
a,.

CURRENT DEVELOPMENTS
IN COMPLEX INFORMATION PROCESSING

by
Alien Newell and Herbert A. Simon

P-850

May 1, 1956

(38) 1700 MAIN ST. • SANTA MONICA • CAUFOINIA

P-850
-l-

CURRENT DEVELOPMENTS IN COMPLEX INFORMATION PROCESSING

Alien Newell and Herbert A. Simon*

I. INTRODUCTION

The term "complex Information processing" has been chosen

to refer to those sorts of behaviors learning, problem

solving, and pattern recognition which seem to be incapable

of precise description in any simple terms, or perhaps, in any

terms at all. The advent of the high-speed electronic digital

computer has focused attention on the possibilities of specify

ing and creating information processes of almost unlimited size

and complication. But one of the sober facts about current

computers is that, for all their power, they must be instructed

in minute detail on everything they do. To many, this has

seemed to be harsh reality and an irremovable limitation of

automatic computing. It seems worthwhile to examine the nec

essity of the limitation of computers to easily specified

tasks. First, we will give a more complete picture of what

is meant by complex information processing. Then we will

explore in some detail the sorts of processes computers will

be required to perform if they are to do complex processing.

Next we will consider the problem of instructing the computer

which is the issue most closely related to the question raised

*Paper read in a series of Lectures on Computers and
Automation in Washington, D.C. May 2, 1956, sponsored Jointly
by the local chapters of ACM, ASA, ORSA, SAM, SIAM, and TIMS.
The authors are grateful to The RAND Corporation and to the
Ford Foundation which have supported their respective partici
pations in this study. Mr. Newell is a member of the staff of
The RAND Corporation, Mr. Simon a member of the faculty of the
Graduate School of Industrial Administration, Carnegie
Institute of Technology.

P-850
.2-

above. Finally, we shall discuss learning and its relation

to complex processes.

Current Research. One of the Justifications for consider

ing this topic is that it is rapidly leaving the domain of

speculation and becoming an area of hard work. Hence, we shall

illustrate the various points by sketching some of the current

developments in the field* The major example that we will use

is some of our own work on programming a computer to find

proofs for theorems in mathematical logic. We call this the

Logic Theory Machine. This research is currently being done

by the authors and Cliff Shaw of The RAND Corporation. The

work on the Logic Theory Machine is very recent -- only a few

months old -- and has not previously been published or

announced.

Application. The examples we will be talking about are

chess, abstract mathematical theorizing, and visual pattern

recognition. These may seem a bit frivolous and far removed

from "real" applications, but, in fa6t, they are not. For those

of you who do not find these tasks intrinsically interesting,

we suggest that you view them as the places where we are gain

ing our fundamental knowledge for the applications you do find

interesting. Chess, in particular, is no longer Just a game,

but is fast becoming a classic task for the fruitful scientific

study of complex information processing.

P-850
-3-

II. DIFFICULTY AND COMPLEXITY

Cheas. Let us consider the playing of chess as a task to

be performed, either by a human or a machine. At each position,

when the player has the move, the rules of the game provide him

with a set of legal alternatives, about thirty in number on

the average. His problem is to choose one. His opponent then

makes a move, and the player is again presented with a set of

about thirty legal alternatives under somewhat changed circum

stances. This continues until either a won or lost position

is reached, which takes on the average some forty moves.

If we think of the player as exploring each possible
120

sequence of alternatives, we find that there are some 10

continuations to be explored. Alternatively, there are some
4o 10 positions to become acquainted with. Chess is a difficult

task indeed. However, we must distinguish carefully between

the difficulty of a task and the complexity of the processes

that are used to solve that task.

Simple Processes. The player could perform his task by

choosing moves at random. What is meant by saying the task is

difficult is that he would surely lose if he used such a simple

process. However, the fact that a task is difficult does not

necessarily mean it can ! t be handled by simple processes. For

example, complete exploration of all continuations is a simple

process, although it is also a very extensive one. There is

no difficulty in specifying precisely how it is to be done. A

fairly simple machine with sufficient speed and memory could

solve even the very difficult task of chess by this simple

process. We shall find that we pay the price of complexity of

P-850

process in order to carry out difficult tasks with limited

computing power i.e. limited in speed and memory.

Most of the serious exploration of chess and other games

prior to 1955 was concerned with simple processes and how well

they might actually operate. These efforts stem from a paper
. *by Claude Shannon in 1949, which is the first serious dis

cussion of which we are aware. The simple processing schemes

considered by Shannon involve exploring all sequences of legal

moves to a depth of ri moves; where ri is determined by the com

puting power available. A numerical evaluation function is

applied to each final position. This function usually consists

of some sort of weighted sum of features of the position con

sidered to be Important on the basis of human experience.

Given the evaluation, it is possible to work backwards to

decide what move should be made.

The only machine we know of that has actually been coded
** for chess is a Russian digital computer, and we know very

little yet about how it plays. On the other hand, at least
»#» two machines have been coded for checkers and there has

been some hand simulation of chess machines. The upshot of

* Shannon, C.E., "Programming a computer for playing
chess", Phil. Mag., 41:256-75 (March 1950)

** The computer is BESM at the Institute for Precision
Mechanics and Calculating Technology in Moscow, The machine
played some demonstration moves for a visiting group of American
engineers. See New York Times, December 11, 1955-

*** For one of the checker players, see Strachey, C.S.,
"Logical or nonmathematical programmes1*, Prpc. Assoc. Computing
Machinery* September 1952, pp. 46-9* The other checker player
has been programmed by A. L. Samuel at IBM, although we know
of no published report of its program.

P-850
-5-

these efforts, as far as we can now evaluate them, has been to

show that simple processes do not nearly suffice to play good

chess; but that, on the other hand, they do not produce

completely absurd results. The amount of information available

is still very meager.

Complex Processing. We may now ask, with respect to our

example, what complex processing might look like. Let us

consider Just a few of the features of a human player's

processes. He does not look at all alternatives. Those that
«

he does look at, he examines in varying degrees. He makes

evaluations to determine where good moves might be discovered

and where danger should be expected. Sometimes he draws in

ferences from the position, sometimes from the history of his

opponent's moves; and sometimes he makes no Inferences at all,

but Just proceeds with an attack already under way. He per

ceives the game in phases opening, middle, and end -- and

changes his method of analysis accordingly. He works with

global terms like "attack", "defense", and "control", and

interprets these in each particular position even though he

has never seen exactly that position before.

This is a good enough sample. In fact, we probably

cannot name all the different processes that go on. Our in

ability to do so seems to be a major characteristic of complex

processes -- they consist of a great many subprocesses, each

quite different from the others. It also seems characteristic

that the complexity lies not in the component processes, but

in the ways these are organized, so that the choice among them

P-850
-6-

at each moment is highly conditional and flexible.

Even though our language must still remain vague, we can

at least be a little more systematic about what constitutes a

complex information process.

1. A complex process consists of very large numbers

of subprocesses, which are extremely diverse in

their nature and operation. No one of them is

central or, usually, even necessary.

2. The elementary component processes need not be

complex; they may be simple and easily understood.

The complexity arises wholly from the pattern in

which these processes operate.

3. The component processes are applied in a highly

conditional fashion. In fact, large numbers of

the processes have the function of determining the

conditions under which other processes will operate.

Current Chess Studies. No one really knows how complex

a process human chess playing is, nor does anyone know what

the effect is of various patterns of elementary rules and dis

criminations in a chess-playing machine. A number of people

are currently programming computers for chess in order to

explore these questions. Among the current explorers are
*

John McCarthy at Dartmouth, Hal Judd at IBM and ourselves.

* For some of our preliminary thinking, see A. Newell,
"The chess machine: an example of dealing with a complex task
by adaptation", Western Joint Computer Conference, March 1955
Published by I.R.E. pp. 101-b1 .

P-850
-7-

To my knowledge, no one Is actually getting results yet, but

these efforts should culminate in an extensive exploration of

chess playing as a complex information process. It is worth

emphasizing that the results of such exploration will be brand
new empirical information about complex processes of a kind we
have never possessed before.

III. TYPES OF COMPLEX PROCESSES

Logic Theory Machine. Chess has provided an example for
sketching the general nature of complex information processes.
The characterization was mainly negative, but actually much

can be said about the various component processes and how they

are organized. In this part of the paper, we will consider a

specific example, the Logic Theory Machine, which will be

called LT for short. In describing it, we will exhibit and

illustrate a number of processes and modes of organization

that typify complex processes.

There are two preliminary remarks. First, the component

processes are thoroughly familiar ones. There are, as far as

we know, no hidden, undiscovered processes that contain the

"key1* to complex processing.

Secondly, we will be describing a particular machine.

This machine exists as a code in an interpretive language that

will be described later. This language is not yet coded for
a digital computer, but the machine was especially devised to

*We understand that some similar work is being done by
Trenchard More at M.I.T., but we are not familiar with any
details of his machine.

P-850
-8-

be simple enough for hand simulation. This has allowed us to

explore a little and for instance, to verify that the machine

will prove theorems. However, this simplicity means that
*

certain of the processes only show up in embryonic form.

Symbolic Logic. Before we describe the machine, we must

describe its task. We will do this very sketchlly, since it

is only necessary to get the flavor of what the machine must

accomplish. LT proves theorems in symbolic logic more

specifically, in the elementary prepositional calculus without

operators.

Symbolic logic Is a formal system of mathematics, Just

like Euclidean geometry or algebra. There is a certain set of

elements, p, q, r, ..., with which the theory deals. Normally,

these elements are interpreted as propositions. For instance,

p might stand for, M the moon is made of green cheese." These

elements can be combined into expressions by means of connectives,

which are similar to the plus and minus of ordinary algebra.

Only three connectives concern us:

1. -p, which means "not p", or "It is not the case

that the moon is made of green cheese."

2. p v q, which means "p or q or both", or "Either the

moon is made of green cheese,or the house is

painted blue, or both."

3. poq, which means "p Implies q", or "If the moon

is made of green cheese, then the house is

painted blue, but if the moon is not made of

green cheese, the house may or may not be

P-850
-9-

palnted blue. 11 This Is not a primitive con

nective since it is defined to be "-*pvq".

Thus, we may form expressions like:

A: P

This says, "If p is true, then the sentence (q or p) is also

true, but if. p is false, nothing can be asserted about (q or p). M

Theorems in symbolic logic are expressions that are

universally true. Thus, expression AL is a theorem because it

is true no matter what content we give p and q. Now in the

manner of formal mathematics, five axioms are given

which are assumed to be universally true. Then two rules of

inference are given whereby new theorems can be deduced from

others known to be true. These two rules of Inference are

(l) substitution and (2) detachment.

In substitution any expression can be substituted for a

variable in an expression, provided that the substitution is

made throughout the latter expression. Thus in A we could
\

substitute rVs for p, getting a new expression, B:

A: P'ID (qvp)

B: (r v S)D [q v (r vs)] .

By the rule of substitution, B could be written as a true

theorem.

Detachment is the rule for making logical Inferences.

If we know that £ is true, and we know also that Cz>D is true,

then we can conclude the D is true. Thus, if we knew that

p was true, we could write:

-10-

C:

.'. D:

We will conclude this brief statement on symbolic logic

by listing the axioms, although they will not concern us

further. Equation 1.1 is the definition of "implies" in terms

of "not" and "or", and it is a legitimate operation to replace

a connective by its definition selectively in any expression.

1.1 pr>q » -p Vq

1.2 (p v p) => p

1-3 P => (qvp)

1.4 (pvq) -=> (q\/p)

1.5 [pV (qv r)]o [q v (p vr)]

1.6 (p^q) i> [(rvp) o(r vq)] .

The task of LT is to accept a new logic expression as a

conjectured theorem, to try to find a proof, and, if it is

successful, to print the proof out. A proof is a sequence of

expressions that starts with any axioms or known theorems, and

by successive applications of the rules of inference and

definitions, terminates in the expression to be proved. Hence

our machine is not simply to find true theorems, nor is it to

do any kind of routine calculation. It is to discover proofs

to given. theorems introduced from the outside.

Those of you who find symbolic logic a little strange may

substitute for the description above an equivalent one in terms»
of Euclidean geometry. If this were a Geometry Theory Machine

P-850
-11-

instead of a Logic Theory Machine, its task would be to prove

the Pythagorean theorem, or to prove that two circles inter

sect in at most two points.

X/T; Methods. We can now begin to describe LT. First of

all, there is no one way to prove theorems. As should be

expected of a complex process, LT has a number of methods for

proving theorems or for taking significant steps towards a

proof. Although LT has six methods, we snail only write down

three - Detachment, Substitution, and Chaining - since two of

the others are variations of Chaining, and the sixth will be

taken up later. The figure, the start of a flow diagram, shows

these methods:

DT SB CH.

The similarity between these names and the rules of inference

is not accidental. The methods are as broad -- and in this

sense, contentless -- as are the rules. They do serve, as we

shall see, to organize subprocesses.

Substitution is the fundamental method, since it produces

actual proofs, whereas the others only produce new problems.

Substitution states: if you wish to prove A, find a known

theorem B which is similar to A^ and make it identical with A

by suitable substitutions for variables and replacements of

connectives. Thus this method is built around the rule of

substitution as a valid rule of inference.

Detachment is built around the rule of detachment. It

states: if you wish to prove A, find a known theorem of form

P-850
-12-

B^A, and then the problem can be reduced to proving B. This

is simply an inversion of the rule of detachment.

Chaining is built around the transitivity of the connect

ive "implies". It states: if you wish to prove a theorem of

the form A^C, find a known theorem of the form AoB, and then

the problem can be reduced to proving BoC. The concept of

chaining --if Ao B and BoC then Ai^C is not a primitive

rule of inference in the particular system of symbolic logic

with which we are working (Whitehead and Russell's Principia

Mathematica), although it is easily shown to be valid. In the

present context it becomes a method for finding proofs, which,

once found, can be written down using only the two legitimate

rules.

A characteristic feature of these methods is that they

offer no guarantee tdmt^..4^ey----wilt-wof4c--'!4^"--a«y---par4;ic-ulttr'''''''

Instance. Substitution may not get a proof and Detachment and

Chaining may not produce new subproblems. If we also observe,

once again, that some of these methods do not provide proofs

directly, and hence must be used Jointly, we are led to con

sider how methods get organized into a single operating machine

LT: Master Routine. There is another component of LT

called M, the Master Routine, whose function it is to decide

which methods shall operate on which problems and when. We

add this to the flow diagram:

M { DT SB CH

The fundamental problem for the Master Routine is to

allocate computing effort to methods and problems. Limitation

P-850

of effort is an essential concept in complex systems because

if there are no such limitations, there will always exist a

simple process that will perform the task. Suppose there were

no effort limitation for LT. Then it could always find proofs

by a simple process very similar to the ones discussed earlier

for chess. It would start with the axioms and apply the rules

of inference in all possible ways. It would then take the

resulting set of theorems (which, incidentally, would already

be rather large) and apply the rules again in all possible ways.

It would repeat this process until the desired theorem was pro

duced. (This technique guarantees a proof if it exists. There

are some problems related to an infinite variety of substitu

tions, but these may-be easily circumvented.) The only reason

this process for producing proofs seems fantastic is that, in

fact, there always are limitations of effort.

To do its Job the Master Routine has certain techniques

available.- For instance, to decide whether to continue a given

method or problem it has stop rules. The important feature

about these stop rules is that they must, be, in a sense,

, "irrelevant" to the problems they are applied to. That is,

they must not involve, explicitly or implicitly, finding the

solution to the problem. They will be similar to certain common

aspects of human behavior: levels of aspiration and persever

ance. The stop rules will consist of norms, i.e., how long

proofs are expected to take, and cues, i.e., the complexity of

the expressions that are encountered in proving a theorem.

Another technique available to the Master Routine is to

P-850
-14-

build up a hierarchy of problems and subproblems. Since some

of the methods produce new problems, the Master Routine can

direct effort to solving these. These efforts may lead to

still further subproblems, and so on. An essential feature of

the hierarchizlng is that the entire problem-solving resources

of the machine must be available for use on any problem, no

matter how derivative it is from the original. If this cannot

be done, the amount of space required to hold the large number

of separate processes required to deal with problems at each

level would prove prohibitive.

In LT, the Master Routine is rather rudimentary, due

almost entirely to the limitations Imposed in order to make

hand simulation feasible. Thus LT utilizes the methods in a

fixed order, and uses only substitution to try to solve the

subproblems that are created by the other methods. We symbolize

this in the flow diagram by drawing arrows from SB to DT and CH.

M (DT <—— SB > CH

LT: Search and Description. This gives us the grand

design for LT - the methods and their organization by the Master

Routine. We return to the individual methods and the processes

they organize. We will concentrate on Substitution as an Illus

tration, since all methods make use of the same subprocesses.

Substitution requires (1) finding a theorem similar to

the one to be proved, (2) comparing it with the desired theorem,

and (3) trying to match the two by suitable substitutions and

P-850
-15-

replacements. Consider, first, the task of finding similar

theorems. In LT this requires three things: a memory to hold

known theorems, a process for searching this memory, and a

process for describing logic expressions (which defines simi

larity) . In operation, a description is made of the expression

to be proved; then the theorem memory is searched for all the

theorems that have identically the same description. These are

selected out, and made available to the matching processes.

The description and search process acts like a filter

that passes theorems which have a higher chance of working in

the following stages of the total method, than would theorems

selected capriciously. The major question about such filters

is economic -- whether they save more effort than they use.

On the debit side, a certain amount of computing power is

required to make each description and to make each comparison

of descriptions, whether the theorems are selected for further

processing or not. On the credit side, the filter selects out

a small fraction of all the theorems for further expensive

processing, and those selected have a much higher probability

of success than the others. Whether one such filter is worth

while, or perhaps a whole cascade of them, depends on the re

lative inexpensiveness of the search and description and the

enrichment gained.

The descriptions used in LT consist of simple measure

ments on the isolated logic expressions that indicate only very

gross features. To some extent these are patterned after the

features we think humans respond to when they glance at an

P-850
-16-

expression in symbolic logic. LT counts variables; it counts

the number of variable places; and it counts the maximum number

of nested parentheses, or levels, in an expression. This latter

number is Interpreted by us to be a rough^measure of complexity
, '"' X

of the expression, but this is pure^ heuristic.) In expression

A, for example, which looks like,

A: po(qvp),

there are two variables, three places where these variables

appear, :and three levels (if a variable is counted as a level).

These measures taken on expressions and subexpressions con

stitute the descriptions.
f

Both Detachment and Chaining use the same processes,
t'

though in different ways. We symbolize this in the flow

diagram by using FT for "Find theorem", and D for "description".

M

FT

SB
/N

FT
/N

•> CH
/N

FT
THEOREM
MEMORY

P-850
-17-

LT; Diagnosis and Matching. The remaining steps of

Substitution consist in taking one of the similar theorems and

trying to make it identical with the desired theorem. The first

step of this process is to compare the two expressions and note

differences. If a difference is found, this generates a sub-

problem, for uniess a series of legitimate logical operations

can be performed on the theorem to eliminate the difference,

Substitution will fail. Since LT is called upon to compare

logic expressions often, there are certain differences that

arise over and over again, and for which relatively simple

solutions exist. The appropriate technique for handling these

is to be able to recognize them directly, and simply to apply

the corrective operations. For the other differences that

arise there is no simple method of eradication, and the

Substitution Method fails when such differences are encountered

in the matching process.

This method of direct diagnosis and application of ji known

solution procedure is the sixth proof method mentioned earlier.

One can expect it to be used in complex processes whenever it is

applicable frequently enough to justify holding it continuously

ready, and stopping to make the diagnosis over and over again.

Substitution for variables and replacement of connectives

form the basis of most of the known solutions used in LT. For

example, if a variable q in a theorem has ~p as a correspon

dent in the desired theorem, then a substitution of ~p for q

provides the solution to this small matching problem.

Detachment and Chaining also use the same matching and

P-850

diagnosing operations, although again in different ways.

Using MC for "matching process", S^ for the logical operation

of "substitution", and R for "replacement", we get the final

flow diagram for LT.

M

FT FT FT 7 4- THEOREM
MEMORY

LT; Conclusion. This completes the description of LT.

We have omitted a few other processes that are required in a

minor way. For instance, the machine does do a certain kind

of learning in the retention of proved theorems for future use.

Perhaps we should not treat the existence of these other

processes so casually, since one of the main points about

complex processes 'is that they are made up of many little

pieces.

The Logic Theory Machine Just described is essentially the

first version we have completely specified. The differences

are for purposes of exposition. We know, through hand simula

tion, that the one we have specified exactly will prove

theorems. It will prove the 60-odd theorems of Chapter 2 of

Principia Mathematica. For example, it will prove:

P-850
-19-

With minor modifications it could probably handle all of

elementary symbolic logic. However, it is unimportant exactly

what LT will do. The relevant point is that LT is a complex

process made up of very simple and familiar components, and

complete enough so that it does something.

IV. INSTRUCTING THE COMPUTER

Languages. We have given an extensive view of what a

complex system is, and have specified a wide array of processes

that are involved. At the beginning of the paper we focused

on the problem of Instructing a computer and remarked on the

amount of detail and planning required. We now need to build

the bridge from the wide-open systems we have been talking

about to the computer.
,*

In putting LT on a computer, we work through an inter-
f

mediate language. This language is similar to a computer code
r*

in that it consists of sequences of instructions that the

computer can execute. However, to execute these instructions,

the computer uses a special program that translates the inter

mediate language instructions into machine code. Once we have

correctly written LT in the intermediate language, we can be

assured that the computer can perform the program.

Such languages are becoming more and more common in auto

matic computing. They usually are called pseudo-codes or

interpretive languages. They have been developed in response

to the amount of detailed work involved in coding. They differ

from the language used for LT in their preoccupation with

standard mathematics. Whereas LT requires primarily logical

P-850
-20-

and procedural operations, the core of most current pseudo

codes is the ability to write equations in standard mathematical
2 * notation; i.e., a -f bx - sin x.

All pseudo-codes, including the one for LT, are attempts

to free the user from the additional planning and envisioning

of information flows that is required if a problem is put in

machine code. This freedom is usually considered a mere con

venience, important because it reduces the opportunities for

error and utilizes programming manpower efficiently.

A price is paid for pseudo-codes, since it takes both time

and memory space to translate them into machine code. This is

an offsetting factor to the efficiency and convenience criteria

mentioned above, and provides a natural limit to how involved

and far-removed from machine code the pseudo-codes can get and

remain practical.

The reason for emphasizing these considerations is that

the point of view taken here is a little different from the

usual one. There are limits on the information processing

capacity of humans and,with any given language, there will be

limits to the complexity of the systems a human can meaning

fully consider. Thus the role of the intermediate language for

us is to allow the specification of complex processes that would

be impossible to describe in machine code -- not logically

impossible, of course, Just impossible to think through. Even

though the language is necessary, we should not forget that we

*See, for example, Proceedings of a Symposium on Automatic
Programming for Digital Computers7 May T95*HOffice oT
Technical Services, U. S. Department of Commerce

P-850
-21-

are paying a price in computing power to get it.

To fix ideas, let us characterize briefly some of the

features we would like in a language. Most of those that

appear here correspond to restrictions that have arisen in

machine codes.

1. We should like to be free from specifying where

information is to be stored; and to be able to

get information in terms of our need for it

without having to remember where it is.

2. We should like plenty of working space, so that we

needn ! t be concerned about writing over good

information, or have to do too much information

shuffling.

3- We should like to be able to define new concepts

whenever we find them useful, so as to express our

ideas in compact form.

4. We should like to have operations which are at the

natural level for thinking about complex processes

This holds for:

a. Computational operations such as addition

and subtraction;

b. Control operations which make decisions as

to what processes shall be carried out; and

c. Procedural operations which set up computa-

tlons, see that the right information is in

the right place, and keep track of the status
*

of computation as it progresses (also called

housekeeping or red-tape operations).

P-850
-22-

LL; Basic Concepts. The language uses instructions

that are very similar in format to machine instructions.

There are routines which consist of sequences of instructions,

Just as in normal machine coding. Likewise, the usual concept

of conditional transfers to instructions is used to make
t
decisions. Each instruction has an operation part, and two

reference places, which are similar to the address parts of

machine instructions:

OPERATION LEFT REP RIQHT REP

The language allows new definitions. A new instruction

may be created to stand for a whole routine. These defined

instructions may again be used in the definitions of still

other instructions. Thus, an extensive vocabulary can be built

up by a hierarchy of definitions.

LL; Memories. In order to effect freedom of memory

reference, the memory is divided into two parts, Working Memory

and Storage Memory. This is pictured in the figure below.

WORKING
MEMORY

STORAGE
MEMORY

COMPUTE
FIND

RECORD

There will be Find instructions to bring information about

logic expressions from the Storage Memory to the Working Memory,

Record instructions to put information back. All of the

P-850
-23-

computatlon, however, will be done only on information stored

in the Working Memory.

The Left and Right references may be used to refer to

working memories, but they may not refer to storage memories.

There is no way to refer directly to any memory cell or

information in Storage Memory. The underlying notion of how

we find information in Storage Memory is that the desired in

formation is always related to something else that is already

in Working Memory. What we want can always be found by means

of its relation to information that is already known. Consider

an example. Logic expressions are stored away as a set of

elements of information, one to each symbol. Suppose, for

example, the expression is

A: piD(qvp).

This would be stored away in a section of Storage as follows

(the rectangles represent the elements of information):

MAIN

RIGHT
v

Suppose we had the Main element in working memory x, and waated

to find the element that represented its right-hand subexpression;

that is, \7. We would use an instruction like:

P-850
-24-

Plnd the right subelement of the element In working

memory x and put It in working memory y .

This would be written formally as:

OPERATION LEFT RIGHT

PR x y.

Thus we can find this new element because of its relationship

to the element already in a working memory (i.e. the element

in x).

The total specification for a machine like LT consists of

a large number of separate routines, corresponding to the

various subprocesses. The working memories referred to within

each single routine are automatically kept entirely separate

from all others. Thus there is no need to worry about destroy

ing valuable information relevant to other processes. There

is an unlimited number of working memories available within

any routine; hence, there is no necessity for involved information-

shuffling to get things into place where they can be worked on.

On the other hand, once a routine has been completely computed,

there is no way of referring to the information in its working

memories from other routines. All the results of the computa

tion that are wanted permanently must be put back in Storage

Memory.

LL: Instructions. In order to discuss the level of detail

at which instructions are defined, we will consider an example

of each of the three types of Instructions mentioned earlier.

The example of a computational instruction is one concerned

with the description of logic expressions. We wish to deter-

P-850
-25-

mine the number of variable places In an expression. Supposet

we had

A: p

Then P, the number of places where variables appear, Is three.

There is a way for numbers like P to be associated with a

working memory. Thus, the computational operation needed is:

Add 1 to the P associated with working memory x .

Formally we may write:

OPERATION LEFT RIGHT

NAP 1 x.

Here N stands for computational instruction (Numerical), A for
add, and both the amount to be added (l) and the working memory
(x) are given in the reference places. The computational
instructions are defined at about the same level of detail as
in machine code, which is about the level at which the user
must think about his problem.

An example of a control instruction is one that discrim

inates whether an element of a logic expression is a variable

or not. As was mentioned earlier, all conditionals in this

language are made by a transfer of control to some other in

struction in the routine. However, instead of referring to an

instruction by memory address, as is done in machine code,

arbitrary names are given to those instruction locations to

which it is necessary to refer (normally referred to as symbolic

coding). Thus we have r

P-850
-26-

If the element in working memory x is not a variable,

transfer control to instruction J.

Stated formally:

OPERATION LEFT RIGHT

TV x J.
»

Here T is for test and V is for variable. Such a decision is

again at a level of detail that is meaningful to the user.

This is in contradistinction to machine codes that admit as

conditions for transfer only whether a particular number is

positive, negative, or zero.

As an example of procedural instructions, we will give a

pair that work together to run through a repetitive operation

a number of times and then stop the process. This is a very

common occurrence in all computing and is usually called

looping, cycling, or iterating. In LT, iteration is required

when the same processing must be done on all the elements of

a logic expression. One instruction, PEF, is used to start

the process off, and the other, FEN, is used to recycle it

and stop it when through. The Instructions assume the elements

are in some linear order in the Storage Memory, which is always

the case. For the first instruction we have:

Find the first element of the logic expression

indicated in working memory x and put it in

working memory y»

Formally:

OPERATION LEFT RIGHT

FEF x y.

P-850
-27-

For the other instruction, we have:

Find the element that is next to the element in working

memory x and put it in x (obliterating the old ele
ment). Transfer control back to instruction J, unless
there are no more elements, in which case continue

control in sequence.

Formally:

OPERATION LEFT RICJHT

FEN x J.

Here the front F stands for "Find'1 , the E for "Element", the
rear N for "Next 11 and rear F for "First". Again, the procedure
is formulated at the level at which the user naturally thinks
about it, whereas with machine code all the details have to be
programmed.

LL; A Sample Routine. An example of the use of the
language might make the previous instructions a little clearer
and tie things together. Consider the computation of JP, the
number of variable places. This computation occurs often
enough to make an instruction desirable. We define the new
instruction as:

Count the number of variable places in the expression
indicated in working memory x and put the number in
the associated]?.

Formally, we define:

OPERATION LEFT RIGHT

NP x.f

To find JP we need to examine every element in the logic expression,

P-850
-28-

decide If It is a variable and, if so, count one for it. We
wish to do the'counting in JP, since that is where the final

* answer must be. The program follows:

LOCN OPERATION LEFT RIGHT

J
K

NP

PEP
TV
NAP
PEN

X

X
yi
y

y
K
X
J.

The PEP and PEN set up the search through the logic expression
indicated in working memory x. TV asks each element in turn
whether it is a variable. If it is, NAP counts 1 in the jP of
working memory x. Then PEN gets another element and sends
control back to TV which starts the cycle over again. If an
element is not a variable, TV Just skips control around NAP
to PEN, thus avoiding the count. Finally, when all elements
have been counted, PEN sends control on, and NP has been
accomplished.

LL; Conclusion. This completes the description of the
language used for LT. LT has been completely coded in its terms.
However, nothing has been said about how to code such languages
for digital computers. As was stated earlier, the language
is fundamentally similar to a number of pseudo-codes which
have been coded for computers and are in use. We have not
coded the exact language described here, although we are

*This is a simplified program for expositional purposes. Several important details have been glossed over, such as how the defining routine "knows" what x is, since NP may be used in a number of different routines.

-29-

currently working on one of
this general variety. Thus, for

instance, it is not. possible yet to ma
ke any statements about

the price in computing power
 that must be paid to use la

nguages

like this for specifying com
plex systems.

Our purpose in exhibiting th
e language in so much detail

has been to show that the br
idge exists between the comp

lex

processes talked of earlier
in the paper and the compute

rs.

The essential contribution o
f this language is in freein

g of

the user from the detailed p
lanning of the information f

lows

Involved in executing the pr
ogram.

V. LEARNING

It remains to consider learn
ing as it relates to the

complex processes we have be
en discussing. We can do this

rather briefly, since our main point is that
 learning is not

at all different from what w
e have talked of so far. Put

differently, we already have
 all the component processes; it

only remains to combine thes
e to obtain "learning". Further,

systems that learn will not
look very different from sys

tems

like LT.

Learning consists only in th
is: that some processes within

the total system have as the
ir output the structure or o

perating

conditions of other processe
s. For then the same system pre

sented with the same externa
l environment will behave di

ffer

ently a second time than it
did the first. This is about all

that learning comes to,-exce
pt that one may wish to limi

t the

term to "improvements" -- an ambiguous restriction
at best.

P-850
-30-

Sufficiently complex processes can hardly avoid learning and

adapting.

Let us make this point a little more concrete by describ-
 *

ing some current work aimed at putting learning programs on

computers. Here again there have been some explorations of
*

simple processes. In these, the performance system (the

processes that accomplish whatever the system is supposed to

do) has a number of numerical parameters. Feedbacks are pro

grammed that modify these parameters as a function of the

discrepancy between performance and a criterion. Thus the

system gradually learns its way to perfect performance.

In the last two years, however, an attempt has been made

by Oliver Selfridge and Gerald Dinneen of the Lincoln

Laboratories of MIT to explore learning as a much more complex

process. Since a fairly good description of their work exists
*«

in the literature, we will not go into much detail. However,

a brief sketch will show both the nature of their investiga

tions and the similarity between their machine which is a

learning machine -- and LT which is primarily a pure

performance machine.

Because the task of their machine is the recognition of

visual patterns, we will call it VPR. VPR is presented, from

*A. G. Oettinger, "Simple learning by a digital computer",
Proceedings of the Association for Computing Machinery, Toronto,
Ont. September T552

9

**0. G. Selfridge, "Pattern recognition and modern
computers", and G. P. Dinneen, "Programming pattern recognition"
both in Proceedings of the 1955 Western Joint Computer
Conference, Los Angeles, Calif. I.R.fi., March 1955

P-850
-31-

outside, with a two-dimensional field -- a 90 x 90 square of

black or white dots on which patterns may be created with

the black dots. Selfridge and Dinneen have worked with A's,

O's, triangles, and squares, etc. VPR has a performance

system made up of a number of processes that can recognize a

pattern that is, can answer whether a given field is A or

not.

At a sufficiently gross level, the performance system is

quite simple, as shown in the figure:

Visual
Field

CHARACTERISTICS DECISION
(A or
not A)

A number of characteristics of the visual field are computed. A

"characteristic" is a computer routine that we will explain in

more detail later. These computations yield numbers -- the

values that characterize this particular visual field. These

are compared with norms that are associated with the specific

pattern under question, say an A. If there is sufficient agree

ment between the values characterizing this field and the norms

characterizing the pattern an affirmative decision is reached

by VPR.

There are four things that turn VPR into a learning machine

P-850
-32-

and into a complex process in the sense in which we have been

using that term. First, there is a language for characteristics.

Although it is very rudimentary, this is a true language. It

has basic terms three symbols, I, II, and III -- which

stand for elementary operations. These transform a 90 x 90

visual field into a modified 90 x 90 visual field. The basic

terms may be combined into expressions that symbolize character

istics. The expression for a characteristic is a sequence of

transformations, say; I II II III I III III. Translated into

a computation, this means: take the original visual field,

transform it with I, then II, then II again, etc.j when this

has been done, count the number of black spots left and that

number is the value of the characteristic for that visual field.

(The counting operation is not as irrelevant as it sounds

since the transformations are such as will generally reduce

the total number of black spots in any field. For more details

of thfc nature of the operation the reader is referred to the

papers cited.)

The second thing VPR can do follows closely upon the

first. It can create new characteristics for itself. Its

learning problem may now be stated. It has available a space

of characteristics formed from all possible sequences of three
10 4 symbols (say 3 - 6x10 possible sequences of length 10).

Its performance system consists of some very small number of

these characteristics (say 20) which should discriminate A's

from non-A's. Its problem is to search the space in order to

discover a particular set of twenty that provides good discrim-

P-850
-33-

ination. Notice that the access to this space is through

generation; no very large set of possibilities could ever be

held extensively in memory.

The third thing VPR has is a learning loop for eliminat

ing a poor characteristic once it has been generated and VPR
*

has decided to give it a try. This learning loop goes out

side the machine. VPR can learn about patterns only extensively,

by being presented with a variety of examples (particular

visual fields which it is told are A f s) and inducing the pattern.

VPR achieves this separation of good from poor characteristics

by accumulating the experience from a number of visual fields

on each character it tries. This includes information from

outside on whether each pattern was an A or not. If its sum

mary of experience reveals a characteristic of good discrim

inating power -- giving always a certain value when an A^ occurs,

always a different value when other patterns occur -- then the

characteristic is retained. Otherwise, the characteristic is

eventually discarded in favor of another. The value of a

characteristic that typically occurs when an ^ is presented

is made the norm for that characteristic.

The fourth and final thing that VPR has is a second learn

ing loop for the generation of new characteristics. Since VPR,

like all complex processes, operates under a severe effort

* This is the classic learning loop of stimulus-response
learning theory in psychology - » the selection of a response
from a set of responses on the basis of externally applied
reinforcement.

P-850
-34-

constraint, the whole function of the first loop is to remove

worthless processes that absorb good computing effort. This

makes way for new characteristics to be tried. But first,

such characteristics must be found; that is, selected from the

large space of all possible characteristics. The process in

VPR that generates new characteristics does so as a function

of the accumulated experience-with the characteristics already

generated. The philosophy of the process -- if we may use the

term -- is to choose new characteristics similar to those old

ones that were successful, yet to allow an occasional "wild"

choice. The program achieves this by building up new sequences

of elementary operations based on the same conditional prob

abilities as occur empirically in the set of good character

istics «-- already found and tested. Again, the reader is

referred to the original papers for details.

This completes the description of VPR. The program has

been coded for the Memory Test Computer at MIT and some explora

tion done. It is not claimed either by Selfridge and Dinneen

or by us -- that this machine is a good pattern recognizer

or that its learning is at all adequate either qualitatively

or in terms of rate of convergence to an adequate set of

characteristics. VPR has shown a little learning, although

it has a tendency to fixate in one kind of characteristic and

improve it to the exclusion of others.

We think that Just how good VPR is is unimportant. As

with LT, we have here a complex process made up of many quite

different subprocesses, all of which are quite elementary.

P-850
-35-

These are organized together in a highly conditional and

interactive way. VPR does do something. More processes could

be added at anyone f s whim to sophisticate the process: a

learning loop in the overall criterion, more elaborate dis

criminations of the experiences with characteristics, etc.

The value of both LT and VPR -- meaning precisely the two

machines so far programmed -- is to show that we are in the

right general area for fruitful exploration.

<

VI. CONCLUSION AND SUMMARY

f

This paper has attempted to convey a picture of an area

of current scientific activity that we have called complex

information processing. We have not aimed at a survey of all
*

work that is pertinent. Rather, our objective has been to

characterize the field, and to provide a specific example of

a complex information processing system.

In the first section we showed that the attempt to perform

difficult tasks (e.g. playing chess) with a simple Information

processing system leads to exorbitant demands for computing

power. We asserted that such tasks can be performed with much

smaller requirements of computer speed, time, and memory by

use of a complex process --a process made up of a very large

*The most serious omissions are the work on automata,
which includes the work on abstract nerve nets, and the work
on mechanical translation of languages. See C.E. Shannon and
J. McCarthy (eds.), Automata Studies, Annals of Mathematics
Studies, #3^, Princeton, 1956; and W.N.Locke and A.D.Booth (eds.),
Machine Translation of Languages, Wiley, 1955- Attention should
also be called to the work of W.R.Ashby. See Design for a Brain, Wiley, 1952. ~

P-850
-36-

number of subprocesses, the elementary component processes
being simple but combined in complex patterns, and the whole
process constituting a strategy (each step being highly
conditional on what went before) rather than a simple linear
sequence.

Next, a machine, LT, was described that employs a com
plex process to discover proofs for theorems in elementary
symbolic logic. The machine consists of a hierarchy of routines
a master routine, some proof methods, and subroutines that are
employed to carry out the proofs. These routines constitute^
heuristic) that permits the machine to discover appropriate V^^^nj»njif»W*'*'c*' ***"'"*'2ilfj^

steps in a proof-chain with far less random search than if it
proceeded to construct and examine all chains permitted by the
rules of logic.

To put the logic theorist, LT, on a computer, it is highly
advantageous and perhaps necessary to work through an
Intermediate language (LL), of the kind now generally referred
to as an interpretive language. The program for LT is written
in the language LL, and then LL is coded for a computer.
Important characteristics for a language to be used in specify
ing complex processes include: (l) relative freedom from refer
ence to the absolute addresses where Information is located;
(2) adequate working space so that information does not have
to be rearranged repeatedly in the memory; (3) freedom to
define new concepts whenever they appear to be useful; (4) opera
tions defined at a level of "grossness" that is natural for
thinking about complex processes. These characteristics are

P-850
-37-

lllustrated by the structure of LL.

The logic theorist is primarily a performance, rather

than learning, jhachine. In a final section we indicated by

reference to a machine, VPR, developed by Selfridge and

Dlnneen, how learning can be described as a complex Information

process that is not fundamentally different in kind from the

process of LT.

