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CURRENT DEVELOPMENTS IN COMPLEX INFORMATION PROCESSING 

Alien Newell and Herbert A. Simon*

I. INTRODUCTION

The term "complex Information processing" has been chosen 

to refer to those sorts of behaviors   learning, problem 

solving, and pattern recognition   which seem to be incapable 

of precise description in any simple terms, or perhaps, in any 

terms at all. The advent of the high-speed electronic digital 

computer has focused attention on the possibilities of specify 

ing and creating information processes of almost unlimited size 

and complication. But one of the sober facts about current 

computers is that, for all their power, they must be instructed 

in minute detail on everything they do. To many, this has 

seemed to be harsh reality and an irremovable limitation of 

automatic computing. It seems worthwhile to examine the nec 

essity of the limitation of computers to easily specified 

tasks. First, we will give a more complete picture of what 

is meant by complex information processing. Then we will 

explore in some detail the sorts of processes computers will 

be required to perform if they are to do complex processing. 

Next we will consider the problem of instructing the computer 

which is the issue most closely related to the question raised

*Paper read in a series of Lectures on Computers and 
Automation in Washington, D.C. May 2, 1956, sponsored Jointly 
by the local chapters of ACM, ASA, ORSA, SAM, SIAM, and TIMS. 
The authors are grateful to The RAND Corporation and to the 
Ford Foundation which have supported their respective partici 
pations in this study. Mr. Newell is a member of the staff of 
The RAND Corporation, Mr. Simon a member of the faculty of the 
Graduate School of Industrial Administration, Carnegie 
Institute of Technology.
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above. Finally, we shall discuss learning and its relation 

to complex processes.

Current Research. One of the Justifications for consider 

ing this topic is that it is rapidly leaving the domain of 

speculation and becoming an area of hard work. Hence, we shall 

illustrate the various points by sketching some of the current 

developments in the field* The major example that we will use 

is some of our own work on programming a computer to find 

proofs for theorems in mathematical logic. We call this the 

Logic Theory Machine. This research is currently being done 

by the authors and Cliff Shaw of The RAND Corporation. The 

work on the Logic Theory Machine is very recent -- only a few 

months old -- and has not previously been published or 

announced.

Application. The examples we will be talking about are 

chess, abstract mathematical theorizing, and visual pattern 

recognition. These may seem a bit frivolous and far removed 

from "real" applications, but, in fa6t, they are not. For those 

of you who do not find these tasks intrinsically interesting, 

we suggest that you view them as the places where we are gain 

ing our fundamental knowledge for the applications you do find 

interesting. Chess, in particular, is no longer Just a game, 

but is fast becoming a classic task for the fruitful scientific 

study of complex information processing.
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II. DIFFICULTY AND COMPLEXITY

Cheas. Let us consider the playing of chess as a task to 

be performed, either by a human or a machine. At each position, 

when the player has the move, the rules of the game provide him 

with a set of legal alternatives, about thirty in number on 

the average. His problem is to choose one. His opponent then 

makes a move, and the player is again presented with a set of 

about thirty legal alternatives under somewhat changed circum 

stances. This continues until either a won or lost position 

is reached, which takes on the average some forty moves.

If we think of the player as exploring each possible
120 

sequence of alternatives, we find that there are some 10

continuations to be explored. Alternatively, there are some
4o 10 positions to become acquainted with. Chess is a difficult

task indeed. However, we must distinguish carefully between 

the difficulty of a task and the complexity of the processes 

that are used to solve that task.

Simple Processes. The player could perform his task by 

choosing moves at random. What is meant by saying the task is 

difficult is that he would surely lose if he used such a simple 

process. However, the fact that a task is difficult does not 

necessarily mean it can ! t be handled by simple processes. For 

example, complete exploration of all continuations is a simple 

process, although it is also a very extensive one. There is 

no difficulty in specifying precisely how it is to be done. A 

fairly simple machine with sufficient speed and memory could 

solve even the very difficult task of chess by this simple 

process. We shall find that we pay the price of complexity of
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process in order to carry out difficult tasks with limited 

computing power   i.e. limited in speed and memory.

Most of the serious exploration of chess and other games 

prior to 1955 was concerned with simple processes and how well

they might actually operate. These efforts stem from a paper
. *by Claude Shannon in 1949, which is the first serious dis 

cussion of which we are aware. The simple processing schemes 

considered by Shannon involve exploring all sequences of legal 

moves to a depth of ri moves; where ri is determined by the com 

puting power available. A numerical evaluation function is 

applied to each final position. This function usually consists 

of some sort of weighted sum of features of the position con 

sidered to be Important on the basis of human experience. 

Given the evaluation, it is possible to work backwards to 

decide what move should be made.

The only machine we know of that has actually been coded
** for chess is a Russian digital computer, and we know very

little yet about how it plays. On the other hand, at least
»#» two machines have been coded for checkers and there has

been some hand simulation of chess machines. The upshot of

* Shannon, C.E., "Programming a computer for playing 
chess", Phil. Mag., 41:256-75 (March 1950)

** The computer is BESM at the Institute for Precision 
Mechanics and Calculating Technology in Moscow, The machine 
played some demonstration moves for a visiting group of American 
engineers. See New York Times, December 11, 1955-

*** For one of the checker players, see Strachey, C.S., 
"Logical or nonmathematical programmes1*, Prpc. Assoc. Computing 
Machinery* September 1952, pp. 46-9* The other checker player 
has been programmed by A. L. Samuel at IBM, although we know 
of no published report of its program.
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these efforts, as far as we can now evaluate them, has been to 

show that simple processes do not nearly suffice to play good 

chess; but that, on the other hand, they do not produce 

completely absurd results. The amount of information available 

is still very meager.

Complex Processing. We may now ask, with respect to our 

example, what complex processing might look like. Let us 

consider Just a few of the features of a human player's 

processes. He does not look at all alternatives. Those that
«

he does look at, he examines in varying degrees. He makes 

evaluations to determine where good moves might be discovered 

and where danger should be expected. Sometimes he draws in 

ferences from the position, sometimes from the history of his 

opponent's moves; and sometimes he makes no Inferences at all, 

but Just proceeds with an attack already under way. He per 

ceives the game in phases   opening, middle, and end -- and 

changes his method of analysis accordingly. He works with 

global terms like "attack", "defense", and "control", and 

interprets these in each particular position even though he 

has never seen exactly that position before.

This is a good enough sample. In fact, we probably 

cannot name all the different processes that go on. Our in 

ability to do so seems to be a major characteristic of complex 

processes -- they consist of a great many subprocesses, each 

quite different from the others. It also seems characteristic 

that the complexity lies not in the component processes, but 

in the ways these are organized, so that the choice among them
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at each moment is highly conditional and flexible.

Even though our language must still remain vague, we can 

at least be a little more systematic about what constitutes a 

complex information process.

1. A complex process consists of very large numbers 

of subprocesses, which are extremely diverse in 

their nature and operation. No one of them is 

central or, usually, even necessary.

2. The elementary component processes need not be

complex; they may be simple and easily understood. 

The complexity arises wholly from the pattern in 

which these processes operate.

3. The component processes are applied in a highly 

conditional fashion. In fact, large numbers of 

the processes have the function of determining the 

conditions under which other processes will operate.

Current Chess Studies. No one really knows how complex 

a process human chess playing is, nor does anyone know what 

the effect is of various patterns of elementary rules and dis 

criminations in a chess-playing machine. A number of people 

are currently programming computers for chess in order to

explore these questions. Among the current explorers are
* 

John McCarthy at Dartmouth, Hal Judd at IBM and ourselves.

* For some of our preliminary thinking, see A. Newell, 
"The chess machine: an example of dealing with a complex task 
by adaptation", Western Joint Computer Conference, March 1955 
Published by I.R.E. pp. 101-b1 .
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To my knowledge, no one Is actually getting results yet, but 

these efforts should culminate in an extensive exploration of 

chess playing as a complex information process. It is worth 

emphasizing that the results of such exploration will be brand 
new empirical information about complex processes of a kind we 
have never possessed before.

III. TYPES OF COMPLEX PROCESSES

Logic Theory Machine. Chess has provided an example for 
sketching the general nature of complex information processes. 
The characterization was mainly negative, but actually much 

can be said about the various component processes and how they 

are organized. In this part of the paper, we will consider a 

specific example, the Logic Theory Machine, which will be 

called LT for short. In describing it, we will exhibit and 

illustrate a number of processes and modes of organization 

that typify complex processes.

There are two preliminary remarks. First, the component 

processes are thoroughly familiar ones. There are, as far as 

we know, no hidden, undiscovered processes that contain the 

"key1* to complex processing.

Secondly, we will be describing a particular machine. 

This machine exists as a code in an interpretive language that 

will be described later. This language is not yet coded for 
a digital computer, but the machine was especially devised to

*We understand that some similar work is being done by 
Trenchard More at M.I.T., but we are not familiar with any 
details of his machine.
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be simple enough for hand simulation. This has allowed us to 

explore a little and for instance, to verify that the machine 

will prove theorems. However, this simplicity means that
*

certain of the processes only show up in embryonic form.

Symbolic Logic. Before we describe the machine, we must 

describe its task. We will do this very sketchlly, since it 

is only necessary to get the flavor of what the machine must 

accomplish. LT proves theorems in symbolic logic   more 

specifically, in the elementary prepositional calculus without 

operators.

Symbolic logic Is a formal system of mathematics, Just 

like Euclidean geometry or algebra. There is a certain set of 

elements, p, q, r, ..., with which the theory deals. Normally, 

these elements are interpreted as propositions. For instance, 

p might stand for, M the moon is made of green cheese." These 

elements can be combined into expressions by means of connectives, 

which are similar to the plus and minus of ordinary algebra. 

Only three connectives concern us:

1. -p, which means "not p", or "It is not the case 

that the moon is made of green cheese."

2. p v q, which means "p or q or both", or "Either the 

moon is made of green cheese,or the house is 

painted blue, or both."

3. poq, which means "p Implies q", or "If the moon 

is made of green cheese, then the house is 

painted blue, but if the moon is not made of 

green cheese, the house may or may not be
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palnted blue. 11 This Is not a primitive con 

nective since it is defined to be "-*pvq". 

Thus, we may form expressions like:

A: P

This says, "If p is true, then the sentence (q or p) is also 

true, but if. p is false, nothing can be asserted about (q or p). M

Theorems in symbolic logic are expressions that are 

universally true. Thus, expression AL is a theorem because it 

is true no matter what content we give p and q. Now in the 

manner of formal mathematics, five axioms are given 

which are assumed to be universally true. Then two rules of 

inference are given whereby new theorems can be deduced from 

others known to be true. These two rules of Inference are 

(l) substitution and (2) detachment.

In substitution any expression can be substituted for a 

variable in an expression, provided that the substitution is 

made throughout the latter expression. Thus in A we could
\

substitute rVs for p, getting a new expression, B:

A: P'ID (qvp)

B: (r v S)D [q v (r vs)] .

By the rule of substitution, B could be written as a true 

theorem.

Detachment is the rule for making logical Inferences. 

If we know that £ is true, and we know also that Cz>D is true, 

then we can conclude the D is true. Thus, if we knew that 

p was true, we could write:



-10-

C:

.'. D:

We will conclude this brief statement on symbolic logic 

by listing the axioms, although they will not concern us 

further. Equation 1.1 is the definition of "implies" in terms 

of "not" and "or", and it is a legitimate operation to replace 

a connective by its definition selectively in any expression.

1.1 pr>q » -p Vq

1.2 (p v p) => p

1-3 P => (qvp)

1.4 (pvq) -=> (q\/p)

1.5 [pV (qv r)]o [q v (p vr)]

1.6 (p^q) i> [(rvp) o(r vq)] .

The task of LT is to accept a new logic expression as a 

conjectured theorem, to try to find a proof, and, if it is 

successful, to print the proof out. A proof is a sequence of 

expressions that starts with any axioms or known theorems, and 

by successive applications of the rules of inference and 

definitions, terminates in the expression to be proved. Hence 

our machine is not simply to find true theorems, nor is it to 

do any kind of routine calculation. It is to discover proofs 

to given. theorems introduced from the outside.

Those of you who find symbolic logic a little strange may

substitute for the description above an equivalent one in terms»
of Euclidean geometry. If this were a Geometry Theory Machine
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instead of a Logic Theory Machine, its task would be to prove 

the Pythagorean theorem, or to prove that two circles inter 

sect in at most two points.
 

X/T; Methods. We can now begin to describe LT. First of 

all, there is no one way to prove theorems. As should be 

expected of a complex process, LT has a number of methods for 

proving theorems or for taking significant steps towards a 

proof. Although LT has six methods, we snail only write down 

three - Detachment, Substitution, and Chaining - since two of 

the others are variations of Chaining, and the sixth will be 

taken up later. The figure, the start of a flow diagram, shows 

these methods:

DT SB CH.

The similarity between these names and the rules of inference 

is not accidental. The methods are as broad -- and in this 

sense, contentless -- as are the rules. They do serve, as we 

shall see, to organize subprocesses.

Substitution is the fundamental method, since it produces 

actual proofs, whereas the others only produce new problems. 

Substitution states: if you wish to prove A, find a known 

theorem B which is similar to A^ and make it identical with A 

by suitable substitutions for variables and replacements of 

connectives. Thus this method is built around the rule of 

substitution as a valid rule of inference.

Detachment is built around the rule of detachment. It 

states: if you wish to prove A, find a known theorem of form
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B^A, and then the problem can be reduced to proving B. This 

is simply an inversion of the rule of detachment.

Chaining is built around the transitivity of the connect 

ive "implies". It states: if you wish to prove a theorem of 

the form A^C, find a known theorem of the form AoB, and then 

the problem can be reduced to proving BoC. The concept of 

chaining --if Ao B and BoC then Ai^C   is not a primitive 

rule of inference in the particular system of symbolic logic 

with which we are working (Whitehead and Russell's Principia 

Mathematica), although it is easily shown to be valid. In the 

present context it becomes a method for finding proofs, which, 

once found, can be written down using only the two legitimate 

rules.

A characteristic feature of these methods is that they 

offer no guarantee tdmt^..4^ey----wilt-wof4c--'!4^"--a«y---par4;ic-ulttr''''''' 

Instance. Substitution may not get a proof and Detachment and 

Chaining may not produce new subproblems. If we also observe, 

once again, that some of these methods do not provide proofs 

directly, and hence must be used Jointly, we are led to con 

sider how methods get organized into a single operating machine

LT: Master Routine. There is another component of LT 

called M, the Master Routine, whose function it is to decide 

which methods shall operate on which problems and when. We 

add this to the flow diagram:

M { DT SB CH

The fundamental problem for the Master Routine is to 

allocate computing effort to methods and problems. Limitation
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of effort is an essential concept in complex systems because 

if there are no such limitations, there will always exist a 

simple process that will perform the task. Suppose there were 

no effort limitation for LT. Then it could always find proofs 

by a simple process very similar to the ones discussed earlier 

for chess. It would start with the axioms and apply the rules 

of inference in all possible ways. It would then take the 

resulting set of theorems (which, incidentally, would already 

be rather large) and apply the rules again in all possible ways. 

It would repeat this process until the desired theorem was pro 

duced. (This technique guarantees a proof if it exists. There 

are some problems related to an infinite variety of substitu 

tions, but these may-be easily circumvented.) The only reason 

this process for producing proofs seems fantastic is that, in 

fact, there always are limitations of effort.

To do its Job the Master Routine has certain techniques 

available.- For instance, to decide whether to continue a given 

method or problem it has stop rules. The important feature 

about these stop rules is that they must, be, in a sense, 

, "irrelevant" to the problems they are applied to. That is, 

they must not involve, explicitly or implicitly, finding the 

solution to the problem. They will be similar to certain common 

aspects of human behavior: levels of aspiration and persever 

ance. The stop rules will consist of norms, i.e., how long 

proofs are expected to take, and cues, i.e., the complexity of 

the expressions that are encountered in proving a theorem.

Another technique available to the Master Routine is to
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build up a hierarchy of problems and subproblems. Since some 

of the methods produce new problems, the Master Routine can 

direct effort to solving these. These efforts may lead to 

still further subproblems, and so on. An essential feature of 

the hierarchizlng is that the entire problem-solving resources 

of the machine must be available for use on any problem, no 

matter how derivative it is from the original. If this cannot 

be done, the amount of space required to hold the large number 

of separate processes required to deal with problems at each 

level would prove prohibitive.

In LT, the Master Routine is rather rudimentary, due 

almost entirely to the limitations Imposed in order to make 

hand simulation feasible. Thus LT utilizes the methods in a 

fixed order, and uses only substitution to try to solve the 

subproblems that are created by the other methods. We symbolize 

this in the flow diagram by drawing arrows from SB to DT and CH.

M ( DT <—— SB   > CH

LT: Search and Description. This gives us the grand 

design for LT - the methods and their organization by the Master 

Routine. We return to the individual methods and the processes 

they organize. We will concentrate on Substitution as an Illus 

tration, since all methods make use of the same subprocesses.

Substitution requires (1) finding a theorem similar to 

the one to be proved, (2) comparing it with the desired theorem, 

and (3) trying to match the two by suitable substitutions and
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replacements. Consider, first, the task of finding similar 

theorems. In LT this requires three things: a memory to hold 

known theorems, a process for searching this memory, and a 

process for describing logic expressions (which defines simi 

larity) . In operation, a description is made of the expression 

to be proved; then the theorem memory is searched for all the 

theorems that have identically the same description. These are 

selected out, and made available to the matching processes.

The description and search process acts like a filter 

that passes theorems which have a higher chance of working in 

the following stages of the total method, than would theorems 

selected capriciously. The major question about such filters 

is economic -- whether they save more effort than they use. 

On the debit side, a certain amount of computing power is 

required to make each description and to make each comparison 

of descriptions, whether the theorems are selected for further 

processing or not. On the credit side, the filter selects out 

a small fraction of all the theorems for further expensive 

processing, and those selected have a much higher probability 

of success than the others. Whether one such filter is worth 

while, or perhaps a whole cascade of them, depends on the re 

lative inexpensiveness of the search and description and the 

enrichment gained.

The descriptions used in LT consist of simple measure 

ments on the isolated logic expressions that indicate only very 

gross features. To some extent these are patterned after the 

features we think humans respond to when they glance at an
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expression in symbolic logic. LT counts variables; it counts 

the number of variable places; and it counts the maximum number 

of nested parentheses, or levels, in an expression. This latter 

number is Interpreted by us to be a rough^measure of complexity
, '"' X

of the expression, but this is pure^ heuristic. ) In expression 

A, for example, which looks like,

A: po(qvp),

there are two variables, three places where these variables 

appear, :and three levels (if a variable is counted as a level). 

These measures taken on expressions and subexpressions con 

stitute the descriptions.
f

Both Detachment and Chaining use the same processes,
t'

though in different ways. We symbolize this in the flow 

diagram by using FT for "Find theorem", and D for "description".

M

FT

SB
/N

FT
/N

•> CH
/N

FT
THEOREM 
MEMORY
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LT; Diagnosis and Matching. The remaining steps of 

Substitution consist in taking one of the similar theorems and 

trying to make it identical with the desired theorem. The first 

step of this process is to compare the two expressions and note 

differences. If a difference is found, this generates a sub- 

problem, for uniess a series of legitimate logical operations 

can be performed on the theorem to eliminate the difference, 

Substitution will fail. Since LT is called upon to compare 

logic expressions often, there are certain differences that 

arise over and over again, and for which relatively simple 

solutions exist. The appropriate technique for handling these 

is to be able to recognize them directly, and simply to apply 

the corrective operations. For the other differences that 

arise there is no simple method of eradication, and the 

Substitution Method fails when such differences are encountered 

in the matching process.

This method of direct diagnosis and application of ji known 

solution procedure is the sixth proof method mentioned earlier. 

One can expect it to be used in complex processes whenever it is 

applicable frequently enough to justify holding it continuously 

ready, and stopping to make the diagnosis over and over again.

Substitution for variables and replacement of connectives 

form the basis of most of the known solutions used in LT. For 

example, if a variable q in a theorem has ~p as a correspon 

dent in the desired theorem, then a substitution of ~p for q 

provides the solution to this small matching problem.

Detachment and Chaining also use the same matching and



P-850

diagnosing operations, although again in different ways. 

Using MC for "matching process", S^ for the logical operation 

of "substitution", and R for "replacement", we get the final 

flow diagram for LT.

M

FT FT FT 7 4- THEOREM 
MEMORY

LT; Conclusion. This completes the description of LT. 

We have omitted a few other processes that are required in a 

minor way. For instance, the machine does do a certain kind 

of learning in the retention of proved theorems for future use. 

Perhaps we should not treat the existence of these other 

processes so casually, since one of the main points about 

complex processes 'is that they are made up of many little 

pieces.

The Logic Theory Machine Just described is essentially the 

first version we have completely specified. The differences 

are for purposes of exposition. We know, through hand simula 

tion, that the one we have specified exactly will prove 

theorems. It will prove the 60-odd theorems of Chapter 2 of 

Principia Mathematica. For example, it will prove:
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With minor modifications it could probably handle all of 

elementary symbolic logic. However, it is unimportant exactly 

what LT will do. The relevant point is that LT is a complex 

process made up of very simple and familiar components, and 

complete enough so that it does something.

IV. INSTRUCTING THE COMPUTER

Languages. We have given an extensive view of what a 

complex system is, and have specified a wide array of processes 

that are involved. At the beginning of the paper we focused 

on the problem of Instructing a computer and remarked on the 

amount of detail and planning required. We now need to build 

the bridge from the wide-open systems we have been talking 

about to the computer.
,*

In putting LT on a computer, we work through an inter-
f

mediate language. This language is similar to a computer code
r*

in that it consists of sequences of instructions that the 

computer can execute. However, to execute these instructions, 

the computer uses a special program that translates the inter 

mediate language instructions into machine code. Once we have 

correctly written LT in the intermediate language, we can be 

assured that the computer can perform the program.

Such languages are becoming more and more common in auto 

matic computing. They usually are called pseudo-codes or 

interpretive languages. They have been developed in response 

to the amount of detailed work involved in coding. They differ 

from the language used for LT in their preoccupation with 

standard mathematics. Whereas LT requires primarily logical



P-850 
-20-

and procedural operations, the core of most current pseudo 

codes is the ability to write equations in standard mathematical
2 * notation; i.e., a -f bx - sin x.

All pseudo-codes, including the one for LT, are attempts 

to free the user from the additional planning and envisioning 

of information flows that is required if a problem is put in 

machine code. This freedom is usually considered a mere con 

venience, important because it reduces the opportunities for 

error and utilizes programming manpower efficiently.

A price is paid for pseudo-codes, since it takes both time 

and memory space to translate them into machine code. This is 

an offsetting factor to the efficiency and convenience criteria 

mentioned above, and provides a natural limit to how involved 

and far-removed from machine code the pseudo-codes can get and 

remain practical.

The reason for emphasizing these considerations is that 

the point of view taken here is a little different from the 

usual one. There are limits on the information processing 

capacity of humans and,with any given language, there will be 

limits to the complexity of the systems a human can meaning 

fully consider. Thus the role of the intermediate language for 

us is to allow the specification of complex processes that would 

be impossible to describe in machine code -- not logically 

impossible, of course, Just impossible to think through. Even 

though the language is necessary, we should not forget that we

*See, for example, Proceedings of a Symposium on Automatic 
Programming for Digital Computers7 May T95*HOffice oT 
Technical Services, U. S. Department of Commerce
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are paying a price in computing power to get it.

To fix ideas, let us characterize briefly some of the 

features we would like in a language. Most of those that 

appear here correspond to restrictions that have arisen in 

machine codes.

1. We should like to be free from specifying where 

information is to be stored; and to be able to 

get information in terms of our need for it 

without having to remember where it is.

2. We should like plenty of working space, so that we

needn ! t be concerned about writing over good

information, or have to do too much information

shuffling. 

3- We should like to be able to define new concepts

whenever we find them useful, so as to express our

ideas in compact form. 

4. We should like to have operations which are at the

natural level for thinking about complex processes

This holds for:

a. Computational operations such as addition 

and subtraction;

b. Control operations which make decisions as 

to what processes shall be carried out; and

c. Procedural operations which set up computa-
 

tlons, see that the right information is in 

the right place, and keep track of the status
*

of computation as it progresses (also called 

housekeeping or red-tape operations).
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LL; Basic Concepts. The language uses instructions 

that are very similar in format to machine instructions.
 

There are routines which consist of sequences of instructions, 

Just as in normal machine coding. Likewise, the usual concept 

of conditional transfers to instructions is used to make
t
decisions. Each instruction has an operation part, and two 

reference places, which are similar to the address parts of 

machine instructions:

OPERATION LEFT REP RIQHT REP

The language allows new definitions. A new instruction 

may be created to stand for a whole routine. These defined 

instructions may again be used in the definitions of still 

other instructions. Thus, an extensive vocabulary can be built 

up by a hierarchy of definitions.

LL; Memories. In order to effect freedom of memory 

reference, the memory is divided into two parts, Working Memory 

and Storage Memory. This is pictured in the figure below.

WORKING 
MEMORY

STORAGE 
MEMORY

COMPUTE
FIND

RECORD

There will be Find instructions to bring information about 

logic expressions from the Storage Memory to the Working Memory, 

Record instructions to put information back. All of the
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computatlon, however, will be done only on information stored 

in the Working Memory.

The Left and Right references may be used to refer to 

working memories, but they may not refer to storage memories. 

There is no way to refer directly to any memory cell or 

information in Storage Memory. The underlying notion of how 

we find information in Storage Memory is that the desired in 

formation is always related to something else that is already 

in Working Memory. What we want can always be found by means 

of its relation to information that is already known. Consider 

an example. Logic expressions are stored away as a set of 

elements of information, one to each symbol. Suppose, for 

example, the expression is

A: piD(qvp).

This would be stored away in a section of Storage as follows 

(the rectangles represent the elements of information):

MAIN

RIGHT
v

Suppose we had the Main element in working memory x, and waated 

to find the element that represented its right-hand subexpression; 

that is, \7. We would use an instruction like:
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Plnd the right subelement of the element In working

memory x and put It in working memory y . 

This would be written formally as: 

OPERATION LEFT RIGHT

PR x y.

Thus we can find this new element because of its relationship 

to the element already in a working memory (i.e. the element 

in x ).

The total specification for a machine like LT consists of 

a large number of separate routines, corresponding to the 

various subprocesses. The working memories referred to within 

each single routine are automatically kept entirely separate 

from all others. Thus there is no need to worry about destroy 

ing valuable information relevant to other processes. There 

is an unlimited number of working memories available within 

any routine; hence, there is no necessity for involved information- 

shuffling to get things into place where they can be worked on. 

On the other hand, once a routine has been completely computed, 

there is no way of referring to the information in its working 

memories from other routines. All the results of the computa 

tion that are wanted permanently must be put back in Storage 

Memory.

LL: Instructions. In order to discuss the level of detail 

at which instructions are defined, we will consider an example 

of each of the three types of Instructions mentioned earlier. 

The example of a computational instruction is one concerned 

with the description of logic expressions. We wish to deter-
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mine the number of variable places In an expression. Supposet

we had

A: p

Then P, the number of places where variables appear, Is three. 

There is a way for numbers like P to be associated with a 

working memory. Thus, the computational operation needed is:

Add 1 to the P associated with working memory x . 

Formally we may write:

OPERATION LEFT RIGHT

NAP 1 x.

Here N stands for computational instruction (Numerical), A for 
add, and both the amount to be added (l) and the working memory 
(x) are given in the reference places. The computational 
instructions are defined at about the same level of detail as 
in machine code, which is about the level at which the user 
must think about his problem.

An example of a control instruction is one that discrim 

inates whether an element of a logic expression is a variable 

or not. As was mentioned earlier, all conditionals in this 

language are made by a transfer of control to some other in 

struction in the routine. However, instead of referring to an 

instruction by memory address, as is done in machine code, 

arbitrary names are given to those instruction locations to 

which it is necessary to refer (normally referred to as symbolic 

coding). Thus we have r
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If the element in working memory x is not a variable, 

transfer control to instruction J. 

Stated formally:

OPERATION LEFT RIGHT

TV x J.
»

Here T is for test and V is for variable. Such a decision is 

again at a level of detail that is meaningful to the user. 

This is in contradistinction to machine codes that admit as 

conditions for transfer only whether a particular number is 

positive, negative, or zero.

As an example of procedural instructions, we will give a 

pair that work together to run through a repetitive operation 

a number of times and then stop the process. This is a very 

common occurrence in all computing and is usually called 

looping, cycling, or iterating. In LT, iteration is required 

when the same processing must be done on all the elements of 

a logic expression. One instruction, PEF, is used to start 

the process off, and the other, FEN, is used to recycle it 

and stop it when through. The Instructions assume the elements 

are in some linear order in the Storage Memory, which is always 

the case. For the first instruction we have:

Find the first element of the logic expression

indicated in working memory x and put it in

working memory y» 

Formally:

OPERATION LEFT RIGHT 

FEF x y.
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For the other instruction, we have:

Find the element that is next to the element in working 

memory x and put it in x (obliterating the old ele 
ment). Transfer control back to instruction J, unless 
there are no more elements, in which case continue 

control in sequence. 

Formally:

OPERATION LEFT RICJHT

FEN x J.

Here the front F stands for "Find'1 , the E for "Element", the 
rear N for "Next 11 and rear F for "First". Again, the procedure 
is formulated at the level at which the user naturally thinks 
about it, whereas with machine code all the details have to be 
programmed.

LL; A Sample Routine. An example of the use of the 
language might make the previous instructions a little clearer 
and tie things together. Consider the computation of JP, the 
number of variable places. This computation occurs often 
enough to make an instruction desirable. We define the new 
instruction as:

Count the number of variable places in the expression 
indicated in working memory x and put the number in 
the associated ]?. 

Formally, we define:

OPERATION LEFT RIGHT 

NP x.f

To find JP we need to examine every element in the logic expression,
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decide If It is a variable and, if so, count one for it. We
wish to do the'counting in JP, since that is where the final

* answer must be. The program follows:

LOCN OPERATION LEFT RIGHT

J
K

NP

PEP
TV
NAP
PEN

X

X
yi
y

y
K
X
J.

The PEP and PEN set up the search through the logic expression 
indicated in working memory x. TV asks each element in turn 
whether it is a variable. If it is, NAP counts 1 in the  jP of 
working memory x. Then PEN gets another element and sends 
control back to TV which starts the cycle over again. If an 
element is not a variable, TV Just skips control around NAP 
to PEN, thus avoiding the count. Finally, when all elements 
have been counted, PEN sends control on, and NP has been 
accomplished.

LL; Conclusion. This completes the description of the 
language used for LT. LT has been completely coded in its terms. 
However, nothing has been said about how to code such languages 
for digital computers. As was stated earlier, the language 
is fundamentally similar to a number of pseudo-codes which 
have been coded for computers and are in use. We have not 
coded the exact language described here, although we are

*This is a simplified program for expositional purposes. Several important details have been glossed over, such as how the defining routine "knows" what x is, since NP may be used in a number of different routines.
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currently working on one of 
this general variety. Thus, for 

instance, it is not. possible yet to ma
ke any statements about 

the price in computing power
 that must be paid to use la

nguages 

like this for specifying com
plex systems.

Our purpose in exhibiting th
e language in so much detail

 

has been to show that the br
idge exists between the comp

lex 

processes talked of earlier 
in the paper and the compute

rs. 

The essential contribution o
f this language is in freein

g of 

the user from the detailed p
lanning of the information f

lows 

Involved in executing the pr
ogram.

V. LEARNING

It remains to consider learn
ing as it relates to the 

complex processes we have be
en discussing. We can do this 

rather briefly, since our main point is that
 learning is not 

at all different from what w
e have talked of so far. Put 

differently, we already have
 all the component processes; it 

only remains to combine thes
e to obtain "learning". Further, 

systems that learn will not 
look very different from sys

tems 

like LT.

Learning consists only in th
is: that some processes within 

the total system have as the
ir output the structure or o

perating 

conditions of other processe
s. For then the same system pre

 

sented with the same externa
l environment will behave di

ffer 

ently a second time than it 
did the first. This is about all 

that learning comes to,-exce
pt that one may wish to limi

t the 

term to "improvements" -- an ambiguous restriction 
at best.
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Sufficiently complex processes can hardly avoid learning and 

adapting.

Let us make this point a little more concrete by describ-
 *

ing some current work aimed at putting learning programs on

computers. Here again there have been some explorations of
* 

simple processes. In these, the performance system (the

processes that accomplish whatever the system is supposed to 

do) has a number of numerical parameters. Feedbacks are pro 

grammed that modify these parameters as a function of the 

discrepancy between performance and a criterion. Thus the 

system gradually learns its way to perfect performance.

In the last two years, however, an attempt has been made 

by Oliver Selfridge and Gerald Dinneen of the Lincoln 

Laboratories of MIT to explore learning as a much more complex

process. Since a fairly good description of their work exists
*« 

in the literature, we will not go into much detail. However,

a brief sketch will show both the nature of their investiga 

tions and the similarity between their machine   which is a 

learning machine -- and LT   which is primarily a pure 

performance machine.

Because the task of their machine is the recognition of 

visual patterns, we will call it VPR. VPR is presented, from

*A. G. Oettinger, "Simple learning by a digital computer", 
Proceedings of the Association for Computing Machinery, Toronto, 
Ont. September T552

9

**0. G. Selfridge, "Pattern recognition and modern 
computers", and G. P. Dinneen, "Programming pattern recognition" 
both in Proceedings of the 1955 Western Joint Computer 
Conference, Los Angeles, Calif. I.R.fi., March 1955
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outside, with a two-dimensional field -- a 90 x 90 square of 

black or white dots   on which patterns may be created with 

the black dots. Selfridge and Dinneen have worked with A's, 

O's, triangles, and squares, etc. VPR has a performance 

system made up of a number of processes that can recognize a 

pattern   that is, can answer whether a given field is A or
 

not.

At a sufficiently gross level, the performance system is 

quite simple, as shown in the figure:

Visual 
Field

CHARACTERISTICS DECISION 
(A or 
not A)

A number of characteristics of the visual field are computed. A 

"characteristic" is a computer routine that we will explain in 

more detail later. These computations yield numbers -- the 

values that characterize this particular visual field. These 

are compared with norms that are associated with the specific 

pattern under question, say an A. If there is sufficient agree 

ment between the values characterizing this field and the norms 

characterizing the pattern an affirmative decision is reached 

by VPR.

There are four things that turn VPR into a learning machine
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and into a complex process in the sense in which we have been 

using that term. First, there is a language for characteristics. 

Although it is very rudimentary, this is a true language. It 

has basic terms   three symbols, I, II, and III -- which 

stand for elementary operations. These transform a 90 x 90 

visual field into a modified 90 x 90 visual field. The basic 

terms may be combined into expressions that symbolize character 

istics. The expression for a characteristic is a sequence of 

transformations, say; I II II III I III III. Translated into 

a computation, this means: take the original visual field, 

transform it with I, then II, then II again, etc.j when this 

has been done, count the number of black spots left and that 

number is the value of the characteristic for that visual field. 

(The counting operation is not as irrelevant as it sounds 

since the transformations are such as will generally reduce 

the total number of black spots in any field. For more details 

of thfc nature of the operation the reader is referred to the 

papers cited.)

The second thing VPR can do follows closely upon the 

first. It can create new characteristics for itself. Its 

learning problem may now be stated. It has available a space

of characteristics formed from all possible sequences of three
10 4 symbols (say 3 - 6x10 possible sequences of length 10).

Its performance system consists of some very small number of 

these characteristics (say 20) which should discriminate A's 

from non-A's. Its problem is to search the space in order to 

discover a particular set of twenty that provides good discrim-
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ination. Notice that the access to this space is through 

generation; no very large set of possibilities could ever be 

held extensively in memory.

The third thing VPR has is a learning loop for eliminat 

ing a poor characteristic once it has been generated and VPR
*

has decided to give it a try. This learning loop goes out 

side the machine. VPR can learn about patterns only extensively, 

by being presented with a variety of examples (particular 

visual fields which it is told are A f s) and inducing the pattern. 

VPR achieves this separation of good from poor characteristics 

by accumulating the experience from a number of visual fields 

on each character it tries. This includes information from 

outside on whether each pattern was an A or not. If its sum 

mary of experience reveals a characteristic of good discrim 

inating power -- giving always a certain value when an A^ occurs, 

always a different value when other patterns occur -- then the 

characteristic is retained. Otherwise, the characteristic is 

eventually discarded in favor of another. The value of a 

characteristic that typically occurs when an ^ is presented 

is made the norm for that characteristic.

The fourth and final thing that VPR has is a second learn 

ing loop for the generation of new characteristics. Since VPR, 

like all complex processes, operates under a severe effort

* This is the classic learning loop of stimulus-response 
learning theory in psychology - » the selection of a response 
from a set of responses on the basis of externally applied 
reinforcement.
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constraint, the whole function of the first loop is to remove 

worthless processes that absorb good computing effort. This 

makes way for new characteristics to be tried. But first, 

such characteristics must be found; that is, selected from the 

large space of all possible characteristics. The process in 

VPR that generates new characteristics does so as a function 

of the accumulated experience-with the characteristics already 

generated. The philosophy of the process -- if we may use the 

term -- is to choose new characteristics similar to those old 

ones that were successful, yet to allow an occasional "wild" 

choice. The program achieves this by building up new sequences 

of elementary operations based on the same conditional prob 

abilities as occur empirically in the set of good character 

istics «-- already found and tested. Again, the reader is 

referred to the original papers for details.

This completes the description of VPR. The program has 

been coded for the Memory Test Computer at MIT and some explora 

tion done. It is not claimed   either by Selfridge and Dinneen 

or by us -- that this machine is a good pattern recognizer 

or that its learning is at all adequate either qualitatively 

or in terms of rate of convergence to an adequate set of 

characteristics. VPR has shown a little learning, although 

it has a tendency to fixate in one kind of characteristic and 

improve it to the exclusion of others.

We think that Just how good VPR is is unimportant. As 

with LT, we have here a complex process made up of many quite 

different subprocesses, all of which are quite elementary.
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These are organized together in a highly conditional and 

interactive way. VPR does do something. More processes could 

be added at anyone f s whim to sophisticate the process: a 

learning loop in the overall criterion, more elaborate dis 

criminations of the experiences with characteristics, etc. 

The value of both LT and VPR -- meaning precisely the two 

machines so far programmed -- is to show that we are in the 

right general area for fruitful exploration.

<

VI. CONCLUSION AND SUMMARY

f

This paper has attempted to convey a picture of an area 

of current scientific activity that we have called complex

information processing. We have not aimed at a survey of all
* 

work that is pertinent. Rather, our objective has been to

characterize the field, and to provide a specific example of 

a complex information processing system.

In the first section we showed that the attempt to perform 

difficult tasks (e.g. playing chess) with a simple Information 

processing system leads to exorbitant demands for computing 

power. We asserted that such tasks can be performed with much 

smaller requirements of computer speed, time, and memory by 

use of a complex process --a process made up of a very large

*The most serious omissions are the work on automata, 
which includes the work on abstract nerve nets, and the work 
on mechanical translation of languages. See C.E. Shannon and 
J. McCarthy (eds.), Automata Studies, Annals of Mathematics 
Studies, #3^, Princeton, 1956; and W.N.Locke and A.D.Booth (eds.), 
Machine Translation of Languages, Wiley, 1955- Attention should 
also be called to the work of W.R.Ashby. See Design for a Brain, Wiley, 1952.    ~    
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number of subprocesses, the elementary component processes 
being simple but combined in complex patterns, and the whole 
process constituting a strategy (each step being highly 
conditional on what went before) rather than a simple linear 
sequence.

Next, a machine, LT, was described that employs a com 
plex process to discover proofs for theorems in elementary 
symbolic logic. The machine consists of a hierarchy of routines 
a master routine, some proof methods, and subroutines that are 
employed to carry out the proofs. These routines constitute^
heuristic) that permits the machine to discover appropriate V^^^nj»njif»W*'*'c*' ***"'"*'2ilfj^

steps in a proof-chain with far less random search than if it 
proceeded to construct and examine all chains permitted by the 
rules of logic.

To put the logic theorist, LT, on a computer, it is highly 
advantageous   and perhaps necessary   to work through an 
Intermediate language (LL), of the kind now generally referred 
to as an interpretive language. The program for LT is written 
in the language LL, and then LL is coded for a computer. 
Important characteristics for a language to be used in specify 
ing complex processes include: (l) relative freedom from refer 
ence to the absolute addresses where Information is located; 
(2) adequate working space so that information does not have 
to be rearranged repeatedly in the memory; (3) freedom to 
define new concepts whenever they appear to be useful; (4) opera 
tions defined at a level of "grossness" that is natural for 
thinking about complex processes. These characteristics are
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lllustrated by the structure of LL.

The logic theorist is primarily a performance, rather 

than learning, jhachine. In a final section we indicated by 

reference to a machine, VPR, developed by Selfridge and 

Dlnneen, how learning can be described as a complex Information 

process that is not fundamentally different in kind from the 

process of LT.


