
Draft: KNACK: A Knowledge Acquisition Tool for...

KNACK: A Knowledge Acquisition Tool for

Systems that Evaluate Designs

Georg Klinker

Department of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract
KNACK is a specialized knowledge acquisition tool that generates expert systems for evaluating different

classes of designs. The tool derives its power from exploiting the presupposed problem-solving method
of the expert systems it generates. An important feature of KNACK is that it acquires knowledge from
domain experts without presupposing knowledge engineering skills on their part. This is achieved by

incorporating general knowledge about evaluation tasks in KNACK. Using that knowledge, KNACK
builds a model of the domain through an interview process with the expert. During knowledge

acquisition KNACK uses the domain model to elicit knowledge in a format familiar to the expert.
KNACK expects the expert to communicate a portion of his knowledge as a sample report and divides the
report into small fragments. It asks the expert for strategies of how to customize the fragments for
different applications. KNACK generalizes the fragments and strategies, displays several instantiations of
them, and the expert edits any of these that need it. The corrections motivate and guide KNACK in
refining the knowledge base. This process of abstraction and completion results hi a knowledge base
containing a large collection of generalized report fragments more broadly applicable than the sample
report Finally, KNACK examines the acquired knowledge for incompleteness and inconsistency. 1

1. Introduction
KNACK [Klinker 87a] is a knowledge acquisition tool that can be used by domain experts to create
expert systems that assist with the evaluation of different classes of designs. It exploits a presupposed
problem-solving method as well as an explicit domain model and it takes a report-driven approach to

acquire knowledge.

KNACK presupposes and exploits the problem-solving method of the expert systems it generates. A

problem solving method is knowledge that establishes and controls the sequences of actions required to

lrThis research was sponsored by the Defense Nuclear Agency (DNA) and the Harry Diamond Laboratories (HDL) under

contract DNA001-85-C-0027, the Bares Foundation, Boeing Computer Services (BCS), and Digital Equipment Corporation
(DEC). The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of DNA, HDL, the Bares Foundation, BCS, or DEC.

2 Automated Knowledge Acquisition for Expert Systems

perform some task. This control knowledge dynamically defines the order in which subtasks have to be

solved in order to perform the overall task. It also defines the kind of domain specific knowledge that is
applicable within each step. Thus, the problem solving method helps to identify and classify the domain
knowledge. It makes the different roles knowledge plays in the design evaluation task explicit and
suggests ways to organize the knowledge base according to the knowledge roles. It further defines how
knowledge interacts during problem solving. The granularity of the problem solving method is

determined by the demand that the knowledge represented by a knowledge role can be applied without
further control knowledge, e.g. the order in which that knowledge will be brought to bear does not

matter.

Like SALT [Marcus 87], KNACK can be used to develop expert systems that construct a solution
compatible with a set of constraints. But whereas SALT-generated expert systems produce designs from

scratch, i.e., typically one designer has complete knowledge about all constraints a solution has to satisfy,
KNACK generates evaluation systems. Evaluation systems assume that multiple designers are involved
in a design task and each designer only knows a subset of the constraints a solution has to satisfy. The

designers have to work together to construct a design. They must communicate their partial solution to
other designers who then refine the design. Evaluation systems are useful when designers have little or
no knowledge about specialized design practices required by unfamiliar design techniques or

environments. For example, this is the case when new techniques have been developed that are not yet
common knowledge. Therefore, evaluation systems assist a designer hi refining a given design to take

into account aspects of an unfamiliar environment. They evaluate designs from a different point of view
not anticipated in the original design. Evaluation systems assume that an incomplete design exists that
may be suboptimal under a particular perspective, compare the parameters of a given design with
constraints imposed by a given environment, and propose fixes in case some constraints are violated.

Explicit knowledge about an assumed problem-solving method and its associated knowledge roles can be
used during knowledge acquisition to guide a domain expert in defining, analyzing and testing a

knowledge base. However, the expert is still required to enter knowledge in a structured format that may
be unfamiliar to him. This imposes a learning burden on the expert. An important goal in the
development of KNACK is that it acquires knowledge from domain experts without presupposing

knowledge engineering skills on their part. Like OPAL [Musen 87], KNACK exploits a domain model
during knowledge acquisition. The domain model contains a structural and functional definition of a
particular evaluation domain. It describes the concepts experts use and their interdependences. KNACK
uses the domain model to elicit knowledge in a format familiar to the expert and develop expectations
about the knowledge the expert might provide. KNACK differs from OPAL in that the domain model can

be customized for a particular domain and no knowledge engineering expertise is required to build a

domain model.

Another characteristic of KNACK is its report-driven approach to acquiring knowledge. KNACK

assumes that an expert can present his knowledge adequately in the form of a report. The expert must
have a clear understanding of what constitutes an acceptable report describing and evaluating a design.
This includes that the expert knows what information is needed, how to evaluate this information, and

how a designer should present this information. We think this is a valid assumption for a variety of
evaluation tasks. In general, someone whose job is to evaluate the work of others must have

comprehensive and precise knowledge about that work.

The following sections describe the KNACK tool in detail. Section 2 introduces the KNACKr-generated
expert systems and explicates their problem solving method and its knowledge roles KNACK assumes.

^i

Draft: KNACK: A Knowledge Acquisition Tool for... 3

Section 3 discusses the approach KNACK takes to acquire knowledge and presents a sample interaction
with KNACK. Section 4 jteTHeant to^ho^'how KNACK detects cues that its knowledge base might be
incomplete or inconsistent. Section 5 describes the knowledge base KNACK generates as a result of a
knowledge acquisition session. "^Section 6 w« introduce the systems we have built with KNACK so far.
Section 7 compares KNACK to other knowledge acquisition systems.

2. The Presupposed Problem-solving Method and its Knowledge Roles
Each of the evaluation systems produced by KNACK is called a WRINGER. A WRINGER expert
system assumes that an incomplete design exists that may be suboptimal under a particular perspective.
Its purpose is to assist a designer in refining a given, incomplete design to take into account aspects of an
unfamiliar environment It further presents this design, together with a preliminary design evaluation, in
the form of a report. To evaluate designs, a WRINGER must have available an initial description of the
design to be evaluated. Thus, a WRINGER first gathers the information describing an existing design and
then evaluates the information. If, as a result of the evaluation, additional information is required, a
WRINGER gathers that information. After that, another evaluation is performed. This iterative process
ends when the designer is satisfied with the design.

To gather the information describing a specific design a WRINGER uses strategies to elicit information
from the designer or to infer it. For example, it asks questions or computes numeric values using
formulas. As it progresses, the gathering of information is driven by previously elicited information.
This is a data-driven approach that modifies a WRINGER'S behavior according to the information
specific to each design it is applied to.

The collected information is evaluated by a WRINGER for validity, consistency, completeness, and
possible design flaws, i.e., a WRINGER checks the information describing a design for violations of
constraints imposed by a given environment If indications of design flaws are found, a WRINGER
pomts them out to the designer together with suggestions for improving the design. If the designer agrees
with the fix, a WRINGER updates the design description using a truth maintenance system. Finally,
when the designer is satisfied with the design, a WRINGER generates a report describing and evaluating
the design.

Throughout the paper we will use the Design Parameters Report WRINGER (DPR WRINGER), one of
the WRINGERS we have generated with KNACK, as an example to illustrate the WRINGERs and
KNACK. The domain of the DPR WRINGER is nuclear hardening. Nuclear hardening implies the use
of specific engineering design practices to increase the resistance of an electromechanical system to the
environmental effects generated by a nuclear weapon. Designers of electromechanical systems usually
have little or no knowledge about the specialized analytical methods and engineering practices of the
hardening domain. The purpose of the DPR WRINGER is to assist a designer in improving given designs
of electromechanical systems that may be suboptimal from a hardening perspective. The WRINGER
assumes that the initial design describes a technically functional system. It evaluates the design from a
hardening perspective. The suggested improvements are either extensions to the design or
recommendations for using different design components. The WRINGER presents the design, together
with the results of the evaluation, hi the form of a technical document that meets government
requirements.

In detail, the DPR WRINGER documents a system description, analysis, design features, and assumptions
required to assure the nuclear hardness and survivability of a system with respect to one nuclear

4 Automated Knowledge Acquisition for Expert Systems

environment: electromagnetic pulse (EMP). To evaluate a system, the WRINGER gathers detailed
information about an electromechanical system design ranging from the level of major components to the
level of individual semiconductors. After the gathered information is checked for completeness and
consistency, a worst-case analysis is carried out for each interface circuit in a system, determining
whether the EMP environment will induce transients above the operating voltage of the interface circuits.
This analysis indicates either that a system is sufficiently refractory of the EMP environment or may not
be. In the latter case a more detailedfecreen\analysis, and if necessary an even more precisef resistivej TTRXAG. s
analysis, is conducted to identify inadequacies in a system's response to the EMP environment. When
such an inadequacy is pinpointed, the WRINGER suggests possible fixes, all of which are prechecked for
adequate strengthening properties in the interface circuits.

The above general description of a WRINGER and the specific example of the DPR WRINGER indicate
that a WRINGERs problem-solving method has to perform two major tasks: gather the requisite
information from the designer to describe an incomplete design, and perform a constructive evaluation of
the design. The following describes thelpoblem-solving methocDand the associated knowledge roles for
each of these tasks.

2.1. Information Gathering
A WRINGER first determines which piece of information to gather next. The goal is to reduce the
burden placed on the designer in describing a system design. Generally only a fraction of a WRINGER'S
knowledge is applicable to the evaluation of any particular design. To determine the knowledge relevant
to the task at hand, a WRINGER selects the necessary information about a design in a data-driven
manner; the decision to gather a particular piece of information is based on previously gathered
information. But it is often the case that more than one piece of information can be gathered at any time.
The order hi which the pieces of information are gathered may be important: the designer might feel
more natural providing information in a certain order. For that reason a WRINGER follows the outline of
the report it is expected to produce. That skeletal report organizes a WRINGER'S knowledge around
related topics. In folio whig the outline of the report a WRINGER collects related information in a
coherent manner.

Next, a WRINGERs ̂ problem-solving method {selects and applies a strategy! to gather the piece of
information determined in the previous step. To take into account the different sources of information
available to an evaluator, a WRINGER has^gverai\waysito\elicij information from the designer or to! infer/ .
it For example, it |gicg| information from the designer by (1) asking a question, (2) interpreting a "t^fi Sto^f^-
graphical design description, e.g. a drawing of a system's components, (3) asking the designer to fill in
the slots of a table, diagram, or form, or (4) askmg the user to choose among the items in a menu. A
WRINGERjJggSS} additional information based on previously gathered information. For example, it fills
in gaps by (5) {directly applying specific domain knowledge, (6) ^dmputinglnumeric values, or (7)
^ernng^o a database. Often more than one way exists to gather a piece of information. When this is the
case, a WRINGER fcdects_a_strategS how to gather it. It prefers inference strategies to avoid asking the
designer unnecessary questions. Once a strategy is selected, a WRINGER applies the strategy, checks the
provided pieces of information for synonyms, and updates the design description.

After that, another piece of information to gather next is determined. This iterative process ends when the
information required for the evaluation is available.

The above described [problem-solving melhod] defines the following roles knowledge can play in the

Draft: KNACK: A Knowledge Acquisition Tool for...

information gathering task:
 Skeletal Report

 Information Identification »\ h^^ri '' <* J3 dse^w^ "bi.

 Strategy

 Synonym

The SKELETAL REPORT role includes) knowledge aboutjwhich chapters, sections and subsections are part
of the report a WRINGER is expected to produce, their order, and how to appropriately place report
fragments within the report. Dependent on the designer's description of a particular design a WRINGER
determines the appropriate chapters, sections, subsections, selects the fragments describing the particular
design into the skeleton, and assembles the report The example below shows a part of the table of
contents for the DPR WRINGER.2

1 . Evaluation of the EMP Hardness
1.1. Summary of the System Description
1.2. Shielding Requirement s for the

Enclosures
1.2.1. Diffusion through the Skin of

the Enclosure
1.2.2. EMP Leakage through the

Apertures

INFORMATION IDENTIFICATION jmowledgejis used to identify pieces of information which are relevant to
each part of the report. It prganizgfl the required information around related topics.

The STRATEGY role describes the different[w^s3o gather a piece of information. Relying on previously
elicited information and other pre-defined knowledge, if\detines the circumst^es? in which these
techniques can be applied. It also includes ̂ instructions] about what to\expect| as a response and whaitodo]
with the elicited information. The following example gives ajflavoAof the^jndjof questions the DPR
WRINGER asks.

What enclosures are part of the COMMUNICATIONS
UNIT system? : S-280C, Metal Box

Please, list the apertures of the S-280C
enclosure. : window, cable entry panel

The STRATEGY knowledge further includes information about the validity of newly gathered information.
This includes finding out whether input provided by the designer is^pbviousiv wrong of I merely"

"unplausibie) In the first case, an answer might be outside of a predefined numeric range or it might not be
a member of a predefined complete set of possible answers. In the second case an answer might be
flagged as questionable because it is not a member of a predefined incomplete set of possible answers.
For example:

2In this and the following examples a WRINGER'S and KNACK's prompts and messages appear in boldface, the users
responses in underlined boldface. A word in brackets at the end of a WRINGER's or KNACK's prompts is the default response.
The user may reply with the default by hitting return: <cr>.

Automated Knowledge Acquisition for Expert Systems

Please, list the cables of the COMMUNICATIONS
UNIT system? : audio cable, power cable

I am not familiar with the term AUDIO CABLE.
Some of the following terms are expected
answers :

SIGNAL CABLE,
POWER CABLE

Please confirm or revise your answer.
[AUDIO CABLE] : signal cable

The role SYNONYM is a way to represent knowledge about making a user's answer consistent with the
common way of expressing that answer. For example, if a designer's answer to a question contains a
synonym for a known expression, the WRINGER replaces it with that known expression.

2.2. Design Evaluation
The collected information is evaluated by a WRINGER^forj/ajiditv. consistency, completeness, and
possible design flaws, i.e., a WRINGER checks the information describing a design for violations of
constraints imposed by a given environment. If indications of design flaws are found, a WRINGER
points them out to the designer. It selects among a number of fixes associated with each constraint
violation. A truth maintenance system describes how a fix affects the data item that violated a constraint.
If a fix resolves the constraint violation a WRINGER will suggests it to the designer.

Since a WRINGER did not construct the design from scratch, it is not aware of all the implications a
proposed change might have. It therefore asks the designer to select one of the suggested fixes. A
WRINGER then updates the system description. An applied fix might make additional information
necessary and a WRINGER tries to elicit this information from the designer. If the designer cannot or
does not want to provide the required information, a WRINGER assumes a worst-case value.

Finally, the description of the system design and the evaluation results are usually documented in some
form. A WRINGER presents the gathered information and the results of the evaluation hi the form of a
report. It uses the skeletal report to determine the structure and the report fragments to determine the
content of a report about an actual design. It instantiates the selected report fragments with the
information acquired from the designer and with values resulting from its evaluation. A WRINGER then
generates the report. In some cases the designer will not agree with the results of the evaluation. For this
reason a WRINGER allows the designer to add comments to a report.

The above described problem-solving method defines the following roles knowledge can play in the
design evaluation task:

 Constraint

 Fix

 Report Fragment

CONSTRAINT knowledge defines how to uncover contradictory information. For example, the DPR
WRINGER makes sure that a cable carrying power is not connected to a cable carrying a signal.
CONSTRAINT knowledge further describes how to detect when information provided by the designer is
incomplete. For example, the DPR WRINGER checks whether a power source is specified for the system
and whether a defined antenna is connected to the rest of the system. Finally, CONSTRAINT knowledge

Draft: KNACK: A Knowledge Acquisition Tool for... tcnto\ Aa**vfc

describes how to identify problem cues that are associated with possible flaws in a design, i.e., how to
identify violations of constraints imposed by a given environment. For example:

Screen analysis for SIGNAL LINE 2 INTERFACE «Urw
CIRCUIT :

Junctions Vbd Sa£e-E. Threat -E. Eval.

D3 1N752A 200 1.34e-02 8.29e-03 HARD
D4 1N1184 200 3.60e-04 8.29e-03 SOFT

The above diagram indicates problems with the SIGNAL LINE 2 INTERFACE CIRCUIT: The circuit
contains two diodes in series with the SIGNAL LINE 2. The threat energy produced by the given BMP
environment and coupled into the circuit via SIGNAL LINE 2 would damage diode D4.

FIX knowledge suggests how a design could be improved hi the case a flaw was found. It also determines
worst-case values for the necessary pieces of information the designer could not provide. For example, if
the energy coupled into an interface circuit through a cable exceeds an upper limit, the semiconductor
devices of the interface circuit will be damaged. The DPR WRINGER will suggest using a terminal
protection device to limit that energy to an acceptable level. The following demonstrates this for the
above example.

The following TPDs will reduce the threat
energy for SIGNAL LINE 2 INTERFACE CIRCUIT
sufficiently:

Type E.diss
[J]

Vover
[V]

Vknee
[V]

Ton
[ns]

15KP280 6.00e+10 5.00e+02 3.45e+02 l.OOe-03
V420LA10 6.00e+10 2.42e+03 1.20e+03 l.OOe-00

Which TPD would you like to use? [15KP280]:
<cr>

A REPORT FRAGMENT describes a small possible piece of an actual report. This includes the text to be
printed in a report and the variables containing the information that is specific to whichever system design
is the subject of a WRINGER report. It also incorporates the gathered information into the report The
report part used as the sample report in section 3 is also an example of a report part produced by the DPR
WRINGER.

3. Acquiring Knowledge
KNACK is a knowledge acquisition tool that can be used by domain experts to create WRINGERs, expert
systems that assist with the evaluation of different classes of designs. An important goal in the
development of KNACK is, that is acquires knowledge from domain experts without presupposing
knowledge engineering skills on their part. To reach that goal, KNACK* s approach for knowledge
acquisition combines and uses existing AI techniques to derive a general description how to evaluate
designs from a specific sample description. This is a process of abstraction (e.g. the specific sample
description is variabilized) and completion (e.g. signs of incompleteness lead to the elicitation of
additional knowledge).

8 Automated Knowledge Acquisition for Expert Systems

General knowledge about evaluating designs is incorporated into KNACK. In an initial questioning
session with the expert, KNACK uses that knowledge to conduct an interview with the expert. The
interview results in a preliminary model of a particular evaluation domain. During knowledge acquisition
KNACK refines the preliminary domain model into a detailed structural and functional model of the
domain. The domain model describes the concepts, their interdependencies, and the vocabulary the
expert uses in performing an evaluation task. KNACK also requires a sample report as an initial input.
The sample report is a document that exemplifies the description and the evaluation of a particular design.

Once the sample report is typed in and an initial domain model is defined, KNACK develops expertise in
evaluating designs by integrating the specific sample report with the domain model hi successive
interactions with the expert. This integration process generalizes the sample report, making it applicable
to different systems. To demonstrate its understanding of the sample report and to predict and exemplify
the performance an expert can expect from the WRINGER he is creating, KNACK instantiates the
generalized report with known concept representatives taken from the domain model. It displays several
differently instantiated examples for each generalized report fragment. The expert edits any examples
that make implausible statements. KNACK uses this feedback as additional knowledge to correct its
generalizations and refine the domain model.

Once the expert accepts KNACK's understanding of the sample report, KNACK elicits knowledge about
how to customize the generalized sample report for a particular application. The experfdefines strategies
that a KNACK generated expert system, a WRINGER, will use to acquire values instantiating the
concepts in the generalized fragments. Experts define strategies in the same way that report fragments are
defined: by typing in samples. Strategies can be questions, formulas, inferences, and other forms.
KNACK generalizes the strategies and displays some example instantiations of them for review and
correction by the expert.

KNACK's knowledge acquisition approach results in a knowledge base the generated WRINGER expert
system can use to evaluate a range of designs and to present the results in the form of a report However,
the sample report covers only one simple design and almost certainly lacks some important concepts
needed for the evaluation of a broader range of designs. For this reason, KNACK searches the knowledge
base for report fragments or strategies that indicate gaps or conflicts with its domain model. If a possible
flaw is found, KNACK asks the expert to correct the report, the strategies, or the domain model.

The following detailed description of KNACK's knowledge acquisition approach is organized around an
example of an actual KNACK case: the creation of the DPR WRINGER. It leads through the process of
typing hi a small part of a sample report, acquiring a partial domain model, generalizing the part of the
sample report, and defining strategies. The analysis of the acquired knowledge is demonstrated in section
4. In the interest of brevity, the excerpts used as examples are only a small fraction of the full KNACK
case.

KNACK starts out with displaying the top level menu.

model
report
generalize-report
strategy
generalize-strategy
analyze
exit

acquire domain model
acquire report
generalize report
acquire strategies
generalize strategies
analyze knowledge base
exit KNACK

Draft: KNACK: A Knowledge Acquisition Tool for... 9

KNACK's report-driven approach to acquire knowledge determines the expert's choices on the top level:
define or update the domain model, sample report, or strategies; generalize the sample report or sample
strategies; analyze the knowledge base for incompleteness or inconsistency. Once the sample report is
typed in and an initial domain model is defined, the expert can choose any of the above functions. Our
sample interaction starts with typing in the sample report.

3.1. Acquiring the Sample Report
KNACK requires a sample report as an initial input. The sample report is a document describing how the
expert evaluates a particular design. It exemplifies what the expert intends the WRINGER to produce. It
may be written specially for this purpose by a domain expert or group of experts, or selected from
existing reports. It contains a description of the design and the given environment, a detailed evaluation
of the design with regard to the environment, and suggestions to improve the design hi case design flaws
are found. The sample report is a familiar and convenient medium for the expert to express his
knowledge.

The selection of the REPORT option in the top level menu leads to the report menu shown below.
next
previous
edit
insert
delete
quit

display next fragment
display previous fragment
edit current fragment
insert fragments
delete current fragment
quit sample report editor

It determines the top level features of a simple text editor that can be used to define, update, or leaf
through the sample report. The INSERT function allows to input the sample report. The sample report is
typed in to a file by any person familiar with text editors.

1. Evaluation of the EMP Hardness

1.1. Summary of the System Description

The system Communications Unit is designed to
resist to EMP threat. It consists of a
Computer, a Modem, a Radio, and a Motor
Generator. Power is supplied from the Motor
Generator to the Computer, Modem, and Radio by
the Power Cable.

The Computer, Modem, and Radio are protected
by a S-280C enclosure. The Motor Generator is
protected by a Metal Box enclosure.

The S-280C enclosure has the following
apertures; Window and Cable Entry Panel. The
Metal Boat enclosure has the following
apertures; Cable Entry Panel.

1.2. Shielding Requirements for the S-280C
______Enclosure

1.2.1. Diffusion through the Skin of the
Enclosure

10 Automated Knowledge Acquisition for Expert Systems

The S-280C enclosure is made of aluminum and
is 30 mils thick. Aluminum has a
relative-conductivity of 0.15 mhos/m. A plate
of aluminum must be at least 20 mils thick to
reduce the diffusion factor to an negligible
level. Therefore, the diffusion factor can be
neglected.

KNACK divides the report into fragments corresponding to paragraphs. In the above example, this
results in 8 report fragments.

KNACK also requires a model of the domain as an initial input. Thus, our example continues with the
definition of the domain model.

3.2. Acquiring the Domain Model
The sample report describes a particular system design in the terms familiar to the expert. To generalize
the sample report, making it applicable to other designs, KNACK needs a model of the particular
evaluation domain. The domain model contains a detailed structural and functional description of the
evaluation task at hand. The structural part of the domain model describes a taxonomy of the concepts,
vocabulary, and terms experts use and the interdependencies between concepts. This includes the
relevant parameters of a design and the environment, the constraints, and possible fixes for violated
constraints. The functional part of the domain model describes procedures how to determine, compare
and propagate relevant parameters. Thus, the model customizes KNACK for a particular evaluation
domain.

In addition to generaliz^ the sample report, KNACK uses the concepts and terms described hi the domain
model to acquire knowledge in a format familiar to the expert The model further represents a preview of
the knowledge base the expert wants to create. KNACK uses it to develop expectations about the
knowledge the expert might provide. Based on these expectations KNACK checks the expert's input,
generates knowledge pieces, and analyzes the resulting knowledge base. The expert then refines
KNACK's expectations (as described in sections 3.4, 3.5, and 4) and, thus, refines the domain model.

At the beginning of knowledge acquisition, KNACK acquires a preliminary domain model. To acquire
the preliminary model, it conducts an interview with the expert. This is an interactive process which
takes a few hours of the expert's time. The interview is driven by KNACK's general understanding of the
evaluation task. That understanding describes the knowledge Lcommgn to a range of evaluation domains
on a high level of abstraction. KNACK views evaluation as partly analytic (i.e., determine whether a
system will function in a given environment) and partly constructive (i.e., improve a system design so that
it will function in a given environment). The example below gives a flavor of the knowledge applicable
to a range of evaluation tasks: . j5 <

av\

<P

Draft: KNACK: A Knowledge Acquisition Tool for... 11

Design Constraint Environment

comprises has ^^" -v. has comprises

% •**"———"""""Tk JC*""1——"**• K
Design- Design- Environment- Environment
Component !?>P*r% Property Component

V comprisesf \pfopasos- T \.compr/ses
/ \-fvc-for / 4

'Design- Property- \ / Property-
vConnectton Component \ / Component\ /;-proposes-a-fix-for \ \ I) proposes-a-fix-for

^omprises ^ Design-
Component

The general understanding is buijp'into KNACK. It describes a design that needs to be refined to take
into account aspects of an unfamiliar environment. The nodes are concepts and the links between the
nodes encode structural knowledge. For example, a design comprises a set of design components
interrelated by design connections. Design components have design properties. An environment
comprises environment components. They are further described by environment properties. Design and
environment properties define the evaluation criteria and are compared to some other properties. This
defines the constraints a design has to satisfy. Properties can comprise property components. Design
components can propose a fix for properties or property components. A fix changes a design or suggests
a design extension and, thus, modifies design or environment properties.

KNACK uses the above described general understanding in the form of generic questions to acquire the
vocabulary experts are familiar with. The expert's answers customizejCNACK's abstract knowledge into
a preliminary model of a particular domain. The preliminary model describes concepts, concept
characteristics, concept representatives, and constraints. The following sample interaction defines a part
of the preliminary model needed to generalize the above sample report.

How would you like (o referf to SYSTEM
components? subsystem, enclosure ^ ~ ~"~ ~

How would you like £o~ refe? to SYSTEM U O .
components that interrelate SYSTEM components? °- lrejl£)
cable £/wyp/i_^

How would you like fco refer! to the environment
in which a SYSTEM must function? nuclear
environment

The answers to the above questions define new concepts for the domain model. They denote a design, an
environment, design and environment components and connections.

Other questions define concept properties as the data items to be compared by the evaluation criteria.

How would you like ttgTreferjto the SUBSYSTEM
properties that define the data items to be
compared by the evaluation criteria? safe
energy

12 Automated Knowledge Acquisition for Expert Systems

How would you like j£o~refer]to the COUPLING
properties that define the data items to be
compared by the evaluation criteria? threat
energy

Once the constrained data items are known, KNACK asks the expert to determine the constraints.
Constraints define the evaluation criteria, i.e., the relationships between the data items to be compared.
The constraints are defined by keywords like "equal", "less equal", "subset"/fetc7

^ —

What /Cs~the~relationsh£pl between the SAFE 2. /
ENERGY property and the THREAT ENERGY
property? less equal

Further questions determine the concepts that represent fixes in case constraints are violated
What design components C^g>r_esent^a fixJfor the
THREAT ENERGY property? enclosure

Concepts are described further by their characteristics.
What are the characteristics of the Enclosure? t - » *****
material, thickness

Some questions determine the concept representatives used in the sample report. These are important
keywords KNACK uses in its generalization process.

Please, list [s^]]e^^lesjfor the SUBSYSTEM:
computer, modem, radio, motor generator— —— ——— ——— ——— ———
Please, list some examples for the ENCLOSURE:
S-280C, metal box

Please, list some examples for the MATERIAL
characteristic of the ENCLOSURE: aluminum

Please, list some examples for the THICKNESS
characteristic of the ENCLOSURE: number

The expert's responses to all of the above questions are added to KNACK' s general understanding of
evaluation resulting in a preliminary domain model. The following is an example of a preliminary model ^
parts of which are derived from the above interaction.

Draft: KNACK: A Knowledge Acquisition Tool for... 13

System
NAME: Communications Unit

Nuclear-
Environment

NAME: EMP
Thermal
Blast
INR

Coupling
PEAK-VOLTAGE
PEAK-CURRENT
DERIVATIVE-OF-

CURRENTT

Subsystem
NAME: Co

Modem
Radio
Motor Generator Threat-Energy

Cable
NAME: Power Cable

Signal Cable
BC
VOCflES
VOC-WD
TP-RES
TP-IND

osure
NAME:

Metal Box
MATERIAL
THICKNESS
RELATIVE-CON
MINIMUM-THICKNESS Threat-Voltage

Aperture
Name: Window

Cable Entry Panel
AREA
TRANSFER-INOUCTANCE
TRANSFER-RESISTANCE
VOLTAGE-INDUCED
EECTRIC-RELD

Scam
NAME: Cable Entry

Panel Sea

pioposee-a-flx-for

Optical Coating

The preliminary domain model is not sufficient for a successful generalization process. It represents a
structural description of the task i.e., the vocabulary and the terms experts use, but does not contain any
functional knowledge, i.e., how experts obtain and propagate design and environment parameters. The
following example demonstrates a portion of the domain model representing functional knowledge. The
nodes describe procedures to obtain design and environmental parameters. The links (indicated by dotted
lines) define how values are propagated through the network. Section 3.5 describes the process of
deriving that functional knowledge.

14 Automated Knowledge Acquisition for Expert Systems

System
NAME: Communications Unit

has

Subsystem
NAME: Co

Modem
Radio
Motor Generator

Safe-Energy

„ _ Question /•
ilosure
NAME: S-280C

Metal Box
MATERIAL
THICKNESS
RELATIVE-CONDUCTIVrTY
MINIMUM-THICKNESS

Ks^Cor,

Threat-E

comprise

.Constraint

[-Energy

Cable ^
NAME: Power Cable\

Signal Cable v
ISC
VCCflES~
VOC-IND~ - - - ^ xTP-RES ----;?
TP-IND ~ " Z " "

Nuclear-
Environment

NAME: EMP

Coupling
PEAK-VOLTAGE
PEAK-CURRENT
DERIVAT1VE-OF-

CURRENT

Formula

The above example states that a question strategy can be used to determine the kinds of ENCLOSURES
comprised in a SYSTEM. It describes further that a formula strategy uses values of the ISC, VOC-RES,
VOC-IND, TP-RES, and TP-IND characteristics of CABLE to determine the value for the THREAT-
ENERGY.

It is likely that the initial structural model is incomplete and not detailed enough. During knowledge
acquisition KNACK augments the initial domain model to include the functional aspects of the evaluation
domain and to obtain a more detailed structural model. It gradually specializes the domain model to
represent the expert's understanding of how a particular environment interacts with different design
components. This process is described in section 3.4.

Once the sample report is typed in and an initial domain model is defined, KNACK interacts with a
domain expert to generalize the sample report on a fragment by fragment basis.

33. Generalizing the Sample Report
KNACK develops expertise hi evaluating designs by integrating the specific sample report with the
domain model hi successive interactions with the expert. This integration process generalizes the sample
report, making it applicable to a broader range of designs. Deriving the generalized report involves
extracting the report's basic structure and integrating the domain model with the report fragments (i.e.
fragments are parsed to detect text strings that match the entries hi the domain model). The technique
employs simple heuristics to infer the concepts each fragment mentions. The heuristics are based on
keywords, representatives for concepts in the fragment, and knowledge of relations between candidate
concepts.

In the first aspect of this process KNACK looks for keywords (e.g., chapter, section, subsection, heading,
itemize, enumerate, bold, underline), instances of keywords (e.g., 2. for chapter, 2.3.2. for subsection,
(1) for enumerate), and the form of the input (only a few words hi a line separated from the remaining text
by blank lines). From this analysis KNACK generates a skeletal report defining the form of the sample
report It includes the outline and special formats (e.g., table of contents, itemizations, enumerations,

Draft: KNACK: A Knowledge Acquisition Tool for... 15

filled or unfilled environments) encoded as commands for a document formatting system.

In the second aspect of the generalization process KNACK converts fixed report text into generalizations
representing the concepts detected in the fragment. Cues to locate and identify concepts in a report
fragment are numbers representing the value of quantitative parameters and non-numeric symbols
denoting tokens of known concepts in the domain model.

The heuristics provide sufficient analytical power to acquire knowledge without turning to a sophisticated
natural language interface. There are limitations though. The heuristics mistakenly identify some
concepts and miss others. The errors are dealt with when the expert critiques instantiations of the
generalized fragments as described later on.

The generalization process results in a collection of generalized report fragments more broadly applicable
than the sample report. A generalized report fragment describes a small possible piece of an actual report.
It includes fixed text strings to be printed exactly as formulated by the expert, concepts to be instantiated
by the WRINGER, knowledge about incorporating the gathered concept representatives into the report,
and keywords specifying the type and form of the report fragment (e.g., simple paragraph, figure, table,
and title). Generalizations are internal constructs for KNACK's use. Consonant with the research goal of
reducing the knowledge engineering skills needed for knowledge acquisition, the expert sees only
instantiated generalizations. However, the following examples of generalizations are included to give an
impression of the kinds of heuristics KNACK uses to integrate the domain model with the sample report.

To give a flavor of the kinds of heuristics KNACK uses, generalizations of some of the fragments in the
above sample report are shown below. The angle brackets enclose concepts detected in a fragment.
Asterisks enclose commands denoting the report structure.

"CHAPTER* Evaluation of the ENVIRONMENT.NAME>
Hardness

Numbers at the beginning of a line followed by a dot indicate chapter, section, or subsection headings.
For example, "1." is assumed to be a chapter heading. Representatives of known concepts can be
generalized by replacing them with a variable representing that concept. For example, EMP is inferred to
be a NAME of an ENVIRONMENT due to a unique match with the domain model.

The system <SYSTEM.NAME> is designed to resist
to ENVIRONMENT.NAME> threat. It consists of
LOOPOVER <SUBSYSTEM.NAME> a <SUBSYSTEM.NAME>
,*ENDLOOP*. Power is supplied from the
<SUBSYSTEM.NAME> to the *LOOPOVER*
<SUBSYSTEM.NAME> <SUBSYSTEM.NAME>, *ENDLOOP*
by the <CABLE.NAME>.

A list of representatives for the same concept is replaced with a variable representing that concept and a
surrounding LOOP structure. In a WRINGER report, a fragment containing a LOOP structure will be
printed once, whereas the text within the LOOP structure will be repeated for each instantiation of the
variable. For example, "a Computer, a Modem, a Radio, and a Motor Generator" is assumed to be a list
of NAMES of SUBSYSTEMS.

The *LOOPOVER* <SUBSYSTEM.NAME>
<SUBSYSTEM.NAME>, *ENDLOOP* are protected by
a <ENCLOSURE.NAME> enclosure.

16 Automated Knowledge Acquisition for Expert Systems

If the generalizations of parts of the report fragments are the same, these parts can both be represented by
the same generalization. For example, the generalization of the two sentences "The Computer, Modem,
and Radio are protected by a S-280C enclosure. The Motor Generator is protected by a Metal Box
enclosure." results hi the same generalized report fragment shown above.

The <ENCLOSURE.NAME> enclosure is made of
<ENCLOSURE.MATERIAL> and is
<ENCLOSURE.MINIMUM-THICKNESS> mils thick.
<ENCLOSURE.MATERIAL> has a relative
conductivity of
<ENCLOSURE. RELATIVE-CONDUCTIVITY mhos/m. A
plate of <ENCLOSURE.MATERIAL> must be at least
<ENCLOSURE.THICKNESS> mils thick to reduce the
diffusion factor to an negligible level.
Therefore, the diffusion factor can be
neglected.

A number is assumed to be a representative of some numerical characteristic of some concept. If the text
adjacent to a number refers to a known concept and one of its characteristics, the number is replaced with
the corresponding variable. For example, "0.15" is assumed to be the RELATIVE-CONDUCTIVITY of
an ENCLOSURE because ALUMINUM is known to be an example for an ENCLOSURE MATERIAL
and the term "relative conductivity" was encountered in the text of the fragment. x

When helpful clues are not present in adjacent text, KNACK simply guesses the concept from the
ambiguous set of matches. Its guesses are based on the concepts recognized in the fragment. These
guesses can be wrong and KNACK corrects them when the expert critiques instantiations of the
generalized fragments as described later on. The above fragment contains the guesses
<ENCLOSURE.MINIMUM-THICKNESS> and <ENCLOSURE.TfflCKNESS>.

3.4. Demonstrating Understanding of the Sample Report
KNACK predicts and exemplifies the performance an expert can expect from the WRINGER he is
working to create. It instantiates the concepts of the generalized fragments with known concept
representatives taken from the domain model and displays several differently instantiated examples of
each generalized report fragment The expert edits any examples that make implausible statements about
the domain. KNACK treats such events as incorrect use of the knowledge base and interprets the
corrections as new knowledge to update the generalization and improve the domain model. For example
if the expert indicates that values from the domain model combine too loosely, KNACK adds a constraint
to the model, restricting possible combinations. A correction also can imply that KNACK's guess about
the identity of a concept is wrong, leading to its retraction and the introduction of a new, initially less
probable guess. Applying the new knowledge, the generalization is instantiated again and display of
several examples gives the expert immediate feedback on the effects of the knowledge base modification.

KNACK extends the domain model whenever the editing adds variability between examples that it cannot
parse. Extensions can be new concepts, new characteristics for known concepts, and restrictions on
existing relations between representatives of two concepts. The model serves as a collection of examples
suggesting guesses for KNACK as to the form of the extension. The following examples illustrate the

Draft: KNACK: A Knowledge Acquisition Tool for... 17

editing process with some of the generalized report fragments shown above.3
1. Evaluation of the EMP Hardness

2. Evaluation of the Thermal Hardness

Corrections? [NONE]: delete example 2

KNACK assumes that this fragment represents a chapter heading and that there will be a chapter about
the different environments defined in the domain model: EMP, THERMAL, BLAST, and INR.
Therefore, it displays examples of possible chapter headings. The expert deletes the second example.
KNACK guesses that only the value EMP is relevant for the fragment. It further constrains the remaining
fragments of the chapter to the EMP environment, assuming that the topic will not change within a
chapter.

The system Communications Unit is designed to
resist to EMP threat. It consists of a
Computer, a Modem, a Radio, and a Motor
Generator. Power is supplied from the Motor
Generator to the Computer, Modem, Radio, and
Motor Generator by the Power Cable.

The system Communications Unit is designed to
resist to EMP threat. It consists of a
Computer, a Modem, a Radio, and a Motor
Generator. Power is supplied from the
Computer to the Computer,, Modem, Radio, and
Motor Generator by the Signal Cable.

Corrections? [NONE]: delete the second
occurrence of TO in example 1, delete the 2nd
occurrence of MOTOR GENERATOR in example 1,
change the 2nd occurrence of COMPUTER in
example 2 to MOTOR GENERATOR, change SIGNAL
CABLE in example 2 to POWER CABLE

Since KNACK generalized the fragment to contain a list of NAMEs of SUBSYSTEMS, it includes all
representatives of SUBSYSTEMS it knows into the example assuming that the fragment is valid for all
possible SUBSYSTEMS. The expert first makes a minor change to the fixed text of the fragment. This
example demonstrates further that KNACK's domain model is inadequate. The expert's corrections are
now used to refine the model: KNACK integrated the concepts SUBSYSTEM and CABLE with the
report fragment. It knows, that some CABLE interrelates some SUBSYSTEM with some SUBSYSTEM,
and that no other relation interrelates SUBSYSTEM with another concept integrated with the report
fragment KNACK now adds the restriction to the model that a POWER CABLE interrelates a MOTOR
GENERATOR SUBSYSTEM with SUBSYSTEMS different from MOTOR GENERATOR. In this case,
the process of extending the domain model is internal to KNACK. The corrections provide KNACK with
all the information necessary to extend the model.

KNACK cannot always decide unambiguously which relation to restrict because more than one relation

3The expert uses the mouse and provided menus in order to change displayed examples. It is beyond the scope of this paper to
present this part of the interaction exactly as it proceeds on the terminal screen. Thus, in the following examples the expert's
actions are described in short, underlined sentences.

18 Automated Knowledge Acquisition for Expert Systems

interrelate concepts detected in the report fragment. In this case KNACK guesses a relation to restrict. It
assumes that its guess is right, until a correction of an instantiation later hi the interaction indicates the
opposite. KNACK then revises its earlier decision and restricts another relation.

1.2. Shielding Requirements for the S-280C
Enclosure

1.3. Shielding Requirements for the Metal Box
Enclosure

Corrections? [NONE]: <cr>

KNACK displays two examples corresponding to the known representatives of ENCLOSURES. The
expert agrees with both. This section heading contains a variable text component. In a WRINGER report
the section begun by the above example will be repeated for all ENCLOSURES contained in an actual
system. The report fragments within each of the sections will be specific to the enclosure described by a
section.

Once the sample report is generalized, KNACK suggests to define strategies which a WRINGER will use
to customize the generalized report fragments for a particular application.

3.5. Defining, Generalizing, and Correcting Strategies
Concepts in the generalized fragments must be instantiated with values describing a particular system
design when a WRINGER evaluates a design and writes its report KNACK asks the expert to define
strategies for a WRINGER to acquire or produce the instantiation values. Experts define strategies in the
same way that report fragments are defined, by typing in samples. Each strategy describes a way to
determine a representative of a concept and includes instructions about valid possible values. Relying on
previously elicited information and other prior knowledge, KNACK defines the circumstances in which
these methods can be applied. The strategies are also used to refine the domain model: they describe the
procedures to obtain, propagate and compare design and environment parameters.

KNACK asks the expert to define at least one strategy for each concept in the report fragments. A
strategy can be interactive, i.e., acquire concept representatives by asking questions, interpreting a
graphical design description, asking the designer to fill in the slots of a table, diagram, or form, or asking
the user to choose from the items hi a menu. Other strategies are autonomous, i.e., infer concept
representatives by directly applying specific domain knowledge, computing numeric values using
formulas, or referring to a database.

Which strategy can be used to determine the
ENCLOSURES of a SYSTEM?

[constant, question, inference, table, menu,
graphics, formula, database, postpone, quit]
[QUESTION]: <cr>

question text....: Please, list the enclosures

possible answers.. [INCOMPLETE-SET, S-280C,
METAL BOX] <cr>

default answer.... [S-280C]: unknown
Status............ [NOT-MANDATORY] : <cr>

Draft: KNACK: A Knowledge Acquisition Tool for... 19

The above example demonstrates how the expert defines the knowledge needed for a question strategy to
determine the ENCLOSURES of a SYSTEM. He defines the question "Please, list the enclosures".
KNACK suggests defaults for the expert's input. These are taken from report fragments or the domain
model. For example, KNACK knows that S-280C and METAL BOX are examples for an ENCLOSURE
and suggests these as possible answers. The expert agrees that S-280C or METAL BOX or both are
possible answers. He further defines that an answer to the question is not mandatory. Also, it is not
meaningful to define a default answer.

KNACK develops expertise hi evaluating designs by parsing the text of the question in an attempt to
generalize it. It integrates the specific sample strategy with the domain model, thus making the sample
strategy applicable to acquire instantiation values for a broader range of concepts. On the other hand, a
strategy must be discriminating enough to result in the instantiation of the right concept. KNACK uses
heuristics to make the text of a question strategy more specific. For example, since the domain model
states that a SYSTEM comprises ENCLOSURES, KNACK generalizes the text of the above question to:

Please, list the enclosures of the
<SYSTEM.NAME> system

The specialization of the question text is guessed by KNACK and can be wrong or unnecessary. Thus,
KNACK instantiates the concepts integrated with the question text with known representatives and
displays these examples for confirmation or correction by the expert

Please, list the enclosures of the
Communications Unit system?

Corrections? [NONE]: <cr>

Continuing the above example, KNACK adds to the domain model that ENCLOSURES can be
determined using a question strategy. The updated domain model was shown in section 3.2.

The interaction continues with an example of an autonomous formula strategy to determine the THREAT-
ENERGY.

Which strategy can be used to determine the
THREAT-ENERGY of a COUPLING?

[constant, question, inference, table, menu,
graphics, formula, database, postpone, quit]
[QUESTION]: formula

THREAT-ENERGY = Isc * ((Voc-res * Tp-res) +
(Voc-ind * Tp-ind))

KNACK parses the formula to generalize it. Since all the terms in the formula are characteristics of the
CABLE concept, KNACK variablizes the formula to:

<CABLE.ISC> * ((<CABLE.VOC-RES> *
<CABLE.TP-RES>) + (<CABLE.VOC-IND> *
<CABLE.TP-IND>))

The variables of the formula are guessed by KNACK and can be wrong. To confirm its guesses KNACK
displays instantiated generalizations. :

20 Automated Knowledge Acquisition for Expert Systems

THREAT-ENERGY = Isc * ((Voc-res * Tp-res) +
(Voc-ind * Tp-ind))
with Isc = Isc of CABLE

Voc-res = Voc-res of CABLE
Tp-res = Tp-res of CABLE
Voc-ind = Voc-ind of CABLE
Tp-ind SB Tp-ind of CABLE

Corrections? [NONE]: <cr>

Again, KNACK updates its domain model with the knowledge on how to obtain the THREAT ENERGY
parameter using the defined formula strategy.

A final example demonstrates an autonomous inference strategy to determine the enclosures comprises in
a system. This strategy describes a procedure to extend an existing design hi case the THREAT
ENERGY is to high.

Which strategy can be used to determine the
ENCLOSURES of a SYSTEM?

[constant, question, inference, table, menu,
graphics, formula, database, postpone, quit]
[QUESTION]: <inference>

if the constraint THREAT ENERGY LESS EQUAL
SAFE ENERGY is violated, and

a COMMUNICATIONS UNIT SYSTEM exists, and
a COMPUTER SUBSYSTEM exists, and
the SYSTEM COMPRISES the SUBSYSTEM, and
the SUBSYSTEM HAS the SAFE ENERGY, and
no S-280C ENCLOSURE exists,

then add a S-280C ENCLOSURE to the design

if the constraint THREAT ENERGY LESS EQUAL
SAFE ENERGY is violated, and

a COMMUNICATIONS UNIT SYSTEM exists, and
a MOTOR GENERATOR SUBSYSTEM exists, and
the SYSTEM COMPRISES the SUBSYSTEM, and
the SUBSYSTEM HAS the SAFE ENERGY, and
no S-280C ENCLOSURE exists,

then add a METAL BOX ENCLOSURE to the design

Corrections? [NONE]: <cr>

KNACK uses the domain model to suggest how a piece of information can be inferred given some
previously gathered information. Again, KNACK instantiates the rules with specific examples taken
from the domain model, displays several differently instantiated examples, and uses the expert's
corrections to refine the domain model.

The definition, generalization, and correction of strategies complete the initial interaction between
KNACK an the domain expert. This results hi a knowledge base the generated WRINGER expert system
can use to evaluate a range of system designs.

Draft: KNACK: A Knowledge Acquisition Tool for... 21

4. Analyzing the Knowledge Base
The knowledge KNACK acquires during its interaction with an expert, or group of experts, is transformed
into an internal representation and stored in a knowledge base. KNACK's knowledge acquisition
approach, described .in the preceding sections, generalizes a specific sample report. This results in a
knowledge base^the generated WRINGER expert system can use to evaluate a range of system designs.
However, the sample report covers only one simple system and inevitably lacks concepts necessary to
evaluate a broad range of systems.

For this reason, KNACK searches the knowledge base for report fragments or strategies that indicate gaps
or conflicts with its domain model. This review of the knowledge base is most relevant at the end of the
acquisition process, because an apparent gap found during the process might be filled in later in the
process. When a conflict was detected or an indication of a gap was found, KNACK asks the expert to
correct either the fragment, the strategy, or the domain model. In cases where the domain model is
changed, KNACK reviews all fragments or strategies that use the changed concept or relation to
propagate the change through the knowledge base automatically, making guesses when ambiguities arise.
On the other hand, when the expert adds or changes report fragments or strategies, KNACK processes
them through the integration of the domain model, display of examples, strategy definition, and checking.

Some of the heuristics KNACK uses to identify incompleteness and inconsistency in its knowledge base
are:

 Each concept characteristic in the domain model must have a strategy associated with it to
instantiate the concept

 Each concept or concept representative should be mentioned in the sample report.
 The expert might have forgotten to define concepts, concept characteristics, or concept

representatives.

 Constraints must exist to define the relationship between design and environment properties.
 Each constrained property must have a fix associated with it.

To analyze the knowledge base, it must be explicit how different knowledge pieces interact during
problem-solving. This is achieved by organizing the knowledge base according to the different roles
knowledge plays hi the design evaluation task. The domain model introduced hi the previous section is
the kernel of the knowledge base. It is implemented as a semantic network. The nodes describe concepts
used by domain experts to describe, evaluate, and enhance designs and their environments. Concepts are
further described by characteristics. Each characteristic represents a variable. The variables must be
acquired or infered by the generated expert system. The interdependencies between concepts and
variables are defined by the links in the domain model. The links encode structural and functional
knowledge. Structural links include COMPRISES, HAS, CONSTRAINS, and PROPOSES-A-FIX-FOR
relationships. They define a taxonomy of concepts. Functional links relate strategies to variables. They
define which variables are input to a strategy and which variable contains the result of a strategy.

Fix, constraint, and strategy nodes are further described by FTX, CONSTRAINT, and STRATEGY knowledge,
respectively. STRATEGY knowledge determines how to obtain, propagate, and compare parameters,
CONSTRAINT knowledge describes the relationship between two parameters, and FTX knowledge suggests
design components that might resolve a constraint violation.

The domain model is also the kernel of a second knowledge structure that represents the document a
WRINGER will produce. That knowledge is defined by the REPORT FRAGMENT, INFORMATION

22 Automated Knowledge Acquisition for Expert Systems

IDENTIFICATION, and SKELETAL REPORT roles. REPORT FRAGMENT knowledge represents a possible
paragraph of the actual report. The variables hi the domain model are linked to each REPORT FRAGMENT
that uses them. The order of the fragments and the structure of the report (chapter, section, subsection,
etc.) are defined by SKELETAL REPORT knowledge. INFORMATION IDENTIFICATION knowledge identifies
the variables relevant for different report parts (chapter, section, subsection).

Finally, each concept, concept characteristic, and concept representative can be refered to via different
terms. The SYNONYM role organizes the knowledge to convert those synonyms into a basic expression.

The above heuristics exploit that explicit organization of the knowledge base to look for gaps and
conflicts. The remaining part of this section explains this in more detail.

A WRINGER must have available at least one strategy to instantiate each concept characteristic hi the
domain model. KNACK looks for concept characteristics in the generalized report fragments and
strategies wfiaeli do not have a corresponding strategy.

The characteristic MATERIAL of the concept
ENCLOSURE was mentioned in the sample report.
No strategy exists to acquire that
information. Do you want to define one now?
[YES]: no

The expert can define the missing strategy using the process described in section 3.5. In the above
example, the expert does not want to deal with the problem right now. KNACK allows the expert to go
on with the interview, but will remind the expert of the insufficiency the next time the ANALYZE
function is selected.

A flaw in the knowledge base is indicated if a concept or a representative for a concept was introduced
into the model but never used. KNACK reminds the expert of that

The representatives THERMAL, BLAST, and INR
for the concept NUCLEAR ENVIRONMENT are known
but never used in any report fragment. Do you
want to add a fragment? [YES]: no

Again, the expert postpones work on the potential problem. The answer YES will activate the sample
report editor, allowing the expert to add additional fragments or change existing ones. KNACK will
generalize the changed or additional fragment and display instantiations for confirmation by the expert as
described earlier.

The knowledge base might be incomplete or inconsistent because the expert forgot to mention concepts,
characteristics, or representative values. For each concept and characteristic figuring hi relations with
several others and for the representative values of each concept and characteristic, KNACK asks for
possible extensions to that set. For example:

A system comprises the following concepts:
SUBSYSTEM, ENCLOSURE. Do you want to
consider any other system component comprised
in a SYSTEM? [NO]: antenna

This introduces a new concept ANTENNA. KNACK integrates new concepts into the model using the
process described in section 3.2.

Draft: KNACK: A Knowledge Acquisition Tool for...

Please, list some examples for the ANTENNA:
whip antenna, dish antenna

What are the characteristics of the ANTENNA?
length, diameter, min operating frequency,
max operating frequency

How would you like to refer to the ANTENNA
properties that define the data items to be _.
compared by the evaluation criteria? unknownx^

KNACK then examines the generalized sample report to find fragments mentioning the ANTENNA

concept. As the domain model previously did not include knowledge about ANTENNAs, any

occurrences in the sample report fragments were treatatf as fixed text in the generalizations. KNACK

now variabilizes the new concept in those fragments and displays instantiated examples. The example of

the sample report does not mention the concept antenna. If there are no fragments mentioning the new

concept, KNACK looks for related concepts in the domain model, i.e., for the concepts figuring in the

same relations than the new concept It then integrates the new concept with fragments dealing with the

related concepts and displays instantiations for confirmation by the expert. Using the domain model from

the previous examples, KNACK finds that a SYSTEM also comprises SUBSYSTEMS and

ENCLOSURES. It integrates ANTENNA with the first fragment mentioning the SUBSYSTEM concept

and displays an instantiation for review by the expert:

The system Communications Unit is designed to
resist EMP threat. It consists of a Computer,
a Modem, a Radio, a Motor Generator, a Wip
Antenna, and a Dish Antenna. Power is
supplied from the Motor Generator to the
Computer, Modem, Radio, Wip Antenna, and Dish
Antenna by the Power Cable.

Corrections? [NONE]: delete the 2nd
occurrence of WIP ANTENNA, delete the 2nd
occurrence of DISH ANTENNA, insert "Signals
are received by the Wip Antenna and
transmitted to the Radio via the Signal
Cable." after the example

KNACK adds the restriction to the model that a POWER CABLE does not interrelate a MOTOR

GENERATOR SUBSYSTEM with ANTENNAs. It then integrates the domain model with the newly

defined fragment and displays instantiations for confirmation by the expert. KNACK continues to

integrate the ANTENNA concept with fragments dealing with SUBSYSTEM or CABLE concepts.

The knowledge base might be incomplete or inconsistent because constraints are missing. The domain

model states which DESIGN-PROPERTIES have to be compared to which ENVIRONMENT-

PROPERTIES. A constraint defines the relationship between these PROPERTIES. For example, while

refining the domain model the expert constrained SAFE-ENERGY to be LESS EQUAL THREAT-

ENERGY. KNACK looks for DESIGN-PROPERTIES or ENVIRONMENT-PROPERTIES that have no

associated constraint.

What is the relationship between the SAFE
VOLTAGE property and the THREAT VOLTAGE,
property? less equal

24 Automated Knowledge Acquisition for Expert Systems

The knowledge base might be incomplete or inconsistent because fixes are missing. KNACK assumes
that fixes exist whenever a constraint is violated. If KNACK detects that a constraint has no associated
fix, it indicates that to the expert. For example:

What design components represent a fix for the
THREAT VOLTAGE property? terminal protection
device

5. Rule Generation
KNACK stores the domain dependent knowledge it acquired from the expert hi declarative form in its
knowledge base. To create an expert system, this knowledge is proceduralized into OPS5 production
rules [Forgy 81] using a simple parser written hi LISP. These rules are then combined with domain
independent rules representing the control knowledge.

The domain independent knowledge embodies the problem solving method. It establishes and controls
the sequences of actions required to perform the evaluation task. This control knowledge dynamically
defines the order in which subtasks have to be solved to perform the overall task. It also defines the
knowledge roles that are applicable within each step. The problem solving methods described hi the
section 2 give some impression about the required control knowledge.

The domain dependent knowledge is organized hi units according to the role that knowledge plays. The
knowledge roles we have identified for the report-driven design evaluation task are:

 Strategy

 Constraint

 Fix

 Report Fragment

 Skeletal Report

 Information Identification

 Synonym
We will now describe the rules organized in these knowledge roles.

5.1. Strategy Rules
A WRINGER uses strategies to instantiate generalized concept characteristics with values describing a
particular system design. The expert's input to define a question strategy was demonstrated with the
following example:

Draft: KNACK: A Knowledge Acquisition Tool for... 25

Which strategy can be used to determine the
ENCLOSURES of a SYSTEM?

[constant, question, inference, table, menu,
graphics, formula, database, postpone, quit]
[QUESTION]: <cr>

question text....: Please, list the enclosures

possible answers.. [INCOMPLETE-SET, S-280C,
METAL BOX] <cr>

default answer.... [S-280C]: unknown
status............ [NOT-MANDATORY]: <cr>

KNACK translates this description into three OPS5 rules. One rule (Rule 1) identifies that a question
strategy can be used to gather a specific piece of information and asks the question. The second rule
(Rule 2) checks whether a result of a strategy is valid, and the third rule (Rule 3) creates the slots for the
strategy result(s).

Rule 1:

If the goal is to identify strategies, and
the subgoal is to determine the NAME of

an ENCLOSURE, and
a SYSTEM with some NAME is known,

then create a request to determine the NAME of
an ENCLOSURE using a QUESTION
strategy, and

create the question "Please, list the
enclosures of the <SYSTEM.NAME>
system", and

classify the answer as NOT-MANDATORY.

Whenever the WRINGER decides to determine the NAME of an ENCLOSURE, the above rule fires and
establishes that a question strategy can be used to gather that piece of information. In case multiple
strategies exists to determine the information similar rules would exist for each possible strategy. The
WRINGER selects one strategy. If a question strategy is chosen, it asks the question.

The expert's input for the above defined question strategy further specifies that S-280C and METAL
BOX are possible answers to that question. KNACK generates a rule to check the result of the strategy
whether it is valid.

Rule 2:

If the goal is to validate a strategy
result, and

the NAME of an ENCLOSURE was determined,
and

it is not S-280C or METAL BOX,
then mark the result as POSSIBLY INCORRECT.

This rule flags a strategy result as questionable because it is not a member of a predefined, incomplete set
of possible answers. The WRINGER asks the user for confirmation of the result.

Once the WRINGER accepts the result of a strategy, it integrates the result with the already existing

26 Automated Knowledge Acquisition for Expert Systems

information.

Rule 3:

If the goal is to integrate a strategy
result, and

the result is a value for the NAME of an
ENCLOSURE, and

a SYSTEM with some NAME is known,
then create a concept ENCLOSURE with a NAME

characteristic, and
instantiate it with that value, and
create a link that the SYSTEM COMPRISES

the ENCLOSURE.

Rule 3 creates the concept ENCLOSURE with a NAME characteristic and instantiates the concept
characteristic with the strategy result. It further creates a relation linking the ENCLOSURE to the
existing SYSTEM concept

5.2. Constraint Rules
Constraint rules check the system design for violations of constraints imposed by a given environment.
For example, the rule below determines whether the value for SAFE ENERGY is less equal than the
value for THREAT ENERGY.

If the goal is to identify constraint
violations, and

some THREAT ENERGY is known, and
some SAFE ENERGY is known, and
the SAFE ENERGY constrains the THREAT

ENERGY, and
the SAFE ENERGY is not less equal than

the THREAT ENERGY,
then classify constraint 12 as VIOLATED.

53. Fix Rules
KNACK ensures that at least one fix exists for every constraint that can be violated. KNACK generates
one rule for every potential fix.

If the goal is to suggest a. fix, and
constraint 12 is VIOLATED,

then suggest a S-280C ENCLOSURE as a fix, and
suggest a METAL BOX ENCLOSURE as a fix.

This rule suggests a S-280C and a METAL BOX ENCLOSURE as a possible fixes for the violated
constraint. The WRINGER checks which of the possible fixes will satisfy the constraint gathering
additional information if required. It then suggests that fix to the designer. If the designer agrees, the
WRINGER integrates the enclosure with the existing design and updates the design parameters.

Draft: KNACK: A Knowledge Acquisition Tool for... 27

5.4. Report Fragment Rules
Report fragment rules represent the content of a WRINGERs report.

If the goal is to print the report, and
report fragment 9 can be selected, and
an ENVIRONMENT with NAME EMP is known,

and
an ENCLOSURE with some NAME is known,

then print "*LOOPOVER* <ENCLOSURE.NAME>
@SECTION [Shielding Requirements for
the <ENCLOSURE.NAME> ENCLOSURE]".

To present the report hi an appealing format (include headings, tables, etc) the output of a WRINGER is
formated by a text formatting program. For that reason, the print action of the rule contains commands
for the text formatting program, in our example @ SECTION.

Each report fragment from the sample report is proceduralized by one or more OPS5 rules. Fragments
that were generalized to contain a list of representatives for the same concept need additional control to
realize the intended repetitions of parts of the fragment. Multiple OPS5 rules are necessary to control the
repetitions: one rule to identify the variable denoting the list of representatives, one rule to print the text
preceding the repetition once, one rule to print the repetition for each instantiation of the variable, and one
rule to print the text succeeding the repetition once. The same principle applies to chapter, section, and
subsection headings that contain variables. Rules are added that control the repetition of an entire
chapter, section, or subsection for each instantiation of the variable. The term "*LOOPOVER*
<ENCLOSURE.NAME>" in the above example is a command for the LISP parser to create those control
rules. KNACK inserts a corresponding "*LOOPEND*" as the last word of the chapter, section, or
subsection.

5.5. Skeletal Report Rules
Skeletal report rules represent the outline of the report a WRINGER produces. As indicated hi the sample
interaction, KNACK will insert a new chapter, section or subsection whenever it discovers a keyword like
CHAPTER, SECTION, or SUBSECTION hi a report fragment. An OPS5 rule representing a part of the
skeletal report is created for each chapter, section, and subsection heading. The skeletal report rule for the
section heading of the above example is shown below in an english translation.

If the goal is to create the skeletal
report,

then create section 2 of chapter 1
with the heading "Shielding Requirements

for the Enclosures", and
establish that fragment 9 can be

selected, and
establish that fragment 10 can be

selected, and
establish that fragment 11 can be

selected, and ...

The rule defines the section heading as it appears in the table of contents of the report the WRINGER is
trying to produce. It also specifies the fragments that can be selected into the section and determines the
order of the fragments.

28 Automated Knowledge Acquisition for Expert Systems

5.6. Information Identification Rules
As indicated in section 2 a WRINGER collects related information in a coherent manner by following the
outline of its report. KNACK generates a rule for each chapter, section, or subsection determining the
information relevant to that report part. The following example shows part of the information
identification rule for the section "Shielding Requirements for the Enclosures" in an english translation.

If the goal is to determine an existing
design, and

the current report part is chapter 1,
section 2,

then create the subgoal to determine the NAME
of an ENVIRONEMNT, and

create the subgoal to determine the NAME
of an ENCLOSURE, and

create the subgoal to determine the NAME
of an APERTURE, and

create the subgoal to determine the
MATERIAL of an ENCLOSURE, and

create the subgoal to determine the
THICKNESS Of an ENCLOSURE ...

5.7. Synonym Rules
Synonym rules provide a simple mechanism to deal with varying or conflicting terminology of different
designers. They are implemented as demons. Whenever the designer interacting with a WRINGER uses
a term known to be a synonym for some basic expression, the synonym is being transformed into the
basic expression. The rules are simple:

If the NAME of a CABLE was determined, and
is ANTENNA CABLE

then change it to SIGNAL CABLE.

6. KNACK'S Scope
KNACK derives its power by exploiting a presupposed problem-solving method. The method explicates
the types of knowledge (knowledge roles) needed to solve tasks hi a particular domain. The underlying
assumption is that a problem-solving method and the associated knowledge roles cover a number of tasks
in a particular domain. To get a better understanding of the kinds of tasks KNACK's assumed method
can solve, KNACK has been and is being used by knowledge engineers to create a series of evaluation
systems. The following describes these tasks, the experience gamed, and some data on KNACK's
performance and scope.

6.1. KNACK Tasks
KNACK was used to generate an initial knowledge base for a number of expert systems. The expert
systems were then manually enhanced to accommodate the specific demands of a particular task. The
enhancements uncovered deficiencies and shortcomings hi KNACK's approach to acquire knowledge,
assumed problem-solving method, and associated knowledge roles. KNACK has been improved to
address the problems and is now being used to re-generate the initial systems.

The following application systems are being created with KNACK:

Draft: KNACK: A Knowledge Acquisition Tool for... 29

The Data Item Description WRINGER Family: The DPR WRINGER, used as an example throughout
this paper, is a member of the Data Item Description WRINGER Family. Three WRINGERs have been
developed for very similar tasks. They assist with different stages in the design of electromechanical
systems for the nuclear hardening domain. Nuclear hardening involves the use of specific engineering
design practices to increase the resistance of an electromechanical system to the environmental effects
generated by a nuclear weapon. Designers of electromechanical systems usually have little or no
knowledge about the specialized analytical methods and engineering practices of the hardening domain.
The purpose of the WRINGERs is to assist a designer hi improving given designs of electromechanical
systems that may be suboptimal from a hardening perspective. The WRINGERs assume that the initial
design describes a technically functional system. They evaluate the design from a hardening perspective.
The suggested improvements are either extensions to the design or recommendations for using different
design components. The WRINGERs present the design, together with the results of the evaluation, in
the form of a technical document that meets government requirements.

The first WRINGER, a PROGRAM PLAN writer, evaluates and presents the primary top level report
covering all phases of the design project. It took 7 person-days to create the WRINGER with KNACK.
Its knowledge base contains 795 OPS5 rules. The second expert system, a DESIGN PARAMETERS
REPORT writer, evaluates and presents a detailed description of an electromechanical system ranging
from the level of major components to the level of individual semiconductors. It took 21 person-days to
create the WRINGER with KNACK. Its knowledge base contains 1446 OPS5 rules. The last
WRINGER, a TEST PLAN writer, produces a plan to confirm the hardness of a design. This includes a
list of the design components to be tested, a description of the tests to be performed, and the expected test
results. It took 8 person-days to create the WRINGER with KNACK. Its knowledge base consists of 230
rules. The WRINGERs were created with a previous implementation of KNACK, reported in [Klinker
87b], and are now being tested by the organization that will use them. That previous implementation
required from the expert to explicitly define the generalized report and strategies. The experience gained
with that task led to a refinement of KNACK'S approach to acquire knowledge: the introduction of the
domain model and the automation of the generalization process.

The XNET-Design WRINGER: A WRINGER is being developed to assist a sales-person with the
design and configuration of computer networks. In general, a sales-person has a good understanding
about aspects like costs, compatibility, and extensibility when he is designing a network which suits his
customer best. But usually he has little or no knowledge about the technical aspects involved. The
purpose of the WRINGER is to assist a sales-person in improving his design of computer networks that
may be suboptimal from a technician's perspective. The WRINGER assumes that the initial design
describes the computing environment but might not be a technically functional computer network. It
evaluates the design description from a technician's perspective. The suggested improvements are either
extensions to the design or recommendations for different interconnections between design components.
The WRINGER'S output is a list of generic network components and their interconnections serving as
input for a program that will select the specific parts. The WRINGER is in the very first stage of
development. Data that describe KNACK's performance are not yet available. The experience gained
with that task led to a refinement of KNACK'S assumed problem-solving method: The XNET-Design
WRINGER focuses on designing a computer network rather than on refining an existing network. The
WRINGERs of the Data Item Description WRINGER Family first require to describe an existing system
and then evaluate that system from a hardening perspective, asking the designer to confirm the suggested
fixes. That distinction is not applicable for the XNET-Design WRINGER. It takes whatever input the
sales-person can give and completes the design, applying fixes without asking for confirmation. A switch

30 Automated Knowledge Acquisition for Expert Systems

has been introduced into a WRINGERs problem-solving method that allows a designer to choose between
the functions "gather information and evaluate" and "gather information and complete"

The Software Requirements WRINGER: A WRINGER is being developed to assist a systems analyst
with the definition of requirements for software. Defining requirements for new software is a very
complex process. It involves functionally decomposing the software into basic modules, defining the data
requirements, and integrating the new software with the existing software environment. One systems
analyst alone might not have enough knowledge about the existing software environment. The purpose of
the WRINGER is to assist a systems analyst hi refining the requirements for software systems that may be
suboptimal given the existing software environment. The WRINGER assumes that the initial design
describes the new software on a high level of abstraction. It supports the systems analyst in functionally
decomposing that description into basic modules and defining the data requirements for the modules. The
WRINGER evaluates the design as to whether it is compatible with the existing software environment.
The suggested improvements are refinements to the requirements of the new software. The WRINGER
produces a technical document describing the requirements for the software system. The document
further contains an executive summary with an opinion about whether the new software will be a valuable
enhancement of the existing software. It took 18 person-days to create the WRINGER with KNACK. Its
knowledge base consists of 291 rules. The experience gained with that task led to the introduction of two
new strategies to acquire information: It is critical for the Software Requirements WRINGER to support
a user with the decomposition of software requirements. Simple graphics allow to represent requirements
for software and data in the form of nodes and the data flow in the form of directed links between nodes.
Forms are used to describe the nodes further.

The Project Progress Report WRINGER: A WRINGER is being developed to assist a project leader
with the assessment of a project's progress. A project leader might not have enough experience to create
a project plan and assess the progress of a project. Also, he might not have enough knowledge to
integrate his project into the broader objective of his management The purpose of the WRINGER is to
assist a project leader in refining a project plan that may be suboptimal from a management perspective.
The WRINGER assumes that an initial proposal can be provided. It supports the project leader in
creating and updating the project plan according to the progress of the project. The WRINGER evaluates
the plan from a management perspective. The suggested improvements are refinements or changes to the
plan. The WRINGER produces a proposal, project plan, and periodical progress reports that will allow
management to assess the progress of a project. It took 19 person-days to create the WRINGER with
KNACK. Its knowledge base consists of 429 rules. The experience gamed with that task led to an
extension of KNACK'S build in knowledge of evaluation: For the Data Item Description WRINGER
Family the interdependencies between the concepts describing a design and an environment are
appropriately represented by a tree structure. The Project Progress Report WRINGER requires a network.

The Business Plan WRINGER: A WRINGER is being developed to assist an entrepreneur hi the
preparation of business plans. The first step in creating a business is to seek investment capital. For this
purpose, entrepreneurs generate business plans. A business plan contains information on the planned
business, e.g. the industry, the product, the market and marketing plan, production, personnel, and
financial projections. An entrepreneur usually has little knowledge about how to create a business plan.
The purpose of the WRINGER is to support an entrepreneur in developing a business plan to secure
investment capital from venture capitalists. The WRINGER assumes that the entrepreneur can provide a
description of the product and the goals of the proposed business. It will then support the entrepreneur in
creating the business plan. The WRINGER evaluates the plan from a venture capitalist's perspective. It
produces a document containing the necessary details and justifications to demonstrate the proposed

Draft: KNACK: A Knowledge Acquisition Tool for... 31

business to an investor. The information is presented hi a way appealing to an investor. The WRINGER
is hi the very first stage of development. Data that describe KNACK's performance are not yet available.
The experience gained with that task led to an extension of a WRINGER'S representation of acquired
information: The Business Plan WRINGER requires a temporal dimension. The same types of data
project a planned business in different, succeeding time periods.

Each application improved our understanding of the evaluation task and had some implications on the
development of the KNACK tool. We continue to improve KNACK. The goal is that a domain expert
can use the tool to generate all of the knowledge bases for the above described WRINGERs. The
different applications gave us some insight into KNACK's scope. At a first glance, those applications
seem to be quite different. But a closer look reveals that they all meet some common requirements. The
task is constructive evaluation, i.e., an existing plan or design has to be evaluated to determine whether it
meets additional constraints not anticipated hi the original design. The evaluation is constructive because
fixes can be suggested in case of constraint violations. The use of KNACK imposes some requirements
on the expert: The expert must be able to provide an initial model of the domain, he must be able to
express some of his knowledge hi the form of a sample report, and he must be able to define strategies
that a WRINGER can use to instantiate concepts with values describing a particular plan or design.
Finally, the use of a WRINGER requires that a designer can provide an initial design.

6.2. Some Performance Data
This section gives some impression of KNACK's performance hi creating the Program Plan WRINGER
(PP WRINGER), Design Parameters Report WRINGER (DPR WRINGER), Test Plan WRINGER (TP
WRINGER), Software Requirements WRINGER (SR WRINGER), and Project Progress Report
WRINGER (PPR WRINGER). The Business Plan WRINGER and XNET-Design WRINGER are in the
very first stages of development Data that describe KNACK'S performance in creating them are not yet
available. The data of Table 6-1 describe the complexity of the domains, Table 6-2 contains some data
about the complexity of the generated knowledge bases, and Table 6-3 summarizes the effort involved in
creating the expert systems with KNACK.

Table 6-1 gives some impression of the complexity of the domains for the five WRINGERs. It describes
the input the experts had to provide in terms of the sample report, the domain model, and the sample
strategies. Strategies can be interactive, i.e., they elicit information from the WRINGER users, or
autonomous, i.e., they infer information based on previously provided information. Examples of
interactive strategies are: questions, graphical design descriptions, menus, forms, or tables. Examples of
autonomous strategies are: inferences, database lookups, or formulas.

Table 6-2 describes the generated knowledge base for the five WRINGERs. The size of the knowledge
base is determined by the number of OPS5 rules it contains. The conditionality of a rule is described by
the number of its condition elements. Each condition element can be instantiated by a concept. The
complexity of a condition element is defined by the number of characteristics which describe a concept.
The action part of a rule is described by the number of actions the rule performs. An action either creates
a new concept or modules an existing concept characteristic.

Finally, Table 6-3 gives some impression of the time involved to generate a WRINGER using KNACK.
Creating WRINGERs is an iterative process. Whenever a WRINGER reveals inadequacies, KNACK is
used to improve it Table 6-3 shows the time spent to generate the initial knowledge bases for the
WRINGERs described hi section 6.1 and in the tables 6-1 and 6-2. This includes the effort for the initial

32 Automated Knowledge Acquisition for Expert Systems

Number of fragments in
the sample report

Average size of each
fragment in words

Number of concepts

Average number of
characteristics for each
concept

Number of interactive
strategies

Number of autonomous
strategies

PP

237

9.5

43

2.3

72

22

DPR

455

14.7

92

3.7

152

159

TP

88

14.3

28

2.5

35

4

SR

203

10.2

55

3.6

21

32

PPR

113

8.1

109

1.4

92

41

Table 6-1: Complexity of the Domain

Number of rules

Average number of
condition elements per
rule

Number of
characteristics per
condition element

Number of actions per
rule

PP

795

3.4

2.0

7.2

DPR

1446

3.8

2.3

3.0

TP

230

1.1

1.5

2.9

SR

291

1.9

2.0

4.1

PPR

429

2.9

2.5

1.9

Table 6-2: The Knowledge Base

input (sample report, domain model, and sample strategies), the generalization process (sample report and
sample strategies), and the review of the knowledge base. The effort for the generalizations includes the
expert's corrections to the sample instantiations of the generalized fragments and strategies. Since the PP
WRINGER, DPR WRINGER, and the TP WRINGER were created with a previous implementation of
KNACK, no detailed data are available.

7. Conclusion
Existing expert systems have proven that AI techniques can be used to solve a variety of knowledge
intensive problems. But expert systems are time-consuming to develop and difficult to maintain. A key
issue hi developing any expert system is how to update its large and growing knowledge base. It has been
shown that a large knowledge base can be kept maintainable by organizing it according to the different
roles that knowledge plays [Chandrasekaran 83], [Clancey 83], [Neches 84]. Based on this realization a
variety of knowledge acquisition tools nave been produced during the past years to overcome those
development and maintenance problems.

Existing knowledge acquisition tools focus on different aspects of the knowledge engineering task.
KREME [Abrett 87] provides an environment for editing large knowledge bases. SEAR [van de Brug

Draft: KNACK: A Knowledge Acquisition Tool for... 33

Number of days to
create the sample report

Number of days to
create the preliminary
domain model

Number of days to
create the sample
strategies

Number of days to
generalize the sample
report

Number of days to
generalize the sample
strategies

Number of days to
review the knowledge
base

Total

PP

"

"

7

DPR

"

~

21

TP

"

~

"

8

SR

2

4

3

4

4

1

18

PPR

3

5

1

5

5

"

19

Table 6-3: Effort

86], AQUINAS [Boose 87], KRITON [Diederich 87], and TKAW [Kahn 87] integrate a variety of
methodologies and tools for the development of expert systems into a workbench for a knowledge
engineer.

Other knowledge acquisition tools try to automate the knowledge acquisition process. An automated
knowledge acquisition tool typically interacts with domain experts directly. No knowledge engineer is
necessary to translate the expert's knowledge into production rules. An automated knowledge acquisition
tool further organizes the knowledge it acquires, and generates an expert system. The domain expert can
also use it to test and maintain the program it generates. The critical feature of such a tool is that a
domain expert can use it without having to know about programming in general and specific AI
techniques. Examples of automated knowledge acquisition tools are TEIRESIAS [Davis 82], ETS [Boose
84], MORE [Kahn 85], MOLE [Eshelman 87], and SALT [Marcus 87]. These tools derive their power by
presupposing the problem solving method of the expert systems they generate [McDermott 86], [Gruber
87]. Other automated knowledge acquisition tools like OPAL [Musen 87] and STUDENT [Gale] exploit
an explicit domain model.

A useful distinction between the above knowledge acquisition tools is whether they help to create expert
systems that either select or construct a solution [Clancey 84], TEIRESIAS, ETS, MORE, MOLE, OPAL
and STUDENT generate expert systems that select a solution from a given set of pre-enumerable
candidates. SALT is an example of a knowledge acquisition tool for systems that construct a solution.

This paper described KNACK, a knowledge acquisition tool that generates expert systems for evaluating
different classes of designs. Like SALT, it can be used to develop expert systems that construct a solution
compatible with a set of constraints. But whereas SALT generated expert systems produce designs from
scratch, i.e., typically one designer has complete knowledge about all constraints a solution has to satisfy,

34 Automated Knowledge Acquisition for Expert Systems

KNACK generates evaluation systems. Evaluation systems assume that multiple designers are involved
in a design task and each designer only knows a subset of the constraints a solution has to satisfy.

Another difference between KNACK and the tools mentioned so far is KNACK's report-driven approach
to acquiring knowledge. KNACK assumes that an expert can present his knowledge adequately in the
form of a report. The expert must have a clear understanding of what constitutes an acceptable report
describing and evaluating a design. This includes that the expert knows what information is needed, how
to evaluate this information, and how a designer should present this information.

If categorized along the dimensions outlined above, KNACK exploits a presupposed problem solving
method as well as an explicit domain model. Like TEIRESIAS, ETS, MORE, MOLE, SALT, and SEAR
it presupposes and exploits the problem-solving methods and the knowledge roles of the expert systems it
generates. Like OPAL and STUDENT, KNACK exploits a domain model during knowledge acquisition.
KNACK uses the domain model to elicit knowledge in a format familiar to the expert and develop
expectations about the knowledge the expert might provide. KNACK differs from OPAL and STUDENT
in that the domain model can be customized for a particular domain and no knowledge engineering
expertise is required to build a domain model. Also, KNACK does not assume that its domain model is
complete and consistent. It expects that the expert can provide a preliminary model and gradually
augments that preliminary model during knowledge acquisition into a domain model describing the
design and the evaluation process.

The description of KNACK'S approach for knowledge acquisition reveals that the generalization process
is critical for KNACK's performance. The technique uses simple heuristics to replace fixed text
components of the sample report with variables denoting concepts and concept characteristics. The
heuristics take into account the structure of the sample report and previous generalizations. They look for
keywords, known concepts, and concept representatives in the sample report. Since the concepts and
concept representatives are described in the domain model, the domain model is the heart of the
generalization process. A successful generalization requires that the concepts and concept representatives
in the domain model closely correspond to the terms used hi the sample report. Moreover, the domain
model must contain a detailed structural and functional description of the evaluation task. We will
continue to make KNACK less sensitive to incomplete domain models. This includes getting a better
understanding of the knowledge common to a range of evaluation tasks and improving the heuristics used
hi the generalization process. We will further extend KNACK's ability to use the expert's corrections as
well as the generalized strategies to refine the preliminary model into a structural and functional
representation of a particular evaluation domain.

An important goal hi our research is to make the use of KNACK independent from knowledge
engineering expertise. While we believe that KNACK's approach described in this paper is an important
step towards that goal, we do realize that we are only a short way along the path.

Acknowledgments
Many people made significant contributions to the KNACK project. First comes John McDermott who
helped shape the direction of the project from the beginning. Joel Bentolilia, Casey Boyd, Gilbert
Caplain, David Dong, Serge Genetet, Michael Grimes, Don Kosy, Jon Maiman, Beatrice Paoli-Julliat,
Bob Schnelbach, and Martin Stacey were or still are members of the group. William Rodi (S-Cubed) also
made important contributions. Thomas Flory and Roland Polimadei of Harry Diamond Laboratories
(HDL), Rodney Perala of Electro Magnetic Applications (EMA), and Don Vincent of Booz-

Draft: KNACK: A Knowledge Acquisition Tool for... 35

Allen&Hamilton served as our domain experts. We would also like to thank Andrej Bevec (HDL), John
Northrop (S-Cubed), William Proffer (S-Cubed), and Alex Stewart (HDL) for their support. Sandra
Marcus provided very helpful comments on an earlier draft of this paper.

References
[Abrett 87]

[Boose 84]

[Boose 87]

Abrett, G., and M. Burstein.
The KREME Knowledge Editing Environment.
InternationalJournal of Man-Machine Studies 0, to appear 1987.

Boose, J.
Personal construct theory and the transfer of human expertise.
In Proceedings of the National Conference on Artificial Intelligence. Austin, Texas,

1984.

Boose, J., and J. Bradshaw.
Expertise Transfer and Complex Problems: Using AQUINAS as a Knowledge

Acquisition Workbench for Expert Systems.
InternationalJournal of Man-Machine Studies 26(1):3 - 28,1987.

[Chandrasekaran 83]
Chandrasekaran, B.
Towards a taxonomy of problem solving types.
AI Magazine 4(iy.9-ll, 1983.

[Clancey 83]

[Clancey 84]

[Davis 82]

[Diederich 87]

[Eshelman 87]

[Forgy 81]

[Gale]

Clancey, W.
The advantages of abstract control knowledge hi expert system design.
In Proceedings of the 3rd National Conference on Artificial Intelligence. Washington,

D.C., 1983.

Clancey, W.
Classification problem solving.
In Proceedings of the 4th National Conference on Artificial Intelligence. Austin,

Texas, 1984.

Davis, R. and D. Lenat.
Knowledge-Based Systems in Artificial Intelligence.
McGraw-Hill, 1982.

Diederich, J., I. Ruhmann, and M. May.
KRITON: A Knowledge Acquisition Tool for Expert Systems.
InternationalJournal of Man-Machine Studies 26(1):29 - 40,1987.

Eshelman, L., D. Ehret, J. McDermott, and M. Tan.
MOLE: A Tenacious Knowledge Acquisition Tool.
International Journal of Man-Machine Studies 26(l)'A\ -54,1987.

Forgy, C.L.
OPS5 user's manual.
Technical Report, Carnegie-Mellon University, Department of Computer Science,

1981.

Gale, W.
Knowledge Based Knowledge Acquisition for a Statistical Consulting System.
InternationalJournal of Man-Machine Studies 26(1):55 - 64,.

36 Automated Knowledge Acquisition for Expert Systems

[Kahn87]

[Klinker 87a]

[Gruber 87] Gruber, T., and P. Cohen.
Design for Acquisition: Principles of Knowledge System Design to Facilitate

Knowledge Acquisition.
InternationalJournal of Man-Machine Studies 26(2): 143 -159,1987.

[Kahn 85] Kahn, G., S. Nowlan and J. McDermott.
MORE: an intelligent knowledge acquisition tool.
In Proceedings of Ninth International Conference on Artificial Intelligence. Los

Angeles, California, 1985.

Kahn, G., E. Breaux, R. Joseph, and P. DeKlerk.
An Intelligent Mixed-Initiative Workbench for Knowledge Acquisition.
InternationalJournal of Man-Machine Studies 0, to appear 1987.

Klinker, G., C. Boyd, S. Genetet, and J. McDermott.
A KNACK for Knowledge Acquisition.
In Proceedings of Sixth National Conference on Artificial Intelligence. Seattle,

Washington, 1987.

Klinker, G., J. Bentolila, S. Genetet, M. Grimes, and J. McDermott.
KNACK - Report-Driven Knowledge Acquisition.
InternationalJournal of Man-Machine Studies 26(1):65 - 79,1987.

Marcus, M.
Taking Backtracking with a Grain of SALT.
InternationalJournal of Man-Machine Studies 26(4):383 - 398,1987.

McDermott, J.
Making expert systems explicit.
In Proceedings of 10th Congress of the International Federation of Information

Processing Societies. Dublin, Ireland, 1986.

Musen, M., L. Pagan, D. Combs and E. Shortliffe.
Using a Domain Model to Drive an Interactive Knowledge Editing Tool.
InternationalJournal of Man-Machine Studies 26(1): 105 -121,1987.

Neches, R., W. Swartout, and J. Moore.
Enhanced maintenance and explanation of expert systems through explicit models of

their development.
In Proceedings of IEEE Workshop on Principles of Knowledge-based Systems.

Denver, Colorado, 1984.

[van de Brug 86] van de Brug, A., J. Bachant, J. McDermott.
The Taming of Rl.
IEEE Expert 1(3), 1986.

[Klinker 87b]

[Marcus 87]

[McDermott 86]

[Musen 87]

[Neches 84]

Draft: KNACK: A Knowledge Acquisition Tool for... i

Table of Contents
Abstract 1
1. Introduction 1
2. The Presupposed Problem-solving Method and its Knowledge Roles 3

2.1. Information Gathering 4
2.2. Design Evaluation 6

3. Acquiring Knowledge 7
3.1. Acquiring the Sample Report 9
3.2. Acquiring the Domain Model 10
3.3. Generalizing the Sample Report 14
3.4. Demonstrating Understanding of the Sample Report 16
3.5. Defining, Generalizing, and Correcting Strategies 18

4. Analyzing the Knowledge Base 21
5. Rule Generation 24

5.1. Strategy Rules 24
5.2. Constraint Rules 26
5.3. Fix Rules 26
5.4. Report Fragment Rules 27
5.5. Skeletal Report Rules 27
5.6. Information Identification Rules 28
5.7. Synonym Rules 28

6. KNACK'S Scope 28
6.1. KNACK Tasks 28
6.2. Some Performance Data 31

7. Conclusion 32
Acknowledgments 34
References 35

ii Automated Knowledge Acquisition for Expert Systems

List of Tables
Table 6-1: Complexity of the Domain 32
Table 6-2: The Knowledge Base 32
Table 6-3: Effort 33

