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Experts solve complex problems con­ 
siderably faster and more accurately 
than novices do. Those differences are 
commonplaces of everyday experience, 
yet only recently have we begun to un­ 
derstand what the expert does diiFcrently 
from the novice to account for this supe­ 
riority.

The magic of words is such that, when
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we are unable to explain a phenomenon, 
we sometimes find a name for it as 
Moliere's physician "explained" the ef­ 
fects of opium by its dormitive property. 
So, we "explain" superior problem- 
solving skill by calling it "talent," "in­ 
tuition," "judgment," and "imagina­ 
tion." Behind such words, however, 
there usually lies a reality we must dis­

cover if we are to understand expert per­ 
formance.

One label often applied to persons 
skillful in solving physics and engineer­ 
ing problems is "physical intuition." A 
person with good physical intuition can 
often solve difficult problems rapidly and 
without much conscious deliberation 
about a plan of attack. It just "occurs to 
him (or her)" that applying the principle 
of conservation of momentum will cause 
the answer to fall out, or that a term in 
kinetic energy can be ignored because it 
will be small in comparison witn other 
terms in an equation. But admitting the 
reality of physical intuition is simply the 
prelude to demanding an explanation for 
it. How does it operate, and how can it 
be acquired?

In this article, we undertake to de­ 
scribe what is known about human ex-
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pert performance in domains such as 
physics. Since some of the evidence on 
which our characterization is based 
comes from research on other tasks no­ 
tably chess playing and solving word 
problems in algebra we will have some­ 
thing to say about these too. Expertness

sessing only the mechanisms incorporat­ 
ed in the programs can account for the 
main features of the (expert or novice) 
problem-solving behavior we have ob­ 
served. Thus, although the theories may 
commend themselves to common sense 
as plausible, their primary claim to ac-

Summary. Although a sizable body of knowledge is prerequisite to expert skill, that 
knowledge must be indexed by large numbers of patterns that, on recognition, guide 
the expert in a fraction of a second to relevant parts of the knowledge store. The 
knowledge forms complex schemata that can guide a problem's interpretation and 
solution and that constitute a large part of what we call physical intuition.

probably has much the same foundations 
wherever encountered. As in genetics, 
we leam much about all organisms by 
studying a few intensively. Chess, al­ 
gebra, and physics are serving as the 
Drosophila, Neurospora, and Esche- 
richia coli of research on human cogni­ 
tive skills.

During the past decade, substantial 
progress has been made in exploring and 
explaining the human information pro­ 
cesses that underlie expert performance. 
A central problem in this research is to 
obtain a temporal density in the records 
of the problem-solving behavior com­ 
mensurate with the speed of the under­ 
lying cognitive process. A major data- 
gathering technique has been to record 
verbal accounts by experts and novices 
as they think aloud during the solution of 
problems, and to analyze them for simi­ 
larities and differences. In some studies, 
videotapes or records of eye movements 
have been substituted for these thinking- 
aloud protocols.

At best, however, we obtain in these 
ways observations every second or half 
second, whereas the critical human in­ 
formation processes that we must under­ 
stand appear to be only a few tens or 
hundreds of milliseconds long. Consid­ 
erable induction is therefore required to 
extract and test explanations of the pro­ 
cess with data of these kinds. It is none­ 
theless possible to develop and test theo­ 
ries, in the form of programs for comput­ 
ers, that simulate important aspects of 
human performance and provide insight 
into information processing during prob­ 
lem solving.

Our account is based primarily on data 
from thinking-aloud protocols and com­ 
puter simulations developed from them. 
Although we will not emphasize the 
technical details of the computer pro­ 
grams, their existence and their ability to 
simulate human behavior demonstrate 
that our explanations are operational and 
do not depend on vague, mentalislic con­ 
cepts. We have shown that a system pos-
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ceptance rests on their solid foundation 
in data and computer simulation.

We shall consider a number of com­ 
ponents of the expert's skill perceptual 
knowledge, recognition capabilities, and 
the way in which information is repre­ 
sented in long-term memory. Then we 
will compare and contrast the knowledge 
and skills of experts and novices in ele­ 
mentary college physics. We will con­ 
clude with a brief discussion of process­ 
es for acquiring expert skills.

Perceptual Knowledge and the Expert

The most obvious difference between 
expert and novice is that the expert 
knows a great many things the novice 
does not know and can rapidly evoke the 
particular items relevant to the problem 
at hand. Two important tasks are to as­ 
sess the quantity of the expert's knowl­ 
edge and to determine the form in which 
it is held in long-term memory. To draw 
an analogy between the expert's knowl­ 
edge and the contents of an encyclopedia 
or other reference book, we must be con­ 
cerned not only with the book's contents 
but also with the access routes to those 
contents, that is, its index. These topics 
have been studied most intensively in 
chess playing.

Much chess research, which began as 
a study of the apparently extraordinary 
visual imagery of strong chess players, 
has become research on the chess ex­ 
pert's knowledge and the way in which 
this knowledge enables a rapid and accu­ 
rate response. This capacity is usually 
called "intuition," just as the physicist's 
rapid response to questions in physics is 
called physical intuition.

The phenomena of expert chess per­ 
ception and intuition are illustrated by a 
simple experiment (/). The subject is 
shown a position from an actual chess 
game with about 25 pieces on the board 
for 5 to 10 seconds, and is then required 
to reproduce the position from memory.

A master or grand master can perform 
this task with about 90 percent accuracy; 
a weaker player will do well to replace 
five or six pieces correctly on the board. 
Next, the experiment is repeated with 25 
pieces placed at random on the board in­ 
stead of in an arrangement from a game. 
The expert's performance now falls to 
the level of the novice. The experiment 
demonstrates that these perceptual skills 
stem from no innate general superiority 
of memory, or capacity to visualize, for 
the superiority is limited strictly to the 
expert's area of competence only typi­ 
cal situations are retained.

The principal explanation for these 
memory phenomena is the "chunking" 
of familiar stimuli (2). (A chunk is any 
stimulus that has become familiar from 
previous repeated exposure and hence is 
recognizable as a single unit.) Brief ex­ 
posure of a stimulus allows no time to 
fixate it in long-term memory; it must 
be retained in short-term memory. But 
short-term memory has a capacity of on­ 
ly about four to six items, or chunks. For 
a chess novice, each piece or perhaps 
pair of pieces on a chessboard is a dis­ 
tinct chunk; hence the locations of only 
about half a dozen pieces can be held in 
short-term memory during the recon­ 
struction of the board.~For a master, fa­ 
miliar configurations of two to five or six 
pieces are recognized as distinct chunks, 
and at least four of these chunks can be 
retained in short-term memory during re­ 
construction. A random board has few 
familiar configurations, hence the master 
is reduced to trying to remember it piece 
by piece, like the novice.

If this is the mechanism that permits 
the master to perform the memory task, 
the statistics of his performance give us a 
measure of the amount of perceptual 
knowledge, measured in chunks or famil­ 
iar patterns, held in long-term memory. 
Estimates arrived at by several routes in­ 
dicate that a grand master or master can 
recognize perhaps 50,000 such pat­ 
terns roughly the number of words and 
idioms in the vocabulary of a college- 
educated person (J).

This large set of perceptual patterns 
serves as an index, or access route, not 
only to the expert's factual knowledge 
but also to his or her information about 
actions and strategies. Thus, recognition 
of a pattern often evokes from memory 
stored information about actions and 
strategies that may be appropriate in 
contexts in which the pattern is present. 
A chess master recognizing that one of 
the files on the board is open free of 
pieces realizes immediately that one of 
his rooks might be moved to the foot of 
the file. A feature of the board, noted
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consciously or unconsciously, produces 
in a fraction of a second the intuition that 
a certain action may be appropriate.

The indexed memory, according to 
this hypothesis, is organized as a large 
set of productions, each production con­ 
sisting of a condition and an action (4, 5), 
Whenever the stimulus to which a per­ 
son is attending satisfies the conditions 
of one of his productions (that is, con­ 
tains a recognizable pattern), the action 
is immediately evoked (and possibly exe­ 
cuted). The actions are stored in memo­ 
ry, and the conditions are the index by 
means of which memory is accessed.

The condition-action pairs forming 
productions are the more sophisticated 
counterparts of the stimulus-response 
pairs of classical behaviorist psychology. 
Production systems have been con­ 
structed that simulate the chess recogni­ 
tion phenomena just described, and the 
models of physics problem solving con­ 
sidered in this paper are also production 
systems.

Representation

Chess research suggests a general rec­ 
ognition mechanism to explain the in-' 
tuitions of experts in all fields. However, 
it leaves open many other questions 
about expert skills, including how infor­ 
mation (in addition to the condition-ac­ 
tion units) is represented in long-term 
memory. The "action" triggered by a 
production may simply be the recovery 
from memory of knowledge that includes 
internal representations of * information 
from the outside world. That is, the ac­ 
tion may be "Recall X," where A!" is a 
memory structure representing external 
information. How can we characterize 
these memory structures?

Since it is not easy to describe memo­ 
ry representations literally, we often re­ 
sort to metaphors that may be mis­ 
leading. For example, virtually everyone 
can form what we call a "mental pic­ 
ture" of a square. But this does not mean 
that somewhere in the brain there is a 
two-dimensional region describable in 
terms of points, edges, and surfaces, iso- 
morphic to the square. It is hard to imag­ 
ine a mechanism for manipulating (for 
example, rotating) or making inferences 
about such a physical structure in the 
brain.

More likely is the proposal, supported 
by gradually accumulating evidence, that 
human memory consists of a complex or­ 
ganization of nodes connected by links, 
called a "list structure" (4).

In a list structure, objects and com­ 
ponents of objects correspond to nodes,
20 JUNE 1980

A:CAB

Fig. 1. Node-link representa­ 
tion of the square, ABCD. 
Nodes represent corners (/*), 
edges (£), angles (A), and the 
surface (S). Links connect 
corners with edges (I), edges 
with the surface (2), angles 
with edges (3), and angles with 
corners (4). Descriptors can be 
linked to nodes, as shown for 
the length (L) of edge AD, and 
the magnitude (M) of angle 
ABC.

;A-.ABC

A:ADC«

and relations between objects corre­ 
spond to links. As an example, Fig. 1 
shows how a square might be represent­ 
ed in memory by (i) a set of nodes denot­ 
ing points, edges, and a surface and (ii) 
links relating edges to their endpoints, 
the surface to its boundary edges, and so 
on. Descriptive information such as the 
lengths of edges and the magnitudes of 
angles can also be incorporated in the 
node-link structure. Although it has not 
been shown conclusively that human 
long-term memory can be represented 
formally by such node-link structures, a 
great deal of evidence (6) points in this 
direction and almost all computer simu­ 
lations of cognition use list structures to­ 
gether with productions that can act on 
these list structures as their fundamental 
means for representing memory. These 
formalisms capture the associative prop­ 
erties of long-term memory.

Before we show how this kind of 
structure can be used to represent phys­ 
ics problems, it is necessary to discuss 
the way the natural language statement 
of a problem can be transformed into 
such an internal representation. A criti­ 
cal component in the skill of solving 
physics problems is the ability to trans­ 
late verbal statements into the language 
of mathematics, that is, into equations. 
This skill is first acquired with algebra 
problems such as

A board was sawed into two pieces. One 
piece was one-third as long as the whole 
board. It was exceeded in length by the sec­ 
ond piece by 4 feet. How long was the board 
before it was cut?

It is easy to see how the translation 
might proceed. A variable name (.v) is as­ 
signed to "length of the board." The first 
piece mentioned then becomes .r/3 and 
the second piece (.v/3 + 4), whereupon 
the problem states that .r/3 + 
U/3 + 4) = jc. In 1968, STUDENT, an 
early computer program capable of car­ 
rying out such translations, was written

•A:DCB

(7). The program was mainly syntactic; it 
analyzed the grammatical structure of 
the verbal problem, supplied arbitrary 
names for quantities mentioned in noun 
phrases, and translated certain verb 
forms into algebraic operators and rela­ 
tions such as + and =. STUDENT'S se­ 
mantic knowledge (knowledge of the 
meaning of the words) was extremely 
limited, extending mainly to the vocabu­ 
lary of algebra. To deal with the problem 
of the board, it did not have to know 
what a board was, nor sawing.

Human students sometimes, but by no 
means always, behave as STUDENT 
does (8). One way in which evidence has 
been gathered is with the help of prob­ 
lems like the example given above but 
with a slight modification. Suppose we 
change the second sentence of the prob­ 
lem to "One piece was two-thirds as long 

 as the whole board." STUDENT will 
have no trouble with the new problem, 
translating it, by the same processes as 
were used previously, into 2r/3 + (2x13 + 
4) =jc.

Some human students do exactly what 
STUDENT does, but others write in­ 
stead: 2x13 + (2x13 - 4) = jc. Careless 
readers, we may say. Clearly the prob­ 
lem states that the second piece exceeds 
the first by 4 feet. But a third group of 
human students, when presented with 
the problem ask, "Isn't there a con­ 
tradiction?" Of course they are using the 
term "contradiction" loosely. There is 
nothing contradictory about either of the 
equations written above. But if we solve 
the first equation, we find that the board 
is -12 feet long, whereas if we solve the 
second, which is an incorrect rendering 
of the problem statement, we find that it 
is +12 feet long. The contradiction, then, 
for the students who noticed it, was a 
conflict between the literal interpretation 
of the problem statement and their 
knowledge that boards (in the physical 
world) do not have negative lengths.
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Thus some students processed the 
problem syntactically, writing down 
equations inconsistent with any semantic 
knowledge of how sawing boards works. 
Others used this semantic knowledge, ei­ 
ther to write reasonable (although syn­ 
tactically incorrect) equations, or to note 
a contradiction between the problem 
syntax am- their own semantic knowl­ 
edge.

If the semantics of physical objects is 
important to understanding algebra word 
problems, it is even more crucial to un­ 
derstanding problems in mechanics. Fig­ 
ure 2 (generated on a cathode-ray tube 
by a computer program) illustrates a typ­ 
ical statics problem in a college physics 
text. The components out of which this 
problem is constructed are, in their most 
concrete form, objects (ladders, floors) 
having specified properties (weight, ri­ 
gidity) and relations (the ladder stands 
on the floor and its foot presses against 
the wall). Thus, at the level of abstrac­ 
tion appropriate to the algebraic trans­ 
lation of the problem, the ladder is sim­ 
ply a lever, and the point of contact be­ 
tween ladder and wall is a point of equi­ 
librium for certain forces.

Novak has constructed a simulation 
program, ISAAC (9, 10), that interprets 
statics problems written in English. It 
generates representations of the problem 
in computer memory, derives appropri­ 
ate equations from the representations, 
and solves the problems. ISAAC pro­ 
vides both a model of the processes hu­ 
man subjects use to solve the problems 
and a theory of how physical representa­ 
tions enter into these processes.

ISAAC can analyze natural language 
in a way analogous to, but more sophisti­ 
cated than, the English language pro­ 
cessing components of STUDENT. But 
the critical component of ISAAC is a set 
of schemata, stored in its long-term 
memory, that describes archetypal levers, 
fulcrums, ropes, frictionless surfaces, 
and the like. These schemata constitute 
ISAAC'S semantic knowledge of the 
workings of idealized physical objects. 
Each schema is a list structure contain­ 
ing lists of descriptors that characterize 
it. Thus, the schema for "lever" refers 
to such properties as its length and such 
components as its fulcrum.

When ISAAC recognizes an object 
mentioned in the problem text as an in­ 
stance of one of its schemata (it can rec­ 
ognize, for instance, that a ladder is a 
lever), it constructs a copy of the 
schema,, associating with it the specific 
properties of the object in the problem, 
such as the length of the ladder and the 
angle it makes with the wall. It then gen­ 
erates nodes to link the several objects at
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their points of contact and thus gradually 
builds up in memory a representation of 
the problem situation—a node-link struc­ 
ture that is more or less isomorphic with 
a diagram one might draw of the situa­ 
tion. In fact, ISAAC'S problem represen­ 
tation contains sufficient information 
that a simple computer program can dis­ 
play on the screen of a cathode-ray tube 
a picture of the problem (Fig. 2). The pic­ 
torial part of that figure was in fact gener­ 
ated by ISAAC from the problem text 
displayed below it.

Thus ISAAC does not translate syn­ 
tactically from the natural language 
problem text directly into algebraic 
equations, but uses its semantic knowl­ 
edge to construct a physical representa­ 
tion—a node-link abstract diagram of the 
problem—to guide its generation of 
equations. The creation of the physical 
representation identifies the points at 
which forces must be equilibrated and 
provides a scheme of connections so that 
the forces themselves can be traced and 
identified. It is hard to see how these in­ 
ferences could be made without the help 
of the representation or something 
equivalent to it.

ISAAC gives us a very specific notion, 
both concrete and formal, of what the 
expert's internal representation of phys­ 
ics problems may be like and of the sche­ 
mata that provide the source of his phys­ 
ical intuition. Observations of experts 
solving problems in kinetics (//) begin to 
provide us. with empirical evidence for 
the reality of representational schemata 
of this general kind and with a basis for 
modeling them in greater detail.

Strategies in a Simple Domain: 

Kinematics

Empirical evidence for some of the dif­ 
ferences between expert and novice 
strategies can be found in problem-solv­ 
ing accounts from simple problem situa­ 
tions in physics (12). An early chapter of 
a typical elementary physics textbook is 
devoted to kinematics—specifically, mo­ 
tion under uniform acceleration or decel­ 
eration. Measured in terms of the num­ 
ber of new concepts introduced or the 
number of equations, the content of such 
a chapter is not large. There are about 11 
formulas, some of which are redundant, 
that express the relations among the 
various quantities involved [for exam­ 
ple, v = v ( , + <iT, \~ = '/:(»•„ -I- >•} and 
5 = \'T. where S is distance, f is average 
velocity, T is time, r is terminal velocity, 
v,, is velocity at the origin, and a is accel­ 
eration].

Mastery of the entire chapter requires

the student to learn only about ten 
"things"—concepts and laws. If this 
chapter is typical of the whole text, then 
a 1-year physics course calls for the mas­ 
tery of about 300 "things." Again, if this 
course is typical of high school or college 
courses, a student carrying four courses 
might be expected, during a school year, 
to learn 1000 to 2000 "things." Learning 
at this rate, a student might acquire, over 
a decade or so, the 50,000 perceptual 
chunks that the chess master is thought 
to acquire over a comparable interval.

What is involved in expertness in solv­ 
ing kinematics problems? Several dif­ 
ferences in solution process were re­ 
vealed by a comparison of expert and 
novice solutions to typical textbook kin­ 
ematics problems. The expert had strong 
mathematical skills and extensive expe­ 
rience in solving problems in mechanics; 
the novice had fair skill in algebra but 
had only recently studied the kinematics 
chapter and was doing problems such as 
the following for the first time.

A bullet leaves the muzzle of a gun at a 
speed of 400 m/sec. The length of the gun bar­ 
rel is 0.5 m. Assuming that the bullet is uni­ 
formly accelerated, what is the average speed 
within the barrel?

The most obvious difference between the 
subjects was that the expert solved the 
problems in less than one-quarter of the 
time required by the novice and with 
fewer errors.

A second difference, verified from 
their worksheets and the thinking-aloud 
protocols they produced, was that the 
novice solved most of the problems by 
working backward from the unknown 
problem solution to the given quantities, 
while the expert usually worked forward 
from the givens to the desired quantities. 
This was surprising, since working back­ 
ward is usually thought to be a more so­ 
phisticated strategy than working for­ 
ward. But experts work forward only on 
easy problems, where experience as­ 
sures them that, without any particular 
planning, solving all possible equations 
will lead them quickly to a full under­ 
standing of the situation, including find­ 
ing the particular quantity they are asked 
to solve for. They thus solve the problem 
by accumulating knowledge about the 
quantities that were initially unknown. 
Novices, having little experience with 
kinematics, seem to require goals and 
subgoals to direct their search. The man­ 
agement of goals and subgoals—deciding 
periodically what to do next—may occu­ 
py considerable time and place a sub­ 
stantial burden on limited short-term 
memory.

The solution paths followed by the ex­ 
pert and the novice can be simulated by
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production systems representing the 
working-forward and working-backward 
strategies, respectively. In these produc­ 
tion systems, the action part of each pro­ 
duction is one of the kinematic equa­ 
tions; the condition part is a list of vari­ 
ables in the equation. The two produc­ 
tion systems differ in only one important 
respect. In the expert system, the rule of 
action is: If you know the values of all 
the independent variables in any equa­ 
tion (condition), try to solve for the de­ 
pendent variable (action). In the novice 
system the rule of action is: If the depen­ 
dent variable in an equation is the de­ 
sired quantity (condition), try to solve 
the equation (action); if the values of 
some of the independent variables are 
not known, create a goal to find the val­ 
ues of these variables.

A third difference between expert and 
novice is that the latter, in her accounts, 
mentioned each equation she was about 
to use, then substituted into it the values 
of the independent variables. The expert 
usually mentioned aloud only the numer­ 
ical result of the substitution, not the 
original literal equation. This may be 
merely a difference in verbalization: The 
expert, working much more rapidly than 
the novice, simply did not have time to 
verbalize everything. Another inter­ 
pretation seems more likely, however. 
The expert apparently had stored direct­ 
ly (perhaps as a production) an entire 
procedure for obtaining a desired value 
from related known values; he then ap­ 
plied this procedure and stated only the 
result he obtained. The novice, in con­ 
trast, had stored the knowledge that par­ 
ticular equations can be used to obtain 
values of certain variables. Hence, the 
verbalized result of her recognition was 
the equation itself. Substituting values 
for variables and solving the equation 
were treated as distinct, separately ver­ 
balized steps.

At each step in the path, the novice 
had to ask herself, "What do I do next?" 
She obtained the answer partly by look­ 
ing at the equations she had written and 
determining what information had to be 
developed to fit them. In addition, un­ 
achieved goals held in short-term memo­ 
ry helped identify relevant actions.

Although our knowledge of the control 
structure of the novice's program is in­ 
complete, there is ample evidence that 
frequent tests had to be performed to de­ 
termine the sequence of actions and that 
the testing process consumed consid­ 
erable time. The expert, on the other 
hand, had "automated" many se­ 
quences, so that they could be curried 
out without the need for recurrent test­ 
ing. For him identifying the right equa-
20 JUNE 1980
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(THE FOOT OF fl LflODER RESTS RGfllNST fl 
VERTICfiL WfiLL flNO ON A HORlZONTflL FLOOR)(THE 
TOP OF THE LflDDER IS SUPPORTED FROM THE WflLL 
BT P HORlZONTflL ROPE 30 FT LONG)fTHE LflDDER 
IS 50 FT LONG . WEIGHS 100 LB WITH ITS CENTER 
OF GRAVITY 20 FT FROM THE FOOT . flND fl ISO 
LB MAN IS 10 FT FROM THE TOP)(DETERMINE THE 
TENSION IN THE ROPE)

ANSWER: 120.00000 LB

Fig. 2. Computer-drawn problem statement 
from (9).

tion, substituting the values of the inde­ 
pendent variables in it, and solving for 
the dependent variable were carried 
through to the end as a single step, with­ 
out reference to goals or cueing from 
symbols written on the worksheet.

Computer science provides us with 
one clue to the cause of this difference 
between the step-by-step procedure of 
the novice and the longer leaps of the ex­ 
pert. Computer instructions may either 
be executed interpretively or be com­ 
piled. In interpretive execution, a con­ 
trol system, the interpreter, orders the 
execution of each successive step, test­ 
ing information in memory to determine 
what step is called for. Compiling the 
program eliminates many of these tests, 
welding whole sequences of program 
steps together into segments. Typically, 
a compiled program is executed about 
ten times as fast as the corresponding in­ 
terpreted program.

In at least one instance (13), compiling 
has been simulated for a human cogni­ 
tive process. A program called UNDER­ 
STAND interprets instructions for puz- 
zlelike problems written in English 
(much as STUDENT interprets algebra 
problems and ISAAC interprets lever 
problems). UNDERSTAND builds up 
representations of the problems in mem­ 
ory and generates programs to make le­ 
gal moves. The legal moves must be in­ 
terpreted appropriately to match them to 
the problem representation. Having con­ 
structed these components of the prob­ 
lem-solving system, UNDERSTAND is 
capable of compiling the legal move op­ 
erators, gaining a factor of about eight in 
their speed of execution.

The notion of compiling provides us 
with a hypothesis for why the expert can 
carry out a sequence of problem-solving 
steps in kinematics four times as fast as 
the novice can carry out almost the same 
steps. Although the production systems 
that simulate the two subjects are simi­ 
lar, we hypothesize that the novice exe­ 
cutes the productions interpretively, 
while the expert executes them in com­ 
piled form.

A fourth possible difference between 
expert and novice, may be indicated by 
some sketchy evidence from the think- 
ing-aloud protocols of the simple kine­ 
matics problems. The novice often 
seemed to use a process of direct syntac­ 
tic translation, much like that used by 
STUDENT. The expert, on the other 
hand, seemed to generate some sort of 
physical representation, in which accel­ 
erations produce velocities and veloci­ 
ties produce distances traveled. The ki­ 
nematics problems are so simple for the 
expert, however, that we found only 
rudimentary traces of his semantic pro­ 
cesses and his physical representation in 
the protocols. To obtain more informa­ 
tion about physical representations, we 
must turn to somewhat more complex 
problems.

Expert Performance in Dynamics

McDermott and Larkin (14) and Lar- 
kin (75) have built simulation programs 
for the behavior of a single expert solv­ 
ing problems in kinetics. These programs 
bypass the natural language translation 
step [which has been studied and simu­ 
lated by other investigators (7-9, 16)] 
and use as input an encoding of the pic­ 
ture of the problem to be solved. The 
simulations stipulate the main stages of 
solution, (i) If the problem statement is 
not accompanied by a picture, the expert 
will sketch one. (ii) Selecting tentatively 
a set of principles to use, the expert will 
construct an abstract problem represen­ 
tation containing physical entities (such 
as forces and energies) relevant to those 
principles. In sufficiently complex prob­ 
lems, this representation is often written 
explicitly (for example, the commonly 
used "free-body" diagram), (iii) Finally, 
the expert will rerepresent the problem 
as a set of equations.

The simulation program begins with 
step (i) already completed (the problem 
is presented to the system schematically) 
and carries out steps (ii) and (iii). Consid­ 
er the problem shown in Fig. 3 (17). Using 
node-link structures, the problem is rep­ 
resented in the McDermott-Larkin pro­ 
gram by schemata for block B, block A,
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B

Fig. 3. A simple mechanics problem (77). 
Block B weighs 160 pounds. The coefficient of 
static friction between the block and the table 
is 0.25. Find the maximum weight of block A 
for which the system will be in equilibrium.

the junction point of the strings, the an­ 
chor for the diagonal string, the contact 
between block B and the table, and the 
contacts corresponding to the three 
strings. Two of these structures are 
shown in Fig. 4.

In problems of the sort shown here, 
skilled physicists generally seem to use a 
different representation of the problem 
for each of the three main stages (the la­ 
beled sketch, the sketch containing 
physical entities, and the equations). Pic­ 
torial representation is convenient. 
Much of the difficulty with problems in 
mechanics lies in understanding the spa­ 
tial relations among the objects. More­ 
over, the pictures drawn can be highly 
stylized, abstracting away irrelevant in­ 
formation in the verbal problem state­ 
ment.

The expert also spends time construct­ 
ing the still more abstract representation, 
for at least three reasons: (i) to quickly 
determine whether the qualitative ap­ 
proach to the problem is appropriate, (ii) 
to identify the forces and energies at 
work and to represent them in a uniform 
way for all parts of the problem, and (iii) 
by decoupling the discovery of the forces 
or energies from the generation of equa­ 
tions, to reduce the amount of informa­ 
tion that must be attended to at any one 
time.

The problem-solving system that oper­ 
ates on these representations is a pro­ 
duction system. Each production en­ 
capsulates some small part of the ex­ 
pert's knowledge, and the condition side 
of each is constructed to evoke the 
knowledge at just those times when it 
will be relevant to the problem. With a 
few exceptions, one of the condition ele­ 
ments for each production is the descrip­ 
tion of a goal, so that the production will 
be executed only when that goal is ac-
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live. The set of productions that share 
the same goal condition constitute a 
method. The system at present has about 
40 methods, ranging in size from 3 or 4 
productions to 20 or 30. Organizing the 
system's knowledge in this way confines 
its attention to just that part of its knowl­ 
edge associated with the goals it has not 
yet achieved. The hierarchical arrange­ 
ment of the methods allows, knowledge 
relevant to many different methods to be 
associated with a very general method, 
toward the top of the hierarchy.

The recognize-act cycle characteristic 
of production systems makes the system 
continually responsive to the current 
state of the problem. Although methods 
impose a structure on production memo­ 
ry and some orderly sequence of atten­ 
tion from general to specific goals, indi­ 
vidual productions within a method are 
not evoked in any fixed sequence; the se­ 
quence is determined by the knowledge 
in short-term memory that indicates 
what is currently of interest. We hypoth­ 
esize that this is also the way the ex­ 
pert's attention and sequence of goals is 
controlled.

The simulation programs for describ­ 
ing expert performance and contrasting 
expert with novice performance in phys­ 
ics cast light on what the expert needs to 
know and on how knowledge is repre­ 
sented in memory, but they leave many 
unanswered questions. Only narrow do­ 
mains within physics have thus far been 
explored. We have mentioned kinemat­ 
ics and several kinds of simple problems 
in mechanics. Some work has been done 
on chemical engineering thermodynam­ 
ics (18) and some on electrical circuits 
(79), revealing problem-solving process­ 
es not unlike those we described.

Recent Developments

1) Interaction between the problem 
solver and external memory aids—the 
use of paper and pencil. The capacity of 
short-term memory (working memory) 
constitutes one of the most severe con­ 
straints on human problem solving. The 
capacity of short-term memory (prob­ 
ably about four familiar items, or 
"chunks") limits the ability of a chess­ 
player to reproduce a board position he 
has seen for a few seconds. The outputs 
and inputs to all conscious mental activi­ 
ties have to pass through short-term 
memory and be held there for a brief in­ 
terval. It is not clear whether the current 
task goals also have to be held in this 
same memory or whether there is some 
additional capacity for them elsewhere;

Name: Block B 

Type: Object 

Subtype: Block 

Mass: 160 

Motion None 

Contacts: 

Right: 1 String 

Down:. 2 Table

Name: Contact 2 

Type: Contact 

Subtype: Surface 

Objects: B, Table 

Quality: Rough 

Static friction: 0.25

Fig. 4. Some of the node-link structures de­ 
scribing the problem situation of Fig. 3.

but making the most generous allowance 
for control information, human problem 
solvers are almost certainly not able to 
retain more than twice that—about eight 
chunks—unless they take time (perhaps 
about 8 seconds per chunk) to fixate the 
information in long-term memory.

Paper and pencil provide an unlimited 
extension of the problem solver's work­ 
ing memory capacity, but at the cost of 
writing down the information (which can 
be done more rapidly than it can be 
memorized) and of gaining access to it 
when it is needed. To model human 
problem solving, it is necessary to distin­ 
guish between internal and external 
memory and to provide a specific role 
and specific processes for the latter.

Larkin (20) has constructed a simula­ 
tion program for solving physics prob­ 
lems that models external as well as in­ 
ternal memory. The basic idea.is that 
many of memory's productions (per­ 
ceptual productions) are activated by no­ 
ticing or recognizing pieces of informa­ 
tion or relations that are recorded on a 
worksheet. To allow ready access to in­ 
formation, two mechanisms organize the 
worksheet, (i) Closely related informa­ 
tion (for example, known and desired 
quantities, information about one sub­ 
system) is written together, (ii) Informa­ 
tion is generally added sequentially, so 
that recent information (likely to be rele­ 
vant to current goals) is near the bottom 
of the paper.

New information (a new equation, a 
new value for a variable) is written on 
paper. The recognition on the worksheet 
of something familiar, or relevant to a 
current goal, evokes new action, which 
may, in turn, produce new information. 
In this respect the problem-solver is 
"stimulus driven"—there is a constantly 
repeated cycle of interaction between 
thought processes and the gradually de­ 
veloping body of information on the 
worksheet.

2) Representations of situations that 
change through time. Simple dynamics 
problems (such as pulley problems, in
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which the disequilibrium of forces pro­ 
duces a constant acceleration) can be 
handled with static descriptions of the 
situation at a typical moment and with­ 
out any special concern for changes with 
time. With problems more complicated, 
this simplification may not hold. Consid­ 
er the following kinematics problem:

At the moment car A is starting from rest 
and accelerating at 4 m/sec2 , car B passes it, 
moving at a constant speed of 28 m/sec. How 
long will it take car A to catch up with car B?

Skillful subjects construct some repre­ 
sentation of this problem which allows 
them to make inferences easily about the 
relations of times and distances. The 
simulation program uses a node-link 
scheme to produce a "mental picture" of 
the cars.

The representational scheme orga­ 
nizes all events around time instants that 
bound time intervals, resulting in the fol­ 
lowing (partial) representation for the 
problem.

Position [(car A) (instant 1)] start 
Position [(car B) (instant ])] start 
Position [(car A) (instant 2)] pass 
Position [(car B) (instant 2)] pass

The simulation program contains pro­ 
ductions that recognize that if two ob­ 
jects (cars) have the same relative posi­ 
tions at instant 1 and again at instant 2, 
they have traveled the same distance 
during the interval, 7, between 1 and 2. 
It then infers that, for the first car, 5 is 
related to T by 5 = '/zaP, and for the 
second car by 5 = v7\ and can now 
solve these two simultaneous equations 
(since a and v are known) for 5 and 7. 
The importance of these equations is rec­ 
ognized in the same general manner as in 
the simple production systems for kine­ 
matics described earlier, again with dif­ 
ferent criteria for evocation being used 
by the expert and the novice.

The representation scheme in the new 
program is sufficiently comprehensive 
and flexible to handle virtually all the 
types of mechanics problems we have 
mentioned. Moreover, it is also able to 
handle standard problems about chem­ 
ical engineering thermodynamics. Con­ 
sider, for example, the following prob­ 
lem:

Nitrogen flows along a constant-area duct. 
It enters at 40F and 200 psi. It leaves at atmo­ 
spheric pressure and at a temperature of 
-21°F. Assuming that the flow rate is 100 Ib/ 
min, determine how much heat will be trans- 
fered to the surroundings.

Here, the state of the gas at entry to 
the process is associated with instant 1 
and the state at exit with instant 2: the

processes taking place in the duct are as­ 
sociated with the interval T. The equa­ 
tion for conservation of energy associ­ 
ates the difference between input and 
output states with the processes occur­ 
ring between them. The equations of 
state for various substances are stored in 
memory in association with those sub­ 
stances so that they can be evoked when 
appropriate.

3) Learning to be expert. As- we begin 
to gain a picture of the expert's knowl­ 
edge, our curiosity is aroused as to how 
expert ness might be produced.

A beginning physics student listens to 
lectures, studies a textbook, and works 
problems. One avenue to an understand­ 
ing of learning processes would be to 
write programs that would allow a com­ 
puter to read textbooks (assuming these 
to be roughly interchangeable with lec­ 
tures) and work problems and thus reach 
some level of skill and knowledge in 
physics.

Some hypotheses are necessary to ac­ 
count for the shape the learning program 
is to take. The most promising can­ 
didates are adaptive production systems 
(APS's). An APS can grow by creating 
new productions and incorporating them 
in itself so that they will be evoked when 
appropriate. Such systems have now 
been tested for a number of simple tasks 
(27, 22).

The idea underlying APS's is that ef­ 
fective learning involves more than (and 
differs from) memorizing materials pre­ 
sented in texts and lectures. Each pro­ 
duction in a production system has a 
condition and an action. The action con­ 
trols what is to be done by the produc­ 
tion, whereas the condition defines when 
the production is to be evoked and exe­ 
cuted.

Every textbook chapter on kinematics 
presents and explains the basic kinemat­ 
ic equations, but few if any explain how 
the student is to judge when a particular 
equation is appropriate for a particular 
problem. Thus, the textbook typically 
presents explicitly the material for the 
action parts of the productions the stu­ 
dent must acquire, but does not present 
the cues of the condition parts. Nor is 
this asymmetry peculiar to the subject- 
matter of kinematics; it is a general char­ 
acteristic of textbooks. (It is less charac­ 
teristic of "how-to" books on athletic 
and motor skills and of modern chess 
books.) Careful study of the conse­ 
quences of the asymmetry for learning 
could significantly improve textbook 
construction and instruction. Eylon (23) 
has shown, with problem-solving making 
use of Archimedes' principle, that explic­

it instruction about the occasions for us­ 
ing procedures was distinctly advanta­ 
geous. Landa (24) has analyzed the con­ 
ditions for applying procedures in sub­ 
jects like grammar and high-school 
mathematics.

An APS learns by generating new pro­ 
ductions. If (as is usually the case) such 
productions are not suggested directly 
by the instructional environment, the 
system must be able to build them from 
available information. Two strategies for 
doing this may be called "learning by ex­ 
ample" and "learning by doing."

Textbooks commonly display exam­ 
ples of solved problems. These examples 
carry through the solution step by step, 
often stating the justification for each 
step. The following is a typical example 
in algebra.

lr + 4
2x + 4

2r
or

jr -12
-12
-16
-8

(subtract x from both sides)
(subtract 4 from both sides)

(divide both sides by 2)

The student has already been told that 
equal quantities may be added to or sub­ 
tracted from both sides of an equation 
and that both sides may be multiplied or 
divided by the same quantity. Hence, the 
student comes to this example with the 
set of actions needed for new produc­ 
tions. But the textbook is silent on why 
particular actions are taken in a particu­ 
lar order.

Neves (22) has constructed an APS 
that learns from examples such as this 
one. It inspects each pair of successive 
steps in the derivation to determine what 
change has been made that reduces the 
distance between the initial step of the 
pair and the final expression. The first 
action, for example, gets rid of the un­ 
wanted literal term on the right side of 
the equation; the second gets rid of the 
unwanted numerical term on the left 
side. Neves's APS is capable of forming 
a production like, "If there is a literal 
term on the right side of the equation, 
subtract that term from both sides of the 
equation." Thus, it generates an appro­ 
priate condition to associate with the ac­ 
tion.

It can be seen that three productions, 
one for each of the three steps in the ex­ 
ample, will, when generalized to replace 
specific coefficients with variables, con­ 
stitute a fairly general algorithm for solv­ 
ing linear algebraic equations in one un­ 
known (not quite, for additional produc­ 
tions are needed to carry out the sim­ 
plification steps left implicit in this 
example). Thus, Neves's APS is able to 
acquire skills in subjects like algebra by 
working through a few examples.
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A system that can learn from examples expert in a fraction of a second to rele-
can learn by doing if it is supplied with vant parts of the knowledge store. This
one additional capability. Suppose that knowledge includes sets of rich sche-
the system has a simple problem-solv- mata that can guide a problem's interpre­

tation and solution and add crucial 
pieces of information. This capacity to 
use pattern-indexed schemata is prob­ 
ably a large part of what we call physical 
intuition. 

Since we are now able to build produc­

ing component that enables it to solve 
(some) problems by trial-and-error 
search. Trial-and-error search is, of 
course, inefficient for solving problems, 
but if the problems are simple enough, it 
sometimes succeeds. Once a problem 
has been solved, the system has acquired tion systems that simulate this rapid pro- 
a new example, which its learning-by-ex- cessing, intuition need no longer be re- 
ample component can then use .to boot- garded as mysterious or inexplicable. It 
strap itself. Having strengthened its is scarcely more mysterious that a skilled 
problem-solving capabilities through the physicist can recover a particular equa- 
new productions it has acquired, the sys- tion from memory than that we can find a 
tern can now solve some slightly more word in the dictionary in a few moments 
difficult problems, and use these again as when we want to check its definition. In- 
examples from which to learn. dexed node-link structures seem suited

The learning-by-doing system accom- for both tasks.
plishes its learning by hindsight. Perhaps Our growing understanding of an ex- 
demonstrating this program to students pert's knowledge and the kinds of pro- 
who abandon their homework problems cesses an expert uses when solving prob- 
as soon as they have found the answers lems enables us to begin to explore the 
would persuade them that it is only after learning processes needed to acquire 
one has solved a problem that one can suitable knowledge and problem-solving 
learn most effectively how one should processes. We have no reason to sup- 
have solved it. pose, however, that one day people will

These explorations with adaptive pro- be able to become painlessly and instant- 
duction systems represent only begin- ly expert. The extent of the knowledge 
nings, but they suggest the general kinds an expert must be able to call upon is de- 
of paths a learning system must follow in monstrably large, and everything we 
order to acquire the sorts of programs-^Jhiyu iou»-y about human learning pro-
used by experts in solving problems.

Conclusion

We have reviewed some recent find­ 
ings about human problem-solving pro­ 
cesses and especially about the sources 
of expert skills. In every domain that has 
been explored, considerable knowledge 
has been found to be an essential prereq­ 
uisite to expert skill. The expert is not 
merely an unindexed compendium of 
facts, however. Instead, large numbers 
of patterns serve as an index to guide the

cesses suggests that, even at their most 
efficient, those processes must be long 
exercised. Although we have a reason­ 
able basis for hope that we may find 
ways to make learning processes more 
efficient, we should not expect to pro­ 
duce the miracle of effortless learning.
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