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SPURIOUS CORRELATION: A CAUSAL INTERPRETATION*

HERBERT A. SIMON 
Carnegie Institute of Technology

To test whether a correlation between two variables is 
genuine or spurious, additional variables and equations must 
be introduced, and sufficient assumptions must be made to 
identify the parameters of this wider system. If the two origi 
nal variables are causally related in the wider system, the 
correlation is "genuine."

EVEN in the first course in statistics, the slogan "Correlation is no 
proof of causation!" is imprinted firmly in the mind of the aspiring 

statistician or social scientist. It is possible that he leaves the course 
(and many subsequent courses) with no very clear ideas as to what is 
proved by correlation, but he never ceases to be on guard against 
"spurious" correlation, that master of imposture who is always repre 
senting himself as "true" correlation.

The very distinction between "true" and "spurious" correlation ap 
pears to imply that while correlation in general may be no proof of 
causation, "true" correlation does constitute such proof. If this is what 
is intended by the adjective "true," are there any operational means 
for distinguishing between true correlations, which do imply causation, 
and spurious correlations, which do not?

A generation or more ago, the concept of spurious correlation was 
examined by a number of statisticians, and in particular by G. U. 
Yule [8], More recently important contributions to our understanding 
of the phenomenon have been made by Hans Zeisel [9] and by Patricia 
L. Kendall and Paul F. Lazarsfeld [1]. Essentially, all these treatments 
deal with the three variable case the clarification of the relation be 
tween two variables by the introduction of a third. Generalizations 
to n variables are indicated but not examined in detail.

Meanwhile, the main stream of statistical research has been diverted 
into somewhat different (but closely related) directions by Frisch's 
work on confluence analysis and the subsequent exploration of the 
"identification problem" and of "structural relations" at the hands of 
Haavelmo, Hurwicz, Koopmans, Marschak, and many others. 1 This 
work has been carried on at a level of great generality. It has now 
reached a point where it can be used to illuminate the concept of

* I am indebted to Richard M. Cyert, Paul F. Lazarsfeld, Roy Radner, and T. C. Eoopmans for 
valuable comments on earlier drafts of this paper.

1 See Eoopmans (2) for a survey and references to the literature.
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spurious correlation in the three-variable case. The bridge from the identification problem to the problem of spurious correlation is built by constructing a precise and operationally meaningful definition of causality or, more specifically, of causal ordering among variables in 
a model.2

1. STATEMENT OF THE PROBLEM

How do we ordinarily make causal inferences from data on correla tions? We begin with a set of observations of a pair of variables, x and y. We compute the coefficient of correlation, rxv, between the variables and whenever this coefficient is significantly different from zero we wish to know what we can conclude as to the causal relation between the two variables. If we are suspicious that the observed correlation may derive from "spurious" causes, we introduce a third variable, z, that, we conjecture, may account for this observed correlation. We next compute the partial correlation, TV,, between x and y with z "held \ constant," and compare this with the zero order correlation, rxv. Ifrv« is close to zero, while r^ is not, we conclude that either: (a) z is an intervening variable the causal effect of x on y (or vice versa) operates through z; or (b) the correlation between x and y results from the joint causal effect of z on both those variables, and hence this correlation is spurious. It will be noted that in case (a) we do not know whether the causal arrow should run from x to y or from y to x (via z in both cases); and in any event, the correlations do not tell us whether we have case (a) or case (b).
The problem may be clarified by a pair of specific examples adapted from Zeisel.*
I. The data consist of measurements of three variables in a numberof groups of people: x is the percentage of members of the group that is '; married, y is the average number of pounds of candy consumed permonth per member, z is the average age of members of the group. Ahigh (negative) correlation, rxv, was observed between marital status

* Simon (6) and (7). See also Orcutt (4) and (5). I should like, without elaborating it here, to insert the caveat that the concept of causal ordering employed in this paper does not in any way solve the problem of Hume* nor contradict hia assertion that all we can ever observe are covariations. If we employ an ontological definition of cause one baaed on the notion of the 'necessary* connection of events then correlation cannot, of course, prove causation. But neither can anything else prove causation, and hence we can have no basis for distinguishing true* from "spurious* correlation. If we' wish to retain the latter distinction (and working scientists have not shown that they are able to getalong without it), and if at the same time we wish to remain empiricists, then the term "cause* must be denned in a way that does not entail objectionable ontological consequences. That is the course we hall pursue here.
* Zeisel [9], pp. 192-95. Reference to the original source will show that in this and the following example we have changed the variables from attributes to continuous variables for purposes of exposi tion.
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and amount of candy consumed. But there was also a high (negative) 
correlation, ryz, between candy consumption and age; and a high 
(positive) correlation, rxs, between marital status and age. However, 
when age was held constant, the correlation rxv. t, between marital 
status and candy consumption was nearly zero. By our previous 
analysis, either age is an intervening variable between marital status 
and candy consumption; or the correlation between marital status 
and candy consumption is spurious, being a joint effect caused by the 
variation in age. "Common sense" the nature of which we will want 
to examine below in detail tells us that the latter explanation is the 
correct one.

II. The data consist again of measurements of three variables in a 
number of groups of people: x is the percentage of female employees 
who are married, y is the average number of absences per week per 
employee, z is the average number of hours of housework performed 
per week per employee.4 A high (positive) correlation, rxv, was ob- 
served between marriage and absenteeism. However, when the amount 
of housework, 2 was held constant, the correlation rxv . s was virtually 
zero. In this case, by applying again some common sense notions about 
the direction of causation, we reach the conclusion that 2 is an inter 
vening variable between x and y: that is, that marriage results in a 
higher average amount of housework performed, and this, in turn, in 
more absenteeism.

Now what is bothersome about these two examples is that the same 
statistical evidence, so far as the coefficients of correlation are con 
cerned, has been used to reach entirely different conclusions in the two 
cases. In the first case we concluded that the correlation between x and 
y was spurious; in the second case that there was a true causal relation 
ship, mediated by the intervening variable 2. Clearly, it was not the 
statistical evidence, but the "common sense" assumptions added after 
wards, that permitted us to draw these distinct conclusions.

2. CAUSAL RELATIONS

In investigating spurious correlation we are interested in learning 
whether the relation between two variables persists or disappears when 
we introduce a third variable. Throughout this paper (as in all ordinary 
correlation analyses) we will assume that the relations in question are 
linear, and without loss of generality, that the variables are measured 
from their respective means.

« Zeiael [9], pp. 191-92.
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Now suppose we have a system of three variables whose behavior is 
determined by some set of linear mechanisms. In general we will need 
three mechanisms, each represented by an equation   three equations 
to determine the three variables. One such set of mechanisms would 
be that in which each of the variables directly influenced the other 
two. That is, in one equation x would appear as the dependent variable, 
y and z as independent variables; in the second equation y would ap 
pear as the dependent variable, x and z as the independent variables; 
in the third equation, z as dependent variable, x and y as independent 
variables.6

The equations would look like this:

(2.1) x + a^y + 0133 = Wi,
(I) (2.2) OKX+ y + OKZ = w2,

(2.3) a3ix + a^y + z = «3,

where the u's are "error" terms that measure the net effects of all other 
variables (those not introduced explicitly) upon the system. We refer 
to A = ||a,-jf| as the coefficient matrix of the system.

Next, let us suppose that not all the variables directly influence all 
the others   that some independent variables are absent from some of 
the equations. This is equivalent to saying that some of the elements of 
the coefficient matrix are zero. By way of specific example, let us as 
sume that 031 = 032 = 021 = 0. Then the equation system (I) reduces to:

(2.4) x 
(II) (2.5)

(2.6) z = «3.

By examining the equations (II), we see that a change in ua will 
change the value of z directly, and the values of x and y indirectly; 
a change in u* will change y directly and x indirectly, but will leave z 
unchanged; a change in u\ will change only x. Then we may say that y 
is causally dependent on z in (II), and that x is causally dependent on y 
and z.

If x and y were correlated, we would say that the correlation was 
genuine in the case of the system (II), for 0125^0. Suppose, instead, that 
the system were (III) :

1 The question of how we distinguish between 'dependent* and "independent* variable! is dia- 
ciiMed in Simon (7), and will receive further attention in this paper.
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(2.7)
(HI) (2.8) 

(2.9)

x + a13z = Wi,
y + 0232 = W2,

2 = MS-
In this case we would regard the correlation between x and y as spurious, because it is due solely to the influence of z on the variables x and y. Systems (II) and (III) are, of course, not the only possible cases, and we shall need to consider others later.

3. THE a priori ASSUMPTIONS
We shall show that the decision that a partial correlation is or is not spurious (does not or does indicate a causal ordering) can hi general only be reached if a priori assumptions are made that certain other causal relations do not hold among the variables. This is the meaning of the "common sense" assumptions mentioned earlier. Let us make this more precise.
Apart from any statistical evidence, we are prepared to assert in the first example of Section 1 that the age of a person does not depend upon either his candy consumption or his marital status. Hence z can not be causally dependent upon either x or y. This is a genuine empiri cal assumption, since the variable "chronological age" really stands, in these equations, as a surrogate for physiological and sociological age. Nevertheless, it is an assumption that we are quite prepared to make on evidence apart from the statistics presented. Similarly, in the second example of Section 1, we are prepared to assert (on grounds of other empirical knowledge) that marital status is not causally de pendent upon either amount of housework or absenteeism.6
The need for such a priori assumption follows from considerations of elementary algebra. We have seen that whether a correlation is genuine or spurious depends on which of the coefficients, a,-/, of A are zero, and which are non-zero. But these coefficients are not observable nor are the "error" terms, u\, Uz and u3. What we observe is a sample of values of x, y, and z.
Hence, from the standpoint of the problem of statistical estimation, we must regard the 3n sample values of x, y, and z as numbers given by observation, and the 3n error terms, w,-, together with the six coeffi cients, an, as variables to be estimated. But then we have (3n+6)
  Since these are empirical assumptions it is conceivable that they are wrong, and indeed, we can imagine mechanisms that would reverse the causal ordering in the second example. What is argued here is that these assumptions, right or wrong, are implicit in the determination of whether the cor relation is true or spurious.
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variables (3n w's and six a's) and only 3n equations (three for each 
sample point). Speaking roughly in "equation-counting" terms, we 
need six more equations, and we depend on the a priori assumptions 
to provide these additional relations.

The a priori assumptions we commonly employ are of two kinds:
(1) A priori assumptions that certain variables are not directly 

dependent on certain others. Sometimes such assumptions come from 
knowledge of the time sequence of events. That is, we make the general 
assumption about the world that if y precedes x in time, then 021 = 0  
x does not directly influence y.

(2) A priori assumptions that the errors are uncorrelated i.e., that 
"all other" variables influencing x are uncorrelated with "all other" 
variables influencing y, and so on. Writing E (w,-w ;-) for the expected 
value of w.-w/, this gives us the three additional equations:

E^UI) = 0; E(ulu3} - 0; E(u2uz) = 0.
Again it must be emphasized that these assumptions are "a priori" 

only in the sense that they are not derived from the statistical data 
from which the correlations among x, y, and 2 are computed. The as 
sumptions are clearly empirical.

As a matter of fact, it is precisely because we are unwilling to make 
the analogous empirical assumptions in the two-variable case (the 
correlation between x and y alone) that the problem of spurious corre 
lation arises at all. For consider the two-variable system:

(IV)
(3.1)

(3.2)

X

y =
We suppose that y precedes x in time, so that we are willing to set 

621 = 0 by an assumption of type (1). Then, if we make the type (2) 
assumption that E(viv2) = 0, we can immediately obtain a unique esti 
mate of 612. For multiplying the two equations, and taking expected 
values, we get:

(3.3) 

Whence

(3.4)

E(xy) + b12E(y*-) =

E(xy)

= 0.

' XV'

It follows immediately that (sampling questions aside) 612 will be zero 
or non-zero as r& is zero or non-zero. Hence correlation is proof of causa-
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tion in the two-variable case if we are willing to make the assumptions of 
time precedence and non-correlation of the error terms.

If we suspect the correlation to be spurious, we look for a common 
component, z, of v\ and v* which might account for their correlation:
(3.5a) Vi = HI 
(3.5b) v2 = uz   0232.

Substitution of these relations in (IV) brings us back immediately to 
systems like (II). This substitution replaces the unobservable v's by 
unobservable u's. Hence, we are not relieved of the necessity of postu 
lating independence of the errors. We are more willing to make these 
assumptions in the three-variable case because we have explicitly re 
moved from the error term the component z which we suspect is the 
source, if any, of the correlation of the v's.

Stated otherwise, introduction of the third variable, z, to test the 
genuineness or spuriousness of the correlation between x and y, is a 
method for determining whether in fact the v 's of the original two 
variable system were uncorrelated. But the test can be carried out 
only on the assumption that the unobservable error terms of the three 
variable system are uncorrelated. If we suspect this to be false, we must 
further enlarge the system by introduction of a fourth variable, and so 
on, until we obtain a system we are willing to regard as "complete" in 
this sense.

Summarizing our analysis we conclude that:
(1) Our task is to determine which of the six off-diagonal matrix 

coefficients in a system like (I) are zero.
(2) But we are confronted with a system containing a total of nine 

variables (six coefficients and three unobservable errors), and only 
three equations.

(3) Hence we must obtain six more relations by making certain a 
priori assumptions.

(a) Three of these relations may be obtained, from considerations of 
time precedence of variables or analogous evidence, in the form of 
direct assumptions that three of the a,-/ are zero.

(b) Three more relations may be obtained by assuming the errors 
to be uncorrelated.

4. SPURIOUS CORRELATION

Before proceeding with the algebra, it may be helpful to look a little 
more closely at the matrix of coefficients in systems like (I), (II), and
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(III), disregarding the numerical values of the coefficients, but con sidering only whether they are non-vanishing (X), or vanishing (0). An example of such a matrix would be

X 

X 

0

0
X

0

0 
X 

X

In this case x and z both influence y, but not each other, and y in fluences neither x nor z. Moreover, a change in u2   MI and u3 being constant   will change y, but not x or z; a change in u\ will change x and y, but not z; a change in u3 will change z and y, but not x. Hence the causal ordering may be depicted thus:

x

y
In this case the correlation between x and y is "true," and not spurious.
Since there are six off-diagonal elements in the matrix, there are 26 = 64 possible configurations of X's and O's. The a priori assumptions (1), however, require O's in three specified cells, and hence for each such set of assumptions there are only 23 = 8 possible distinct configura tions. If (to make a definite assumption) x does not depend on y, then there are three possible orderings of the variables (z, x, y; x, z, y, x, y, z), and consequently 3-8 = 24 possible configurations, but these 24 con figurations are not all distinct. For example, the one depicted above is consistent with either the ordering (z, x, y) or the ordering (x, z, y).Still assuming that x does not depend on y, we will be interested, in particular, in the following configurations :

X 0 0 
XXX 
0 0 X

(«)

X 0 X

0 X X

0 0 X

(*)

X 0 X

X X 0
0 0 X	 (ft)

X 0 0
0 X X

X 0 X

* 0 0
X X 0
X 0 X

(7)
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In Case a, either x may precede 2, or z, x. In Cases ft and 5, z precedes 
x; in Cases 7 and e, x precedes 2. The causal orderings that may be 
inferred are:

IX Z

\ X f - - ,y I y * * y i 

(«) 08) (T) (5) («)
The two cases we were confronted with in our earlier examples of 

Section 1 were 5 and «, respectively. Hence, 5 is the case of spurious 
correlation due to 2; e the case of true correlation with 2 as an inter 
vening variable.

We come now to the question of which of the matrices that are con 
sistent with the assumed time precedence is the correct one. Suppose, 
for definiteness, that 2 precedes x, and x precedes y. Then ai2 = asi = a32 
= 0; and the system (I) reduces to:
(4.1) x + aia2 = Wi,
(4.2) an x + y + a232 = w2,
(4.3) 2 = w3.

Next, we assume the errors to be uncorrelated:
(4.4) E(uiUz} = E(uiu3) = #(w2w3) = 0.

Multiplying equations (4.1)  (4.3) by pairs, and taking expected 
values we get:

(4.5) anE(x*) +E(xy) +o«#(a*) +a13 [a21#(z2) +E(yz) +OxE(

(4.6) E(xz) + al3E(z*) = E(UIV*) = 0,
(4.7) a21E(xz) + E(yz) + a^fc2) = #(w2u3) = 0.

Because of (4.7), the terms in the bracket of (4.5) vanish, giving:
(4.8) anE(x*) + E(xy) + azstf (22) B 0. 

Solving for E (xz), E (yz) and E (xy) we find:
(4.9) E(xz) - -
(4.10) E(yz) =
(4.11)
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Case a: Now in the matrix of case a, above, we have Oi3 = 0. Hence:
(4.12a) E(xz) = 0; 
(4.12c) E(xy) = - OnE(x*
Case jS: In this case, 023 = 0, hence,
(4.13a) E(xz) = -
(4.13c) E(xy) - -
from which it also follows that:

E(yz)
E(xz)

(4.14) E(xy) =

Case 5: In this case, 021 = 0. Hence, 
(4.15a) E(xz) = - 
(4.15c) E(xy) = au

and we deduce also that:

E(xz)E(yz)(4.16) E(xy) =

We have now proved that ai3 = 0 implies (4.12a); that 023 = 0 implies (4.14); and that 021 = 0 implies (4.16). We shall show that the converse also holds.
To prove that (4.12a) implies Oi3 = 0 we need only set the left-hand side of (4.9) equal to zero.
To prove that (4.14) implies that 023 = 0 we substitute in (4.14) the values of the cross-products from (4.9)-(4.11). After some simplifica tion, we obtain:

(4.17) 

Now since, from (4.1)
(4.18)

= 0.

and since, by multiplying (4.3) by u\, we can show thatthe second factor of (4.17) can vanish only in case E(uf) =0. Excludingthis degenerate case, we conclude that 023 = 0.
To prove that (4.16) implies that 021 = 0, we proceed in a similar manner, obtaining:

(4.19) 02: [E(x*) - a^EW] = 0,
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from which we can conclude that a2i = 0. 
We can summarize the results as follows:
1) If E(xz) = 0, E(yz) 5*0, E(xy) ^0, we have Case a
2) If none of the cross-products is zero, and

E(xz)

we have Case 0.
3) If none of the cross-products is zero, and

E(xz)E(yz) 
E(xy) = -

we have Case 5.
We can combine these conditions to find the conditions that two or 

more of the coefficients 013, 023, o2i vanish:
4) If 013 = 023 = 0, we find that:

E(xz) = 0, E(yz)=Q. Call this Case (a/3).
5) If 013=021 = 0, we find that:

E(xz) =0, E(xy) =0. Call this Case (a5).
6) If 023 = 021 = 0, we find that:

E(yz)=Q, E(xy)=Q. Call this Case (/35).
7) If 013=023 = 021 = 0, then

E(xz) = E(yz) = E(xy) = 0. Call this Case (a/35).
8) If none of the conditions (l)-(7) are satisfied, then all three co 

efficients 013, o23, o2i are non-zero. Thus, by observing which of the 
conditions (1) through (8) are satisfied by the expected values of the 
cross products, we can determine what the causal ordering is of the 
variables.7

We can see also, from this analysis, why the vanishing of the partial 
correlation of x and y is evidence for the spuriousness of the zero-order 
correlation between x and y. For the numerator of the partial correla 
tion coefficient rxv.», we have:

/AW* E(xz)E(yz) 
(4.20)

We see that the condition for Case 8 is precisely that rxy., vanish 
while none of the coefficients, rxy, rxt, rv » vanish. From this we conclude

7 Of course, the expected values are not, strictly speaking, observables except in a probability 
sense. However, we do not wiah to go into sampling questions here, and simply assume that we have 
good estimates of the expected values.
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that the first illustrative example of Section 1 falls in Case 3, as pre viously asserted. A similar analysis shows that the second illustrative example of Section 1 falls in Case e.

In summary, our procedure for interpreting, by introduction of an additional variable 2, the correlation between x and y consists in making the six a priori assumptions described earlier; estimating the expected values, E(xy), E(xz), and E(yz); and determining from their values which of the eight enumerated cases holds. Each case corresponds to a specified arrangement of zero and non-zero elements in the coefficient matrix and hence to a definite causal ordering of the variables.
5. THE CASE OP EXPERIMENTATION

In sections (3)-(4) we have treated u\, u* and u$ as random variables. The causal ordering among x, y, and z can also be determined without a priori assumptions in the case where u\, u%, and u3 are controlled by an experimenter. For simplicity of illustration we assume there is time precedence among the variables. Then the matrix is triangular, so that a,-,-7*0 implies ay,- = 0; and a,-/?*0, oyt^O implies a*,- = 0.Under the given assumptions at least three of the off-diagonal a's in (I) must vanish, and the equations and variables can be reordered so that all the non-vanishing coefficients lie on or below the diagonal. If (with this ordering) w2 or Us are varied, at least the variable determined by the first equation will remain constant (since it depends only on Ui). Similarly, if u3 is varied, the variables determined by the first and second equations will remain constant.
In this way we discover which variables are determined by which equations. Further, if varying w,- causes a particular variable other than the ith to change in value, this variable must be causally dependent on the «th.
Suppose, for example, that variation in u\ brings about a change in x and y, variation in w2 a change in y, and variation in w3 a change in x, y, and z. Then we know that y is causally dependent upon x and 2, and x upon 2. But this is precisely the Case ft treated previously under the assumption that the u's were stochastic variables.

6. CONCLUSION

In this paper I have tried to clarify the logical processes and assump tions that are involved in the usual procedures for testing whether a correlation between two variables is true or spurious. These pro cedures begin by imbedding the relation between the two variables in a larger three-variable system that is assumed to be self-contained,
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except for stochastic disturbances or parameters controlled by an ex perimenter.

Since the coefficients in the three-variable system will not in general be identifiable, and since the determination of the causal ordering implies identifiability, the test for spuriousness of the correlation re quires additional assumptions to be made. These assumptions are usually of two kinds. The first, ordinarily made explicit, are assump tions that certain variables do not have a causal influence on certain others. These assumptions reduce the number of degrees of freedom of the system of coefficients by implying that three specified coefficients are zero.
The second type of assumption, more often implicit than explicit, is that the random disturbances associated with the three-variable system are uncorrelated. This assumption gives us a sufficient number of additional restrictions to secure the identifiability of the remaining coefficients, and hence to determine the causal ordering of the variables.
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