
nodes encode structural knowledge. For example, a design comprises a set of design components 
interrelated by design connections. Design components have design properties. An environment 
comprises environment components. They are further described by environment properties. Design and 
environment properties define the evaluation criteria and are compared to some other properties. This 
defines the constraints a design has to satisfy. Properties can comprise property components. Design 
components can propose a fix for properties or property components. A fix changes a design or suggests 
a design extension and, thus, modifies design or environment properties.

KNACK uses the above described general understanding in the form of generic questions to acquire the 
vocabulary experts are familiar with. The expert's answers customizejCNACK's abstract knowledge into 
a preliminary model of a particular domain. The preliminary model describes concepts, concept 
characteristics, concept representatives, and constraints. The following sample interaction defines a part 
of the preliminary model needed to generalize the above sample report.

How would you like ( o referf to SYSTEM
components? subsystem, enclosure ^ ~ ~"~ ~

How would you like £o~ refe? to SYSTEM U O .
components that interrelate SYSTEM components? °- lrejl£)
cable £/wyp/i_^

How would you like fco refer! to the environment 
in which a SYSTEM must function? nuclear 
environment

The answers to the above questions define new concepts for the domain model. They denote a design, an 
environment, design and environment components and connections.

Other questions define concept properties as the data items to be compared by the evaluation criteria.

How would you like ttgTreferjto the SUBSYSTEM 
properties that define the data items to be 
compared by the evaluation criteria? safe 
energy
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How would you like j£o~refer]to the COUPLING 
properties that define the data items to be 
compared by the evaluation criteria? threat 
energy

Once the constrained data items are known, KNACK asks the expert to determine the constraints. 
Constraints define the evaluation criteria, i.e., the relationships between the data items to be compared. 
The constraints are defined by keywords like "equal", "less equal", "subset"/fetc7

^ —

What /Cs~the~relationsh£pl between the SAFE 2. / 
ENERGY property and the THREAT ENERGY 
property? less equal

Further questions determine the concepts that represent fixes in case constraints are violated
What design components C^g>r_esent^a fixJfor the 
THREAT ENERGY property? enclosure

Concepts are described further by their characteristics.
What are the characteristics of the Enclosure? t - » ***** 
material, thickness

Some questions determine the concept representatives used in the sample report. These are important 
keywords KNACK uses in its generalization process.

Please, list [s^]]e^^lesjfor the SUBSYSTEM: 
computer, modem, radio, motor generator— —— ——— ——— ——— ———
Please, list some examples for the ENCLOSURE: 
S-280C, metal box

Please, list some examples for the MATERIAL 
characteristic of the ENCLOSURE: aluminum

Please, list some examples for the THICKNESS 
characteristic of the ENCLOSURE: number

The expert's responses to all of the above questions are added to KNACK' s general understanding of 
evaluation resulting in a preliminary domain model. The following is an example of a preliminary model ^ 
parts of which are derived from the above interaction.
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System
NAME: Communications Unit

Nuclear- 
Environment

NAME: EMP 
Thermal 
Blast 
INR

Coupling
PEAK-VOLTAGE
PEAK-CURRENT
DERIVATIVE-OF-

CURRENTT

Subsystem
NAME: Co

Modem
Radio
Motor Generator Threat-Energy

Cable
NAME: Power Cable 

Signal Cable 
BC
VOCflES 
VOC-WD 
TP-RES 
TP-IND

osure
NAME:

Metal Box 
MATERIAL 
THICKNESS 
RELATIVE-CON 
MINIMUM-THICKNESS Threat-Voltage

Aperture
Name: Window

Cable Entry Panel 
AREA
TRANSFER-INOUCTANCE 
TRANSFER-RESISTANCE 
VOLTAGE-INDUCED 
EECTRIC-RELD

Scam
NAME: Cable Entry 

Panel Sea

pioposee-a-flx-for

Optical Coating

The preliminary domain model is not sufficient for a successful generalization process. It represents a 
structural description of the task i.e., the vocabulary and the terms experts use, but does not contain any 
functional knowledge, i.e., how experts obtain and propagate design and environment parameters. The 
following example demonstrates a portion of the domain model representing functional knowledge. The 
nodes describe procedures to obtain design and environmental parameters. The links (indicated by dotted 
lines) define how values are propagated through the network. Section 3.5 describes the process of 
deriving that functional knowledge.
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System
NAME: Communications Unit

has

Subsystem 
NAME: Co

Modem
Radio
Motor Generator

Safe-Energy

„ _ Question /•
ilosure 
NAME: S-280C

Metal Box 
MATERIAL 
THICKNESS
RELATIVE-CONDUCTIVrTY 
MINIMUM-THICKNESS

Ks^Cor, 

Threat-E

comprise

.Constraint

[-Energy

Cable ^ 
NAME: Power Cable\

Signal Cable v 
ISC
VCCflES~ 
VOC-IND~ - - - ^ xTP-RES ----;?
TP-IND ~ " Z " "

Nuclear- 
Environment

NAME: EMP

Coupling
PEAK-VOLTAGE
PEAK-CURRENT
DERIVAT1VE-OF-

CURRENT

Formula

The above example states that a question strategy can be used to determine the kinds of ENCLOSURES 
comprised in a SYSTEM. It describes further that a formula strategy uses values of the ISC, VOC-RES, 
VOC-IND, TP-RES, and TP-IND characteristics of CABLE to determine the value for the THREAT- 
ENERGY.

It is likely that the initial structural model is incomplete and not detailed enough. During knowledge 
acquisition KNACK augments the initial domain model to include the functional aspects of the evaluation 
domain and to obtain a more detailed structural model. It gradually specializes the domain model to 
represent the expert's understanding of how a particular environment interacts with different design 
components. This process is described in section 3.4.

Once the sample report is typed in and an initial domain model is defined, KNACK interacts with a 
domain expert to generalize the sample report on a fragment by fragment basis.

33. Generalizing the Sample Report
KNACK develops expertise hi evaluating designs by integrating the specific sample report with the 
domain model hi successive interactions with the expert. This integration process generalizes the sample 
report, making it applicable to a broader range of designs. Deriving the generalized report involves 
extracting the report's basic structure and integrating the domain model with the report fragments (i.e. 
fragments are parsed to detect text strings that match the entries hi the domain model). The technique 
employs simple heuristics to infer the concepts each fragment mentions. The heuristics are based on 
keywords, representatives for concepts in the fragment, and knowledge of relations between candidate 
concepts.

In the first aspect of this process KNACK looks for keywords (e.g., chapter, section, subsection, heading, 
itemize, enumerate, bold, underline), instances of keywords (e.g., 2. for chapter, 2.3.2. for subsection, 
(1) for enumerate), and the form of the input (only a few words hi a line separated from the remaining text 
by blank lines). From this analysis KNACK generates a skeletal report defining the form of the sample 
report It includes the outline and special formats (e.g., table of contents, itemizations, enumerations,
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filled or unfilled environments) encoded as commands for a document formatting system.

In the second aspect of the generalization process KNACK converts fixed report text into generalizations 
representing the concepts detected in the fragment. Cues to locate and identify concepts in a report 
fragment are numbers representing the value of quantitative parameters and non-numeric symbols 
denoting tokens of known concepts in the domain model.

The heuristics provide sufficient analytical power to acquire knowledge without turning to a sophisticated 
natural language interface. There are limitations though. The heuristics mistakenly identify some 
concepts and miss others. The errors are dealt with when the expert critiques instantiations of the 
generalized fragments as described later on.

The generalization process results in a collection of generalized report fragments more broadly applicable 
than the sample report. A generalized report fragment describes a small possible piece of an actual report. 
It includes fixed text strings to be printed exactly as formulated by the expert, concepts to be instantiated 
by the WRINGER, knowledge about incorporating the gathered concept representatives into the report, 
and keywords specifying the type and form of the report fragment (e.g., simple paragraph, figure, table, 
and title). Generalizations are internal constructs for KNACK's use. Consonant with the research goal of 
reducing the knowledge engineering skills needed for knowledge acquisition, the expert sees only 
instantiated generalizations. However, the following examples of generalizations are included to give an 
impression of the kinds of heuristics KNACK uses to integrate the domain model with the sample report.

To give a flavor of the kinds of heuristics KNACK uses, generalizations of some of the fragments in the 
above sample report are shown below. The angle brackets enclose concepts detected in a fragment. 
Asterisks enclose commands denoting the report structure.

"CHAPTER* Evaluation of the ENVIRONMENT.NAME> 
Hardness

Numbers at the beginning of a line followed by a dot indicate chapter, section, or subsection headings. 
For example, "1." is assumed to be a chapter heading. Representatives of known concepts can be 
generalized by replacing them with a variable representing that concept. For example, EMP is inferred to 
be a NAME of an ENVIRONMENT due to a unique match with the domain model.

The system <SYSTEM.NAME> is designed to resist 
to ENVIRONMENT.NAME> threat. It consists of 
*LOOPOVER* <SUBSYSTEM.NAME> a <SUBSYSTEM.NAME> 
,*ENDLOOP*. Power is supplied from the 
<SUBSYSTEM.NAME> to the *LOOPOVER* 
<SUBSYSTEM.NAME> <SUBSYSTEM.NAME>, *ENDLOOP* 
by the <CABLE.NAME>.

A list of representatives for the same concept is replaced with a variable representing that concept and a 
surrounding LOOP structure. In a WRINGER report, a fragment containing a LOOP structure will be 
printed once, whereas the text within the LOOP structure will be repeated for each instantiation of the 
variable. For example, "a Computer, a Modem, a Radio, and a Motor Generator" is assumed to be a list 
of NAMES of SUBSYSTEMS.

The *LOOPOVER* <SUBSYSTEM.NAME> 
<SUBSYSTEM.NAME>, *ENDLOOP* are protected by 
a <ENCLOSURE.NAME> enclosure.
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If the generalizations of parts of the report fragments are the same, these parts can both be represented by 
the same generalization. For example, the generalization of the two sentences "The Computer, Modem, 
and Radio are protected by a S-280C enclosure. The Motor Generator is protected by a Metal Box 
enclosure." results hi the same generalized report fragment shown above.

The <ENCLOSURE.NAME> enclosure is made of
<ENCLOSURE.MATERIAL> and is
<ENCLOSURE.MINIMUM-THICKNESS> mils thick.
<ENCLOSURE.MATERIAL> has a relative
conductivity of
<ENCLOSURE. RELATIVE-CONDUCTIVITY mhos/m. A
plate of <ENCLOSURE.MATERIAL> must be at least
<ENCLOSURE.THICKNESS> mils thick to reduce the
diffusion factor to an negligible level.
Therefore, the diffusion factor can be
neglected.

A number is assumed to be a representative of some numerical characteristic of some concept. If the text 
adjacent to a number refers to a known concept and one of its characteristics, the number is replaced with 
the corresponding variable. For example, "0.15" is assumed to be the RELATIVE-CONDUCTIVITY of 
an ENCLOSURE because ALUMINUM is known to be an example for an ENCLOSURE MATERIAL 
and the term "relative conductivity" was encountered in the text of the fragment. x

When helpful clues are not present in adjacent text, KNACK simply guesses the concept from the 
ambiguous set of matches. Its guesses are based on the concepts recognized in the fragment. These 
guesses can be wrong and KNACK corrects them when the expert critiques instantiations of the 
generalized fragments as described later on. The above fragment contains the guesses 
<ENCLOSURE.MINIMUM-THICKNESS> and <ENCLOSURE.TfflCKNESS>.

3.4. Demonstrating Understanding of the Sample Report
KNACK predicts and exemplifies the performance an expert can expect from the WRINGER he is 
working to create. It instantiates the concepts of the generalized fragments with known concept 
representatives taken from the domain model and displays several differently instantiated examples of 
each generalized report fragment The expert edits any examples that make implausible statements about 
the domain. KNACK treats such events as incorrect use of the knowledge base and interprets the 
corrections as new knowledge to update the generalization and improve the domain model. For example 
if the expert indicates that values from the domain model combine too loosely, KNACK adds a constraint 
to the model, restricting possible combinations. A correction also can imply that KNACK's guess about 
the identity of a concept is wrong, leading to its retraction and the introduction of a new, initially less 
probable guess. Applying the new knowledge, the generalization is instantiated again and display of 
several examples gives the expert immediate feedback on the effects of the knowledge base modification.

KNACK extends the domain model whenever the editing adds variability between examples that it cannot 
parse. Extensions can be new concepts, new characteristics for known concepts, and restrictions on 
existing relations between representatives of two concepts. The model serves as a collection of examples 
suggesting guesses for KNACK as to the form of the extension. The following examples illustrate the
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editing process with some of the generalized report fragments shown above.3
1. Evaluation of the EMP Hardness

2. Evaluation of the Thermal Hardness 

Corrections? [ NONE ]: delete example 2

KNACK assumes that this fragment represents a chapter heading and that there will be a chapter about 
the different environments defined in the domain model: EMP, THERMAL, BLAST, and INR. 
Therefore, it displays examples of possible chapter headings. The expert deletes the second example. 
KNACK guesses that only the value EMP is relevant for the fragment. It further constrains the remaining 
fragments of the chapter to the EMP environment, assuming that the topic will not change within a 
chapter.

The system Communications Unit is designed to 
resist to EMP threat. It consists of a 
Computer, a Modem, a Radio, and a Motor 
Generator. Power is supplied from the Motor 
Generator to the Computer, Modem, Radio, and 
Motor Generator by the Power Cable.

The system Communications Unit is designed to 
resist to EMP threat. It consists of a 
Computer, a Modem, a Radio, and a Motor 
Generator. Power is supplied from the 
Computer to the Computer,, Modem, Radio, and 
Motor Generator by the Signal Cable.

Corrections? [ NONE ]: delete the second 
occurrence of TO in example 1, delete the 2nd 
occurrence of MOTOR GENERATOR in example 1, 
change the 2nd occurrence of COMPUTER in 
example 2 to MOTOR GENERATOR, change SIGNAL 
CABLE in example 2 to POWER CABLE

Since KNACK generalized the fragment to contain a list of NAMEs of SUBSYSTEMS, it includes all 
representatives of SUBSYSTEMS it knows into the example assuming that the fragment is valid for all 
possible SUBSYSTEMS. The expert first makes a minor change to the fixed text of the fragment. This 
example demonstrates further that KNACK's domain model is inadequate. The expert's corrections are 
now used to refine the model: KNACK integrated the concepts SUBSYSTEM and CABLE with the 
report fragment. It knows, that some CABLE interrelates some SUBSYSTEM with some SUBSYSTEM, 
and that no other relation interrelates SUBSYSTEM with another concept integrated with the report 
fragment KNACK now adds the restriction to the model that a POWER CABLE interrelates a MOTOR 
GENERATOR SUBSYSTEM with SUBSYSTEMS different from MOTOR GENERATOR. In this case, 
the process of extending the domain model is internal to KNACK. The corrections provide KNACK with 
all the information necessary to extend the model.

KNACK cannot always decide unambiguously which relation to restrict because more than one relation

3The expert uses the mouse and provided menus in order to change displayed examples. It is beyond the scope of this paper to 
present this part of the interaction exactly as it proceeds on the terminal screen. Thus, in the following examples the expert's 
actions are described in short, underlined sentences.
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interrelate concepts detected in the report fragment. In this case KNACK guesses a relation to restrict. It 
assumes that its guess is right, until a correction of an instantiation later hi the interaction indicates the 
opposite. KNACK then revises its earlier decision and restricts another relation.

1.2. Shielding Requirements for the S-280C 
Enclosure

1.3. Shielding Requirements for the Metal Box 
Enclosure

Corrections? [ NONE ]: <cr>

KNACK displays two examples corresponding to the known representatives of ENCLOSURES. The 
expert agrees with both. This section heading contains a variable text component. In a WRINGER report 
the section begun by the above example will be repeated for all ENCLOSURES contained in an actual 
system. The report fragments within each of the sections will be specific to the enclosure described by a 
section.

Once the sample report is generalized, KNACK suggests to define strategies which a WRINGER will use 
to customize the generalized report fragments for a particular application.

3.5. Defining, Generalizing, and Correcting Strategies
Concepts in the generalized fragments must be instantiated with values describing a particular system 
design when a WRINGER evaluates a design and writes its report KNACK asks the expert to define 
strategies for a WRINGER to acquire or produce the instantiation values. Experts define strategies in the 
same way that report fragments are defined, by typing in samples. Each strategy describes a way to 
determine a representative of a concept and includes instructions about valid possible values. Relying on 
previously elicited information and other prior knowledge, KNACK defines the circumstances in which 
these methods can be applied. The strategies are also used to refine the domain model: they describe the 
procedures to obtain, propagate and compare design and environment parameters.

KNACK asks the expert to define at least one strategy for each concept in the report fragments. A 
strategy can be interactive, i.e., acquire concept representatives by asking questions, interpreting a 
graphical design description, asking the designer to fill in the slots of a table, diagram, or form, or asking 
the user to choose from the items hi a menu. Other strategies are autonomous, i.e., infer concept 
representatives by directly applying specific domain knowledge, computing numeric values using 
formulas, or referring to a database.

Which strategy can be used to determine the 
ENCLOSURES of a SYSTEM?

[constant, question, inference, table, menu, 
graphics, formula, database, postpone, quit] 
[ QUESTION ]: <cr>

question text....: Please, list the enclosures

possible answers.. [ INCOMPLETE-SET, S-280C,
METAL BOX ] <cr>

default answer.... [ S-280C ]: unknown 
Status............ [ NOT-MANDATORY ] : <cr>



Draft: KNACK: A Knowledge Acquisition Tool for... 19

The above example demonstrates how the expert defines the knowledge needed for a question strategy to 
determine the ENCLOSURES of a SYSTEM. He defines the question "Please, list the enclosures". 
KNACK suggests defaults for the expert's input. These are taken from report fragments or the domain 
model. For example, KNACK knows that S-280C and METAL BOX are examples for an ENCLOSURE 
and suggests these as possible answers. The expert agrees that S-280C or METAL BOX or both are 
possible answers. He further defines that an answer to the question is not mandatory. Also, it is not 
meaningful to define a default answer.

KNACK develops expertise hi evaluating designs by parsing the text of the question in an attempt to 
generalize it. It integrates the specific sample strategy with the domain model, thus making the sample 
strategy applicable to acquire instantiation values for a broader range of concepts. On the other hand, a 
strategy must be discriminating enough to result in the instantiation of the right concept. KNACK uses 
heuristics to make the text of a question strategy more specific. For example, since the domain model 
states that a SYSTEM comprises ENCLOSURES, KNACK generalizes the text of the above question to:

Please, list the enclosures of the 
<SYSTEM.NAME> system

The specialization of the question text is guessed by KNACK and can be wrong or unnecessary. Thus, 
KNACK instantiates the concepts integrated with the question text with known representatives and 
displays these examples for confirmation or correction by the expert

Please, list the enclosures of the 
Communications Unit system?

Corrections? [ NONE ]: <cr>

Continuing the above example, KNACK adds to the domain model that ENCLOSURES can be 
determined using a question strategy. The updated domain model was shown in section 3.2.

The interaction continues with an example of an autonomous formula strategy to determine the THREAT- 
ENERGY.

Which strategy can be used to determine the 
THREAT-ENERGY of a COUPLING?

[constant, question, inference, table, menu, 
graphics, formula, database, postpone, quit] 
[ QUESTION ]: formula

THREAT-ENERGY = Isc * ( ( Voc-res * Tp-res ) + 
( Voc-ind * Tp-ind ) )

KNACK parses the formula to generalize it. Since all the terms in the formula are characteristics of the 
CABLE concept, KNACK variablizes the formula to:

<CABLE.ISC> * ( ( <CABLE.VOC-RES> * 
<CABLE.TP-RES> ) + ( <CABLE.VOC-IND> * 
<CABLE.TP-IND> ) )

The variables of the formula are guessed by KNACK and can be wrong. To confirm its guesses KNACK 
displays instantiated generalizations. :
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THREAT-ENERGY = Isc * ( ( Voc-res * Tp-res ) + 
( Voc-ind * Tp-ind ) ) 
with Isc = Isc of CABLE

Voc-res = Voc-res of CABLE
Tp-res = Tp-res of CABLE
Voc-ind = Voc-ind of CABLE
Tp-ind SB Tp-ind of CABLE

Corrections? [ NONE ]: <cr>

Again, KNACK updates its domain model with the knowledge on how to obtain the THREAT ENERGY 
parameter using the defined formula strategy.

A final example demonstrates an autonomous inference strategy to determine the enclosures comprises in 
a system. This strategy describes a procedure to extend an existing design hi case the THREAT 
ENERGY is to high.

Which strategy can be used to determine the 
ENCLOSURES of a SYSTEM?

[constant, question, inference, table, menu, 
graphics, formula, database, postpone, quit] 
[ QUESTION ]: <inference>

if the constraint THREAT ENERGY LESS EQUAL 
SAFE ENERGY is violated, and

a COMMUNICATIONS UNIT SYSTEM exists, and
a COMPUTER SUBSYSTEM exists, and
the SYSTEM COMPRISES the SUBSYSTEM, and
the SUBSYSTEM HAS the SAFE ENERGY, and
no S-280C ENCLOSURE exists, 

then add a S-280C ENCLOSURE to the design

if the constraint THREAT ENERGY LESS EQUAL 
SAFE ENERGY is violated, and

a COMMUNICATIONS UNIT SYSTEM exists, and
a MOTOR GENERATOR SUBSYSTEM exists, and
the SYSTEM COMPRISES the SUBSYSTEM, and
the SUBSYSTEM HAS the SAFE ENERGY, and
no S-280C ENCLOSURE exists, 

then add a METAL BOX ENCLOSURE to the design

Corrections? [ NONE ]: <cr>

KNACK uses the domain model to suggest how a piece of information can be inferred given some 
previously gathered information. Again, KNACK instantiates the rules with specific examples taken 
from the domain model, displays several differently instantiated examples, and uses the expert's 
corrections to refine the domain model.

The definition, generalization, and correction of strategies complete the initial interaction between 
KNACK an the domain expert. This results hi a knowledge base the generated WRINGER expert system 
can use to evaluate a range of system designs.
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4. Analyzing the Knowledge Base
The knowledge KNACK acquires during its interaction with an expert, or group of experts, is transformed 
into an internal representation and stored in a knowledge base. KNACK's knowledge acquisition 
approach, described .in the preceding sections, generalizes a specific sample report. This results in a 
knowledge base^the generated WRINGER expert system can use to evaluate a range of system designs. 
However, the sample report covers only one simple system and inevitably lacks concepts necessary to 
evaluate a broad range of systems.

For this reason, KNACK searches the knowledge base for report fragments or strategies that indicate gaps 
or conflicts with its domain model. This review of the knowledge base is most relevant at the end of the 
acquisition process, because an apparent gap found during the process might be filled in later in the 
process. When a conflict was detected or an indication of a gap was found, KNACK asks the expert to 
correct either the fragment, the strategy, or the domain model. In cases where the domain model is 
changed, KNACK reviews all fragments or strategies that use the changed concept or relation to 
propagate the change through the knowledge base automatically, making guesses when ambiguities arise. 
On the other hand, when the expert adds or changes report fragments or strategies, KNACK processes 
them through the integration of the domain model, display of examples, strategy definition, and checking.

Some of the heuristics KNACK uses to identify incompleteness and inconsistency in its knowledge base 
are:

  Each concept characteristic in the domain model must have a strategy associated with it to 
instantiate the concept

  Each concept or concept representative should be mentioned in the sample report.
  The expert might have forgotten to define concepts, concept characteristics, or concept 

representatives.

  Constraints must exist to define the relationship between design and environment properties.
  Each constrained property must have a fix associated with it.

To analyze the knowledge base, it must be explicit how different knowledge pieces interact during 
problem-solving. This is achieved by organizing the knowledge base according to the different roles 
knowledge plays hi the design evaluation task. The domain model introduced hi the previous section is 
the kernel of the knowledge base. It is implemented as a semantic network. The nodes describe concepts 
used by domain experts to describe, evaluate, and enhance designs and their environments. Concepts are 
further described by characteristics. Each characteristic represents a variable. The variables must be 
acquired or infered by the generated expert system. The interdependencies between concepts and 
variables are defined by the links in the domain model. The links encode structural and functional 
knowledge. Structural links include COMPRISES, HAS, CONSTRAINS, and PROPOSES-A-FIX-FOR 
relationships. They define a taxonomy of concepts. Functional links relate strategies to variables. They 
define which variables are input to a strategy and which variable contains the result of a strategy.

Fix, constraint, and strategy nodes are further described by FTX, CONSTRAINT, and STRATEGY knowledge, 
respectively. STRATEGY knowledge determines how to obtain, propagate, and compare parameters, 
CONSTRAINT knowledge describes the relationship between two parameters, and FTX knowledge suggests 
design components that might resolve a constraint violation.

The domain model is also the kernel of a second knowledge structure that represents the document a 
WRINGER will produce. That knowledge is defined by the REPORT FRAGMENT, INFORMATION
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IDENTIFICATION, and SKELETAL REPORT roles. REPORT FRAGMENT knowledge represents a possible 
paragraph of the actual report. The variables hi the domain model are linked to each REPORT FRAGMENT 
that uses them. The order of the fragments and the structure of the report (chapter, section, subsection, 
etc.) are defined by SKELETAL REPORT knowledge. INFORMATION IDENTIFICATION knowledge identifies 
the variables relevant for different report parts (chapter, section, subsection).

Finally, each concept, concept characteristic, and concept representative can be refered to via different 
terms. The SYNONYM role organizes the knowledge to convert those synonyms into a basic expression.

The above heuristics exploit that explicit organization of the knowledge base to look for gaps and 
conflicts. The remaining part of this section explains this in more detail.

A WRINGER must have available at least one strategy to instantiate each concept characteristic hi the 
domain model. KNACK looks for concept characteristics in the generalized report fragments and 
strategies wfiaeli do not have a corresponding strategy.

The characteristic MATERIAL of the concept 
ENCLOSURE was mentioned in the sample report.
No strategy exists to acquire that 
information. Do you want to define one now? 
[ YES ]: no

The expert can define the missing strategy using the process described in section 3.5. In the above 
example, the expert does not want to deal with the problem right now. KNACK allows the expert to go 
on with the interview, but will remind the expert of the insufficiency the next time the ANALYZE 
function is selected.

A flaw in the knowledge base is indicated if a concept or a representative for a concept was introduced 
into the model but never used. KNACK reminds the expert of that

The representatives THERMAL, BLAST, and INR 
for the concept NUCLEAR ENVIRONMENT are known 
but never used in any report fragment. Do you 
want to add a fragment? [ YES ]: no

Again, the expert postpones work on the potential problem. The answer YES will activate the sample 
report editor, allowing the expert to add additional fragments or change existing ones. KNACK will 
generalize the changed or additional fragment and display instantiations for confirmation by the expert as 
described earlier.

The knowledge base might be incomplete or inconsistent because the expert forgot to mention concepts, 
characteristics, or representative values. For each concept and characteristic figuring hi relations with 
several others and for the representative values of each concept and characteristic, KNACK asks for 
possible extensions to that set. For example:

A system comprises the following concepts: 
SUBSYSTEM, ENCLOSURE. Do you want to 
consider any other system component comprised 
in a SYSTEM? [ NO ]: antenna

This introduces a new concept ANTENNA. KNACK integrates new concepts into the model using the 
process described in section 3.2.
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Please, list some examples for the ANTENNA: 
whip antenna, dish antenna

What are the characteristics of the ANTENNA? 
length, diameter, min operating frequency, 
max operating frequency

How would you like to refer to the ANTENNA 
properties that define the data items to be _. 
compared by the evaluation criteria? unknownx^

KNACK then examines the generalized sample report to find fragments mentioning the ANTENNA 

concept. As the domain model previously did not include knowledge about ANTENNAs, any 

occurrences in the sample report fragments were treatatf as fixed text in the generalizations. KNACK 

now variabilizes the new concept in those fragments and displays instantiated examples. The example of 

the sample report does not mention the concept antenna. If there are no fragments mentioning the new 

concept, KNACK looks for related concepts in the domain model, i.e., for the concepts figuring in the 

same relations than the new concept It then integrates the new concept with fragments dealing with the 

related concepts and displays instantiations for confirmation by the expert. Using the domain model from 

the previous examples, KNACK finds that a SYSTEM also comprises SUBSYSTEMS and 

ENCLOSURES. It integrates ANTENNA with the first fragment mentioning the SUBSYSTEM concept 

and displays an instantiation for review by the expert:

The system Communications Unit is designed to 
resist EMP threat. It consists of a Computer, 
a Modem, a Radio, a Motor Generator, a Wip 
Antenna, and a Dish Antenna. Power is 
supplied from the Motor Generator to the 
Computer, Modem, Radio, Wip Antenna, and Dish 
Antenna by the Power Cable.

Corrections? [ NONE ]: delete the 2nd 
occurrence of WIP ANTENNA, delete the 2nd 
occurrence of DISH ANTENNA, insert "Signals 
are received by the Wip Antenna and 
transmitted to the Radio via the Signal 
Cable." after the example

KNACK adds the restriction to the model that a POWER CABLE does not interrelate a MOTOR 

GENERATOR SUBSYSTEM with ANTENNAs. It then integrates the domain model with the newly 

defined fragment and displays instantiations for confirmation by the expert. KNACK continues to 

integrate the ANTENNA concept with fragments dealing with SUBSYSTEM or CABLE concepts.

The knowledge base might be incomplete or inconsistent because constraints are missing. The domain 

model states which DESIGN-PROPERTIES have to be compared to which ENVIRONMENT- 

PROPERTIES. A constraint defines the relationship between these PROPERTIES. For example, while 

refining the domain model the expert constrained SAFE-ENERGY to be LESS EQUAL THREAT- 

ENERGY. KNACK looks for DESIGN-PROPERTIES or ENVIRONMENT-PROPERTIES that have no 

associated constraint.

What is the relationship between the SAFE 
VOLTAGE property and the THREAT VOLTAGE, 
property? less equal
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The knowledge base might be incomplete or inconsistent because fixes are missing. KNACK assumes 
that fixes exist whenever a constraint is violated. If KNACK detects that a constraint has no associated 
fix, it indicates that to the expert. For example:

What design components represent a fix for the 
THREAT VOLTAGE property? terminal protection 
device

5. Rule Generation
KNACK stores the domain dependent knowledge it acquired from the expert hi declarative form in its 
knowledge base. To create an expert system, this knowledge is proceduralized into OPS5 production 
rules [Forgy 81] using a simple parser written hi LISP. These rules are then combined with domain 
independent rules representing the control knowledge.

The domain independent knowledge embodies the problem solving method. It establishes and controls 
the sequences of actions required to perform the evaluation task. This control knowledge dynamically 
defines the order in which subtasks have to be solved to perform the overall task. It also defines the 
knowledge roles that are applicable within each step. The problem solving methods described hi the 
section 2 give some impression about the required control knowledge.

The domain dependent knowledge is organized hi units according to the role that knowledge plays. The 
knowledge roles we have identified for the report-driven design evaluation task are:

  Strategy

  Constraint

  Fix

  Report Fragment

  Skeletal Report

  Information Identification

  Synonym 
We will now describe the rules organized in these knowledge roles.

5.1. Strategy Rules
A WRINGER uses strategies to instantiate generalized concept characteristics with values describing a 
particular system design. The expert's input to define a question strategy was demonstrated with the 
following example:
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Which strategy can be used to determine the 
ENCLOSURES of a SYSTEM?

[constant, question, inference, table, menu, 
graphics, formula, database, postpone, quit] 
[ QUESTION ]: <cr>

question text....: Please, list the enclosures

possible answers.. [ INCOMPLETE-SET, S-280C,
METAL BOX ] <cr>

default answer.... [ S-280C ]: unknown 
status............ [ NOT-MANDATORY ]: <cr>

KNACK translates this description into three OPS5 rules. One rule (Rule 1) identifies that a question 
strategy can be used to gather a specific piece of information and asks the question. The second rule 
(Rule 2) checks whether a result of a strategy is valid, and the third rule (Rule 3) creates the slots for the 
strategy result(s).

Rule 1:

If the goal is to identify strategies, and 
the subgoal is to determine the NAME of

an ENCLOSURE, and
a SYSTEM with some NAME is known, 

then create a request to determine the NAME of
an ENCLOSURE using a QUESTION
strategy, and 

create the question "Please, list the
enclosures of the <SYSTEM.NAME>
system", and 

classify the answer as NOT-MANDATORY.

Whenever the WRINGER decides to determine the NAME of an ENCLOSURE, the above rule fires and 
establishes that a question strategy can be used to gather that piece of information. In case multiple 
strategies exists to determine the information similar rules would exist for each possible strategy. The 
WRINGER selects one strategy. If a question strategy is chosen, it asks the question.

The expert's input for the above defined question strategy further specifies that S-280C and METAL 
BOX are possible answers to that question. KNACK generates a rule to check the result of the strategy 
whether it is valid.

Rule 2:

If the goal is to validate a strategy
result, and 

the NAME of an ENCLOSURE was determined,
and

it is not S-280C or METAL BOX, 
then mark the result as POSSIBLY INCORRECT.

This rule flags a strategy result as questionable because it is not a member of a predefined, incomplete set 
of possible answers. The WRINGER asks the user for confirmation of the result.

Once the WRINGER accepts the result of a strategy, it integrates the result with the already existing
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information.

Rule 3:

If the goal is to integrate a strategy
result, and 

the result is a value for the NAME of an
ENCLOSURE, and

a SYSTEM with some NAME is known, 
then create a concept ENCLOSURE with a NAME 

characteristic, and 
instantiate it with that value, and 
create a link that the SYSTEM COMPRISES 

the ENCLOSURE.

Rule 3 creates the concept ENCLOSURE with a NAME characteristic and instantiates the concept 
characteristic with the strategy result. It further creates a relation linking the ENCLOSURE to the 
existing SYSTEM concept

5.2. Constraint Rules
Constraint rules check the system design for violations of constraints imposed by a given environment. 
For example, the rule below determines whether the value for SAFE ENERGY is less equal than the 
value for THREAT ENERGY.

If the goal is to identify constraint
violations, and

some THREAT ENERGY is known, and 
some SAFE ENERGY is known, and 
the SAFE ENERGY constrains the THREAT

ENERGY, and 
the SAFE ENERGY is not less equal than

the THREAT ENERGY, 
then classify constraint 12 as VIOLATED.

53. Fix Rules
KNACK ensures that at least one fix exists for every constraint that can be violated. KNACK generates 
one rule for every potential fix.

If the goal is to suggest a. fix, and
constraint 12 is VIOLATED, 

then suggest a S-280C ENCLOSURE as a fix, and
suggest a METAL BOX ENCLOSURE as a fix.

This rule suggests a S-280C and a METAL BOX ENCLOSURE as a possible fixes for the violated 
constraint. The WRINGER checks which of the possible fixes will satisfy the constraint gathering 
additional information if required. It then suggests that fix to the designer. If the designer agrees, the 
WRINGER integrates the enclosure with the existing design and updates the design parameters.
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5.4. Report Fragment Rules
Report fragment rules represent the content of a WRINGERs report.

If the goal is to print the report, and
report fragment 9 can be selected, and 
an ENVIRONMENT with NAME EMP is known,

and
an ENCLOSURE with some NAME is known, 

then print "*LOOPOVER* <ENCLOSURE.NAME>
@SECTION [ Shielding Requirements for 
the <ENCLOSURE.NAME> ENCLOSURE ]".

To present the report hi an appealing format (include headings, tables, etc) the output of a WRINGER is 
formated by a text formatting program. For that reason, the print action of the rule contains commands 
for the text formatting program, in our example @ SECTION.

Each report fragment from the sample report is proceduralized by one or more OPS5 rules. Fragments 
that were generalized to contain a list of representatives for the same concept need additional control to 
realize the intended repetitions of parts of the fragment. Multiple OPS5 rules are necessary to control the 
repetitions: one rule to identify the variable denoting the list of representatives, one rule to print the text 
preceding the repetition once, one rule to print the repetition for each instantiation of the variable, and one 
rule to print the text succeeding the repetition once. The same principle applies to chapter, section, and 
subsection headings that contain variables. Rules are added that control the repetition of an entire 
chapter, section, or subsection for each instantiation of the variable. The term "*LOOPOVER* 
<ENCLOSURE.NAME>" in the above example is a command for the LISP parser to create those control 
rules. KNACK inserts a corresponding "*LOOPEND*" as the last word of the chapter, section, or 
subsection.

5.5. Skeletal Report Rules
Skeletal report rules represent the outline of the report a WRINGER produces. As indicated hi the sample 
interaction, KNACK will insert a new chapter, section or subsection whenever it discovers a keyword like 
CHAPTER, SECTION, or SUBSECTION hi a report fragment. An OPS5 rule representing a part of the 
skeletal report is created for each chapter, section, and subsection heading. The skeletal report rule for the 
section heading of the above example is shown below in an english translation.

If the goal is to create the skeletal
report, 

then create section 2 of chapter 1
with the heading "Shielding Requirements

for the Enclosures", and 
establish that fragment 9 can be

selected, and 
establish that fragment 10 can be

selected, and 
establish that fragment 11 can be

selected, and ...

The rule defines the section heading as it appears in the table of contents of the report the WRINGER is 
trying to produce. It also specifies the fragments that can be selected into the section and determines the 
order of the fragments.
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5.6. Information Identification Rules
As indicated in section 2 a WRINGER collects related information in a coherent manner by following the 
outline of its report. KNACK generates a rule for each chapter, section, or subsection determining the 
information relevant to that report part. The following example shows part of the information 
identification rule for the section "Shielding Requirements for the Enclosures" in an english translation.

If the goal is to determine an existing
design, and 

the current report part is chapter 1,
section 2, 

then create the subgoal to determine the NAME
of an ENVIRONEMNT, and 

create the subgoal to determine the NAME
of an ENCLOSURE, and 

create the subgoal to determine the NAME
of an APERTURE, and 

create the subgoal to determine the
MATERIAL of an ENCLOSURE, and 

create the subgoal to determine the
THICKNESS Of an ENCLOSURE ...

5.7. Synonym Rules
Synonym rules provide a simple mechanism to deal with varying or conflicting terminology of different 
designers. They are implemented as demons. Whenever the designer interacting with a WRINGER uses 
a term known to be a synonym for some basic expression, the synonym is being transformed into the 
basic expression. The rules are simple:

If the NAME of a CABLE was determined, and
is ANTENNA CABLE 

then change it to SIGNAL CABLE.

6. KNACK'S Scope
KNACK derives its power by exploiting a presupposed problem-solving method. The method explicates 
the types of knowledge (knowledge roles) needed to solve tasks hi a particular domain. The underlying 
assumption is that a problem-solving method and the associated knowledge roles cover a number of tasks 
in a particular domain. To get a better understanding of the kinds of tasks KNACK's assumed method 
can solve, KNACK has been and is being used by knowledge engineers to create a series of evaluation 
systems. The following describes these tasks, the experience gamed, and some data on KNACK's 
performance and scope.

6.1. KNACK Tasks
KNACK was used to generate an initial knowledge base for a number of expert systems. The expert 
systems were then manually enhanced to accommodate the specific demands of a particular task. The 
enhancements uncovered deficiencies and shortcomings hi KNACK's approach to acquire knowledge, 
assumed problem-solving method, and associated knowledge roles. KNACK has been improved to 
address the problems and is now being used to re-generate the initial systems.

The following application systems are being created with KNACK:
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The Data Item Description WRINGER Family: The DPR WRINGER, used as an example throughout 
this paper, is a member of the Data Item Description WRINGER Family. Three WRINGERs have been 
developed for very similar tasks. They assist with different stages in the design of electromechanical 
systems for the nuclear hardening domain. Nuclear hardening involves the use of specific engineering 
design practices to increase the resistance of an electromechanical system to the environmental effects 
generated by a nuclear weapon. Designers of electromechanical systems usually have little or no 
knowledge about the specialized analytical methods and engineering practices of the hardening domain. 
The purpose of the WRINGERs is to assist a designer hi improving given designs of electromechanical 
systems that may be suboptimal from a hardening perspective. The WRINGERs assume that the initial 
design describes a technically functional system. They evaluate the design from a hardening perspective. 
The suggested improvements are either extensions to the design or recommendations for using different 
design components. The WRINGERs present the design, together with the results of the evaluation, in 
the form of a technical document that meets government requirements.

The first WRINGER, a PROGRAM PLAN writer, evaluates and presents the primary top level report 
covering all phases of the design project. It took 7 person-days to create the WRINGER with KNACK. 
Its knowledge base contains 795 OPS5 rules. The second expert system, a DESIGN PARAMETERS 
REPORT writer, evaluates and presents a detailed description of an electromechanical system ranging 
from the level of major components to the level of individual semiconductors. It took 21 person-days to 
create the WRINGER with KNACK. Its knowledge base contains 1446 OPS5 rules. The last 
WRINGER, a TEST PLAN writer, produces a plan to confirm the hardness of a design. This includes a 
list of the design components to be tested, a description of the tests to be performed, and the expected test 
results. It took 8 person-days to create the WRINGER with KNACK. Its knowledge base consists of 230 
rules. The WRINGERs were created with a previous implementation of KNACK, reported in [Klinker 
87b], and are now being tested by the organization that will use them. That previous implementation 
required from the expert to explicitly define the generalized report and strategies. The experience gained 
with that task led to a refinement of KNACK'S approach to acquire knowledge: the introduction of the 
domain model and the automation of the generalization process.

The XNET-Design WRINGER: A WRINGER is being developed to assist a sales-person with the 
design and configuration of computer networks. In general, a sales-person has a good understanding 
about aspects like costs, compatibility, and extensibility when he is designing a network which suits his 
customer best. But usually he has little or no knowledge about the technical aspects involved. The 
purpose of the WRINGER is to assist a sales-person in improving his design of computer networks that 
may be suboptimal from a technician's perspective. The WRINGER assumes that the initial design 
describes the computing environment but might not be a technically functional computer network. It 
evaluates the design description from a technician's perspective. The suggested improvements are either 
extensions to the design or recommendations for different interconnections between design components. 
The WRINGER'S output is a list of generic network components and their interconnections serving as 
input for a program that will select the specific parts. The WRINGER is in the very first stage of 
development. Data that describe KNACK's performance are not yet available. The experience gained 
with that task led to a refinement of KNACK'S assumed problem-solving method: The XNET-Design 
WRINGER focuses on designing a computer network rather than on refining an existing network. The 
WRINGERs of the Data Item Description WRINGER Family first require to describe an existing system 
and then evaluate that system from a hardening perspective, asking the designer to confirm the suggested 
fixes. That distinction is not applicable for the XNET-Design WRINGER. It takes whatever input the 
sales-person can give and completes the design, applying fixes without asking for confirmation. A switch
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has been introduced into a WRINGERs problem-solving method that allows a designer to choose between 
the functions "gather information and evaluate" and "gather information and complete"

The Software Requirements WRINGER: A WRINGER is being developed to assist a systems analyst 
with the definition of requirements for software. Defining requirements for new software is a very 
complex process. It involves functionally decomposing the software into basic modules, defining the data 
requirements, and integrating the new software with the existing software environment. One systems 
analyst alone might not have enough knowledge about the existing software environment. The purpose of 
the WRINGER is to assist a systems analyst hi refining the requirements for software systems that may be 
suboptimal given the existing software environment. The WRINGER assumes that the initial design 
describes the new software on a high level of abstraction. It supports the systems analyst in functionally 
decomposing that description into basic modules and defining the data requirements for the modules. The 
WRINGER evaluates the design as to whether it is compatible with the existing software environment. 
The suggested improvements are refinements to the requirements of the new software. The WRINGER 
produces a technical document describing the requirements for the software system. The document 
further contains an executive summary with an opinion about whether the new software will be a valuable 
enhancement of the existing software. It took 18 person-days to create the WRINGER with KNACK. Its 
knowledge base consists of 291 rules. The experience gained with that task led to the introduction of two 
new strategies to acquire information: It is critical for the Software Requirements WRINGER to support 
a user with the decomposition of software requirements. Simple graphics allow to represent requirements 
for software and data in the form of nodes and the data flow in the form of directed links between nodes. 
Forms are used to describe the nodes further.

The Project Progress Report WRINGER: A WRINGER is being developed to assist a project leader 
with the assessment of a project's progress. A project leader might not have enough experience to create 
a project plan and assess the progress of a project. Also, he might not have enough knowledge to 
integrate his project into the broader objective of his management The purpose of the WRINGER is to 
assist a project leader in refining a project plan that may be suboptimal from a management perspective. 
The WRINGER assumes that an initial proposal can be provided. It supports the project leader in 
creating and updating the project plan according to the progress of the project. The WRINGER evaluates 
the plan from a management perspective. The suggested improvements are refinements or changes to the 
plan. The WRINGER produces a proposal, project plan, and periodical progress reports that will allow 
management to assess the progress of a project. It took 19 person-days to create the WRINGER with 
KNACK. Its knowledge base consists of 429 rules. The experience gamed with that task led to an 
extension of KNACK'S build in knowledge of evaluation: For the Data Item Description WRINGER 
Family the interdependencies between the concepts describing a design and an environment are 
appropriately represented by a tree structure. The Project Progress Report WRINGER requires a network.

The Business Plan WRINGER: A WRINGER is being developed to assist an entrepreneur hi the 
preparation of business plans. The first step in creating a business is to seek investment capital. For this 
purpose, entrepreneurs generate business plans. A business plan contains information on the planned 
business, e.g. the industry, the product, the market and marketing plan, production, personnel, and 
financial projections. An entrepreneur usually has little knowledge about how to create a business plan. 
The purpose of the WRINGER is to support an entrepreneur in developing a business plan to secure 
investment capital from venture capitalists. The WRINGER assumes that the entrepreneur can provide a 
description of the product and the goals of the proposed business. It will then support the entrepreneur in 
creating the business plan. The WRINGER evaluates the plan from a venture capitalist's perspective. It 
produces a document containing the necessary details and justifications to demonstrate the proposed
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business to an investor. The information is presented hi a way appealing to an investor. The WRINGER 
is hi the very first stage of development. Data that describe KNACK's performance are not yet available. 
The experience gained with that task led to an extension of a WRINGER'S representation of acquired 
information: The Business Plan WRINGER requires a temporal dimension. The same types of data 
project a planned business in different, succeeding time periods.

Each application improved our understanding of the evaluation task and had some implications on the 
development of the KNACK tool. We continue to improve KNACK. The goal is that a domain expert 
can use the tool to generate all of the knowledge bases for the above described WRINGERs. The 
different applications gave us some insight into KNACK's scope. At a first glance, those applications 
seem to be quite different. But a closer look reveals that they all meet some common requirements. The 
task is constructive evaluation, i.e., an existing plan or design has to be evaluated to determine whether it 
meets additional constraints not anticipated hi the original design. The evaluation is constructive because 
fixes can be suggested in case of constraint violations. The use of KNACK imposes some requirements 
on the expert: The expert must be able to provide an initial model of the domain, he must be able to 
express some of his knowledge hi the form of a sample report, and he must be able to define strategies 
that a WRINGER can use to instantiate concepts with values describing a particular plan or design. 
Finally, the use of a WRINGER requires that a designer can provide an initial design.

6.2. Some Performance Data
This section gives some impression of KNACK's performance hi creating the Program Plan WRINGER 
(PP WRINGER), Design Parameters Report WRINGER (DPR WRINGER), Test Plan WRINGER (TP 
WRINGER), Software Requirements WRINGER (SR WRINGER), and Project Progress Report 
WRINGER (PPR WRINGER). The Business Plan WRINGER and XNET-Design WRINGER are in the 
very first stages of development Data that describe KNACK'S performance in creating them are not yet 
available. The data of Table 6-1 describe the complexity of the domains, Table 6-2 contains some data 
about the complexity of the generated knowledge bases, and Table 6-3 summarizes the effort involved in 
creating the expert systems with KNACK.

Table 6-1 gives some impression of the complexity of the domains for the five WRINGERs. It describes 
the input the experts had to provide in terms of the sample report, the domain model, and the sample 
strategies. Strategies can be interactive, i.e., they elicit information from the WRINGER users, or 
autonomous, i.e., they infer information based on previously provided information. Examples of 
interactive strategies are: questions, graphical design descriptions, menus, forms, or tables. Examples of 
autonomous strategies are: inferences, database lookups, or formulas.

Table 6-2 describes the generated knowledge base for the five WRINGERs. The size of the knowledge 
base is determined by the number of OPS5 rules it contains. The conditionality of a rule is described by 
the number of its condition elements. Each condition element can be instantiated by a concept. The 
complexity of a condition element is defined by the number of characteristics which describe a concept. 
The action part of a rule is described by the number of actions the rule performs. An action either creates 
a new concept or modules an existing concept characteristic.

Finally, Table 6-3 gives some impression of the time involved to generate a WRINGER using KNACK. 
Creating WRINGERs is an iterative process. Whenever a WRINGER reveals inadequacies, KNACK is 
used to improve it Table 6-3 shows the time spent to generate the initial knowledge bases for the 
WRINGERs described hi section 6.1 and in the tables 6-1 and 6-2. This includes the effort for the initial
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Number of fragments in 
the sample report

Average size of each 
fragment in words

Number of concepts

Average number of 
characteristics for each
concept

Number of interactive
strategies

Number of autonomous
strategies

PP

237

9.5

43

2.3

72

22

DPR

455

14.7

92

3.7

152

159

TP

88

14.3

28

2.5

35

4

SR

203

10.2

55

3.6

21

32

PPR

113

8.1

109

1.4

92

41

Table 6-1: Complexity of the Domain

Number of rules

Average number of 
condition elements per 
rule

Number of
characteristics per 
condition element

Number of actions per 
rule

PP

795

3.4

2.0

7.2

DPR

1446

3.8

2.3

3.0

TP

230

1.1

1.5

2.9

SR

291

1.9

2.0

4.1

PPR

429

2.9

2.5

1.9

Table 6-2: The Knowledge Base

input (sample report, domain model, and sample strategies), the generalization process (sample report and 
sample strategies), and the review of the knowledge base. The effort for the generalizations includes the 
expert's corrections to the sample instantiations of the generalized fragments and strategies. Since the PP 
WRINGER, DPR WRINGER, and the TP WRINGER were created with a previous implementation of 
KNACK, no detailed data are available.

7. Conclusion
Existing expert systems have proven that AI techniques can be used to solve a variety of knowledge 
intensive problems. But expert systems are time-consuming to develop and difficult to maintain. A key 
issue hi developing any expert system is how to update its large and growing knowledge base. It has been 
shown that a large knowledge base can be kept maintainable by organizing it according to the different 
roles that knowledge plays [Chandrasekaran 83], [Clancey 83], [Neches 84]. Based on this realization a 
variety of knowledge acquisition tools nave been produced during the past years to overcome those 
development and maintenance problems.

Existing knowledge acquisition tools focus on different aspects of the knowledge engineering task. 
KREME [Abrett 87] provides an environment for editing large knowledge bases. SEAR [van de Brug
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Number of days to 
create the sample report

Number of days to 
create the preliminary 
domain model

Number of days to 
create the sample 
strategies

Number of days to 
generalize the sample 
report

Number of days to 
generalize the sample 
strategies

Number of days to 
review the knowledge 
base

Total

PP
 

"

  

"

7

DPR

 

"

~ 

21

TP

 

"

~ 

"

8

SR

2

4

3

4

4

1

18

PPR

3

5

1

5

5

"

19

Table 6-3: Effort

86], AQUINAS [Boose 87], KRITON [Diederich 87], and TKAW [Kahn 87] integrate a variety of 
methodologies and tools for the development of expert systems into a workbench for a knowledge 
engineer.

Other knowledge acquisition tools try to automate the knowledge acquisition process. An automated 
knowledge acquisition tool typically interacts with domain experts directly. No knowledge engineer is 
necessary to translate the expert's knowledge into production rules. An automated knowledge acquisition 
tool further organizes the knowledge it acquires, and generates an expert system. The domain expert can 
also use it to test and maintain the program it generates. The critical feature of such a tool is that a 
domain expert can use it without having to know about programming in general and specific AI 
techniques. Examples of automated knowledge acquisition tools are TEIRESIAS [Davis 82], ETS [Boose 
84], MORE [Kahn 85], MOLE [Eshelman 87], and SALT [Marcus 87]. These tools derive their power by 
presupposing the problem solving method of the expert systems they generate [McDermott 86], [Gruber 
87]. Other automated knowledge acquisition tools like OPAL [Musen 87] and STUDENT [Gale ] exploit 
an explicit domain model.

A useful distinction between the above knowledge acquisition tools is whether they help to create expert 
systems that either select or construct a solution [Clancey 84], TEIRESIAS, ETS, MORE, MOLE, OPAL 
and STUDENT generate expert systems that select a solution from a given set of pre-enumerable 
candidates. SALT is an example of a knowledge acquisition tool for systems that construct a solution.

This paper described KNACK, a knowledge acquisition tool that generates expert systems for evaluating 
different classes of designs. Like SALT, it can be used to develop expert systems that construct a solution 
compatible with a set of constraints. But whereas SALT generated expert systems produce designs from 
scratch, i.e., typically one designer has complete knowledge about all constraints a solution has to satisfy,
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KNACK generates evaluation systems. Evaluation systems assume that multiple designers are involved 
in a design task and each designer only knows a subset of the constraints a solution has to satisfy.

Another difference between KNACK and the tools mentioned so far is KNACK's report-driven approach 
to acquiring knowledge. KNACK assumes that an expert can present his knowledge adequately in the 
form of a report. The expert must have a clear understanding of what constitutes an acceptable report 
describing and evaluating a design. This includes that the expert knows what information is needed, how 
to evaluate this information, and how a designer should present this information.

If categorized along the dimensions outlined above, KNACK exploits a presupposed problem solving 
method as well as an explicit domain model. Like TEIRESIAS, ETS, MORE, MOLE, SALT, and SEAR 
it presupposes and exploits the problem-solving methods and the knowledge roles of the expert systems it 
generates. Like OPAL and STUDENT, KNACK exploits a domain model during knowledge acquisition. 
KNACK uses the domain model to elicit knowledge in a format familiar to the expert and develop 
expectations about the knowledge the expert might provide. KNACK differs from OPAL and STUDENT 
in that the domain model can be customized for a particular domain and no knowledge engineering 
expertise is required to build a domain model. Also, KNACK does not assume that its domain model is 
complete and consistent. It expects that the expert can provide a preliminary model and gradually 
augments that preliminary model during knowledge acquisition into a domain model describing the 
design and the evaluation process.

The description of KNACK'S approach for knowledge acquisition reveals that the generalization process 
is critical for KNACK's performance. The technique uses simple heuristics to replace fixed text 
components of the sample report with variables denoting concepts and concept characteristics. The 
heuristics take into account the structure of the sample report and previous generalizations. They look for 
keywords, known concepts, and concept representatives in the sample report. Since the concepts and 
concept representatives are described in the domain model, the domain model is the heart of the 
generalization process. A successful generalization requires that the concepts and concept representatives 
in the domain model closely correspond to the terms used hi the sample report. Moreover, the domain 
model must contain a detailed structural and functional description of the evaluation task. We will 
continue to make KNACK less sensitive to incomplete domain models. This includes getting a better 
understanding of the knowledge common to a range of evaluation tasks and improving the heuristics used 
hi the generalization process. We will further extend KNACK's ability to use the expert's corrections as 
well as the generalized strategies to refine the preliminary model into a structural and functional 
representation of a particular evaluation domain.

An important goal hi our research is to make the use of KNACK independent from knowledge 
engineering expertise. While we believe that KNACK's approach described in this paper is an important 
step towards that goal, we do realize that we are only a short way along the path.
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