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Introduction
This report describes some experiments in constructing a compiler that makes 

use of heuristic problem-solving techniques such as those incorporated in the 
General Problem Solver (GPS) [1]. The experiments were aimed at the dual 
objectives of throwing light on some of the problems of constructing more 
powerful programming languages and compilers, and of testing whether the task 
of writing a computer program can be regarded as a "problem" in the sense in 
which that term is used in GPS. The present paper is concerned primarily with 
the second objective with analyzing some of the problem-solving processes 
that are involved in writing computer programs. At the present stage of their 
development, no claims will be made for the heuristic programming procedures 
described here as practical approaches to the construction of compilers. Their 
interest lies in what they teach us about the nature of the programming task.

Theory of Problem Solving

The motivation for the compiler is supplied by a theory of problem solving 
that also provides the basic framework for GPS [1]. By a problem, a situation of 
the following kind is meant:

1. We are given a (partial) description of a present situation and a desired 
situation. These situations are described in a language that we may call the state 
language. The state Ignguage is sufficiently rich to permit us to describe situa­ 
tions (we shall call such descriptions objects) and to describe differences between 
pairs of situations.

2. We are given a list of operators which can be applied to situations to trans­ 
form them into new situations. Operators are named in a language that we may 
call the process language. Any sequence of operators in the process language also 
is an operator the compound operator corresponding to the application, in 
order, of the elementary operators belonging to the sequence.

3. A problem solution is a (compound) operator in the process language which 
will transform the object describing the present situation into the object 
describing the desired situation.

EXAMPLE. Take as the objects in the state language the integers, 1, 2,.... 
Take as the elementary operator the successor operation, which we shall desig-

* Received September, 1962; revised February, 1963.

493



494 HERBERT A. SIMON

nate as ' in the process language. Then '" and "'" are examples of compound 

operators. Consider the problem of transforming the present object 5 into the 

goal object 8. The solution is the operator '", for 5"' = 8. More generally, '" is 

the operator that removes the difference +3 between any two objects, x and y\ 
for if y — x — -f-3, then x'" = y. Here +3 is a difference, in the state language; 

'" is the operator relevant to that difference, in the process language. We may con­ 

struct a table of connections to associate with each difference the operator or 

operators relevant to it.
The distinction between state language and process language derives from the 

problem solver's dual relation with his environment. On the one hand, he per­ 

ceives objects in the environment and represents them internally   in the state 

language. On the other hand, he acts upon the environment, and needs a lan­ 

guage, the process language, to represent his actions. There may be more than 

one way of representing environmental objects   more than one state language. 

There also may be several process languages. In this paper we introduce several 

state languages in which programming problems may be expressed. (The most 

important of these will be called the "state description" language and "functional 

description" language, respectively.) Our process language will be a particular 

interpretive language, IPL-V.1
With this explication of the concept of "problem," many techniques of prob­ 

lem solving can be subsumed under the following general paradigm:
MEANS-END ANALYSIS. Given the present and desired objects, find a differ­ 

ence between them. Next, find an operator relevant to the difference; determine 

if the operator can be applied to the present object. If so, apply it. (If not, de­ 

scribe the objects to which it would apply and transform the present object into 

an object of that kind   a new "desired object.") Take the new object thus ob­ 

tained as the present object and repeat the process.
The General Problem Solver is a program which uses this scheme of means-end 

analysis to attempt the solution of any problem cast into the form described.8

Program Writing as Problem Soloing
The task of proving a theorem can be formulated as a problem for GPS. The 

desired object is the theorem to be proved. The present object is the set of axioms 

and already-proved theorems. The operators are the legitimate processes for 

transforming a subset of axioms and/or theorems into a new theorem. We have a 

proof when we have a sequence of operators that transforms the present object 

into the desired object. (What we call a proof here is usually regarded as the 

justification for the proof steps; the proof as usually written out consists of the 

sequence of successive transformations of the axioms and given theorems.)

The sequence of operators constituting a proof can also be interpreted as a

1 IPL-V is described only to the extent necessary for this exposition. A complete de­ 

scription will be found in [3].
1 This is a bare-bone description of GPS, but it will suffice for present purposes. (1 1 gives 

a fuller description.
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program which generates the desired object from the given object; for if we apply 
the operators of the proof, in sequence, to the present object (the axioms and 
previous theorems), we obtain precisely the desired object the theorem to be 
proved. Thus a theorem-proving system can be regarded, at least formally, as a 
program-writing system. Conversely, if we can formulate a programming goal 
as a difference between a present and a desired object, we can presumably use the 
same processes, which in the other context will generate the proof of a theorem, 
to generate a program.

Outline of a Heuristic Compiler for IPL-V
In the remainder of this paper we describe a number of routines for compiling 

programs in Information Processing Language V (IPL-V), an interpretive list 
processing language. What is common to all of these compiling procedures is 
that they embody the problem-solving notions discussed in the preceding para­ 
graphs. That is, each of the compiling routines accepts the task of writing pro­ 
grams in IPL-V on the basis ot certain information provided to it. The task is 
accomplished by the application of the means-end analysis described. The several 
compiling routines differ with respect to their methods of formulating or repre­ 
senting the problem that is, each operates with a different state 1 anguage. At 
present, there are three compiling routines:

1. State Description Compiler. This routine takes as its input a description 
(state description) of the contents of the relevant computer cells before and after 
the routine to be compiled has been executed. It produces an IPL-V routine that 
will transform the input state description into the output state description.

2. Functional Description Compiler. This routine takes as its input a verbal 
definition (in the form of an imperative sentence) of the routine to be compiled. 
It produces an IPL-V routine that is the translation, in the interpretive language, 
of that definition.

3. General Compiler. This is an executive routine that can use the state 
description compiler, the functional description compiler, and others as sub­ 
routines. It takes as its input information about the routine to be compiled; the 
information can be stated in any one of several representations (e.g. those appro­ 
priate to either of the component compilers). The routine then selects subroutines 
that can use this information to produce the desired IPL-V code.

From a logical standpoint, we could describe the Heuristic Compiler as a single 
program whose executive routine is the General Compiler, and which contains 
the State Description Compiler and the Functional Description Compiler as sub­ 
routines. For clarity of exposition, it will be better to describe the two parts first 
as independent programs, and then show how they are imbedded in the General 
Compiler.

Some Characteristics of IPL-V
Before we begin, it will be useful to mention a few of the features of IPL-V 

that will be referred to in our discussion. In IPL-V, cells may have lists (push-
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down lists) associated with them. The primitive processes of IPL-V find their 
operands in a communication cell and its pushdown list. We shall call this cell the 
"accumulator," because it has many of the functions of the accumulator in a 
standard computer. Processes (except tests) put their outputs in the accumulator 
and its pushdown list. Tests in IPL record their result by placing a PLUS or a 
MINUS in a special cell called the Signal Cell.

Lists in the IPL memory may have description lists associated with. them. A 
description list is simply a list having a special format. It consists of pairs of 
symbols; the first symbol of each pair designating an attribute, the second sym­ 
bol designating the value of that attribute. The value may be a simple symbol or 
it may itself be a list. Thus, we might have in memory a representation of a class 
of objects called "apples." The description list associated with this class might 
contain the attribute "color" with the value "red." Another attribute of "apple" 
could be "type," having the list of values "Winesap," "Delicious," and so on.

Values of attributes of objects may themselves have descriptions. Thus, in the 
compiler we shall have occasion to store representations of routines or programs 
in memory. These representations will take the form of description lists, each 
routine having one or more of the attributes, "IPL name," "IPL-V definition," 
"Functional Description," "State Description," and "Flow Diagram." The 
values of these attributes will themselves be described will have description 
lists associated with them. Thus, for example, the state description of a routine 
will be given by a description list having the attribute "list of affected cells." 
The value of that attribute will be a list, each item of which will again have a 
description list associated with it.

< State Description Compiler
A computer routine can be defined by specifying the changes it produces in 

the contents of the storage locations it affects, or, what amounts to almost the 
same thing, by specifying the before-and-after conditions of these storage loca­ 
tions. A definition of this kind is not, of course, univocal, for programming is a 
synthetic, not an analytic task; generally there will be many programs (not all 
equally efficient or elegant) that will do the same work. As presently constituted, 
the State Description Compiler attempts to find one routine to accomplish a 
given task.

EXAMPLE. In IPL-V there is a process, "Put symbol MINUS in Signal Cell," 
which affects a single memory location, the Signal Cell. This process has the fol­ 
lowing state description: before the process is executed, the Signal Cell contains 
a symbol, call it SYMB!, followed by an indeterminate list of symbols, PUSHDOWN! 
(call this the pushdown list associated with the Signal Cell); after the process has 
been executed, the Signal Cell contains the symbol MINUS followed by the same 
list of symbols PUSHDOWN!, as before. The token of symbol SYMB! previously in 
the Signal Cell has been destroyed.

Notice that it is implicit in this definition of SET SIGNAL MINUS that the con-
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tent of no cell other than the Signal Cell has been altered by the routine. We can 
depict the state description diagrammatically as follows:

State Description of SET SIGNAL MINUS 
Affected Cells: Signal Cell
Input SYMBl, PUSHDOWNl 

Output MINUS, PUSHDOWNl

Generalizing, the state description of a routine consists of a list of affected 
cells. For each affected cell on the list, the state description specifies its input 
state and its output state.

To compile the IPL-V code for SET SIGNAL MINUS, the Compiler proceeds as 
follows:

1. It matches the input states with the output states of the affected cells until 
it finds a difference. In the example cited, the difference between the input and 
output states of the Signal Cell may be called a replacement in the Signal Cell.

2. It searches a table of connections which associates with each difference a list 
of operators (compiled IPL-V routines) relevant to that difference. In the example, 
the table of connections contains, associated with the replacement difference, the 
IPL-V routine REPLACE [(CELL)] BY (ACCUMULATOR) .8

REPLACE [(CELLI)] BY (ACCUMULATOR) replaces the symbol in cell CELL!, a 
variable, with the symbol in the accumulator. Thus, the "Replace" process has 
the following state description:

State Description of REPLACE l(CELLl)] BY (ACCUMULATOR) 
Affected Cells: Accumulator Celll
Input SYMB2, PUSHDOWNl SYMBl, PUSHDOWN2 

Output PUSHDOWNl SYMB2, PUSHDOWN2

3. It tentatively applies the relevant operator it has found to the input state 
of the state description to be compiled, and determines the resulting output state. 
In applying the operator, it makes appropriate substitutions for the variables in 
the operator. Thus, applying REPLACE[(CELL!)] to the input of SET SIGNAL 
MINUS, we find, by matching, that we should set CELL! = SIGNAL and SYMB2 = 
MINUS, giving:

State Description of REPLACE (SIGNAL) BY (ACCUMULATOR) 
Affected Cells: Accumulator Signal
Input MINUS, PUSHDOWNl SYMBl, PUSHDOWN2 

Output PUSHDOWNl MINUS, PUSHDOWN2

4. The application of the operator creates two new subproblems: Let /  
represent the input state of the routine to be compiled, 00 its output state, /& 
the input state of the operator, and Ob its output state. The original problem was 
to transform 70 into Oa . The new problems are: (1) to transform 70 into 7& (i.e. to 
establish the input conditions for application of the operator), and (2) to trans­ 
form Oft into Oa (i.e. to transform the output state of the operator into the de-

1 We adopt the usual convention that parentheses mean "the contents of."
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sired output state of the routine to be compiled). Either of these new problems 
may reduce to the identity transformation, in which case that part of the problem 
is solved. If this reduction does not occur, then the same steps 1, 2, 3 are applied 
to the new subproblem.

In the example at hand Ob is identical with Oa ; hence the remaining subproblem 
is to transform /  into h , that is, to compile a routine with state description:

Accumulator
Input PUSHDOWNl 

Output MINUS, PUSHDOWNl

The repetition of step 1 for this subproblem discovers a new difference, an 
addition to the contents of the accumulator. Step 2 finds the relevant operator, 
LOAD [s] INTO ACCUMULATOR, which adds to the symbol list in the accumulator 
the symbol s. Applying, in step 3, the operator LOAD [MINUS], the input state of 
the accumulator is transformed into the desired output state. Hence the solution 
to the original problem of compiling SET SIGNAL MINUS is obtained by the se­ 
quence LOAD MINUS, REPLACE (SIGNAL) or, in the usual IPL-V format:4

Set signal minus J3 10J3 Load MINUS
20H5 0. Replace (SIGNAL), Terminate

We see that for the state description compiler to operate, it must be provided 
with a set of differences and matching tests for noticing differences, a set of 
already-compiled operators, and a table of connections between differences and 
operators. Further, when it has compiled a new routine, the compiler can annex 
this routine to its set of available operators and use it in compiling subsequent 

routines.

Functional Description Compiler
Let us now consider an alternative compiling scheme for the same routine, 

SET SIGNAL MINUS. Instead of specifying the before-and-after condition of the 
computer cells, we define the routine in terms of the function it performs: "Re­ 
place the symbol in the Signal Cell by MINUS". This definition (functional de­ 
scription) resembles more closely than the previous one the manner in which 
routines are defined for conventional compilers like FORTRAN or LISP. What 
distinguishes the present scheme from these is the use of heuristic means-end 
analysis for working from the definition to the compiled routine.

The first step in the Functional Description Compiler is to search a list of avail­ 
able (compiled) routines to find one whose functional description is as similar as 
possible to the functional description of the routine to be compiled. In the case 
at hand, we would find the routine REPLACE (CELL!): "Replace the symbol in 
CELLI by the top symbol of the pushdown list in the accumulator."

4 The standard IPL-V notation for the routine is shown in the center, with its trans­ 

lation in the left- and right-hand columns. Thus J3 is the IPL name for SET SIGNAL MINUS 

and also for the symbol MINUS. 10 means LOAD, 20 means REPLACE. H5 is the name for SIGNAL,

0 for TERMINATE.
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At the second step, means-end analysis is performed to transform the compiled 
routine into the new routine. The transformations are performed on the func­ 
tional descriptions. Thus, in the present example there are two differences be­ 
tween REPLACE [(CELLl)] BY (ACCUMULATOR) and REPLACE (SIGNAL) BY MINUS.
The former refers to the cell, CELL!, the latter to the Signal Cell; the former refers 
to the symbol that is contained in the accumulator; the latter to the symbol 
MINUS.

The compiler notices these differences (in a sequence), and searches for an 
operator relevant to removing the differences. In this case, CELL! can be trans­ 
formed to SIGNAL by a substitution operator. (ACCUMULATOR) can be changed to 
MINUS by an addition operator ("Make (ACCUMULATOR) equal to MINUS by ad­ 
dition"). The application of these operators to the functional description of 
REPLACE [(CELLI)] would compile the desired routine in the following stages:

BEPLACE [(CELLI)] Replace the symbol in CELL! by (ACCUMULATOR)
Apply substitution Replace the symbol in SIGNAL by (ACCUMULATOR)
Apply addition Replace the symbol in ACCUMULATOR by MINUS

The resulting program in this case is identical with that obtained by the State 
Description Compiler.

A somewhat more complex routine compiled by the Functional Description 
Compiler is5 INSERT IACCUMULATOR AT THE END OF (THE VALUE OF ATTRIBUTE 
OACCUMULATOR OF 2ACCUMULATOR). The list of available IPL routines includes 
INSERT OACCUMULATOR AT THE END OF IACCUMULATOR.

The differences between these two functional descriptions are in their argu­ 
ments. The latter has the argument OACCUMULATOR where the former has the 
argument IACCUMULATOR; the latter has the argument IACCUMULATOR where the 
former has the argument THE VALUE OF ATTRIBUTE OACCUMULATOR OF 2Accu- 
MULATOR. Since it is not easy in IPL-V to rearrange arguments located in the 
pushdown list of the accumulator, the compiler facilitates matters by incorporat­ 
ing in the compiled routine an algorithm that moves the inputs of the routine to 
be compiled into known working storage locations, then puts these inputs back 
into the accumulator pushdown list in the order in which they are needed for the 
subprocesses. That is, the compiler first transforms INSERT AT END OF VALUE 
LIST into another routine, which it then compiles. The functional description of 
this intermediary routine6 is INSERT IWORKING AT THE END OF THE VALUE OF
ATTRIBUTE OwORKING OF 2WORKING. The Code for INSERT AT END OF VALUE

LIST may be written as:
Insert at end of value list:

J13 J52 Put symbols in working storage 
K13 Execute intermediary routine 
J32 0. Restore working storage, Ter­ 

minate

* We shall use, from now on, the following abbreviations: OACCUMULATOR is the symbol 
in the accumulator, IACCUMULATOR is the first symbol of the push-down list of the accumu­ 
lator, 2ACCUMULATOR the second symbol, and so on. In IPL-V, the operands for processes 
are held in the accumulator and its push-down list.

 OWORKINO, IWORKING, etc., are abbreviations for the contents of a set of working cells 
available in IPL-V.
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Now the intermediary routine is to be compiled with the aid of INSERT AT END 
OP LIST. Comparing the corresponding arguments of the two routines, we see that 
this involves finding the value of attribute OWORKING of 2woRKiNG, placing the 
value in the accumulator, bringing IWORKING into the accumulator, and then 
performing INSERT AT END OP LIST. That is to say the intermediary routine will 
have the general form:

Insert at end of value list:
K13 Find V(OW, 2W) Find value list of attribute

OWORKINQ OF 2WORKINO

11W1 Add IWORKING 
J66 Insert OACCUMULATOR AT END OF 

IACCUMULATOR

In the list of available routines, the compiler finds FIND THE VALUE OP ATTRI­ 
BUTE OACCUMULATOR OP IACCUMULATOR, which may be abbreviated, "Find 
V(OA, 1A)". Comparing its arguments with those of V(OW, 2W), we see that 
IACCUMULATOR must be set equal to 2woRKiNG and OACCUMULATOR to OWORK­ 
ING. Hence V(OW, 2W) is equivalent to

»
11W2 Add 2woRKiNQ 
11WO Add OWORKING 

J10 Find value of OACCUMULATOR of
IACCUMULATOR

Hence, the complete code for the intermediary routine is

11W2 Add 2W
11 WO Add OW

J10 Find value of OA of 1A
11W1 Add 1W

J66 Insert OA at end of 1A

and the complete code for the desired routine7 is

Insert OA at end of value list of 1A of 2A:
J13 J52 Put symbols in working storage 

11W2 Add 2W 
11WO Add WO

J10 Find value of OA of 1A 
11W1 Add 1W 

J65 Insert OA at end of 1A 
J32 0. Restore working storage, Ter­ 

minate

General Compiler

The General Compiler is an executive routine whose task is to compile a routine 
from information in any of the forms already discussed (state description or

7 Readers familiar with IPL-V will see that we are simplifying for purposes of illustration. 
The routine as written does not take care of the case where the attribute value in question 

does not exist.
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functional description) or in other forms that may be described. It takes as its 
input the internal name of the routine to be compiled. Associated with this routine 
(on its description list) is the information to be used in the compilation. More 
formally:

A routine is a description list containing values of some subset of the following 
attributes:

1. IPL name. The value of this attribute is a description list naming a region and 
a location in the region e.g. J60, R149, J3.

2. IPL-V definition. The value of this attribute is a list of IPL-V instructions, 
each in the form of a description list describing the corresponding IPL-V 
word, defining an IPL-V routine with the specified name. For example, the 
routine with IPL name J3 might have the following IPL-V definition:

J3 10J3
20H5 0.

3. Functional description. The value of this attribute is an imperative sentence 
(encoded as a list structure) describing the process defined by the IPL-V 
definition. For example, the routine with name J3 has, as already explained, 
the functional description: REPLACE THE SYMBOL IN SIGNAL BY MINUS.

4. State description. The value of this attribute is a list structure describing the 
state of the IPL computer before and after the routine in question has been 
executed. Only changes are mentioned explicitly. Thus the state description 
of J3, SET SIGNAL MINUS, is: Affected cell, SIGNAL; Input, SYMB!, PUSH­ 
DOWN!; Output, MINUS, PUSHDOWNl.

5. Flow diagram. The value of this attribute is a list structure giving the flow 
diagram corresponding to the IPL-V definition. This list structure will be 
described in more detail later.

A compiled routine is a routine having an IPL-V definition. Now we can state 
the problem of compiling a routine as follows: given a routine without a defini­ 
tion (the present object), find the corresponding routine with a definition (the 
goal object). "Corresponding" means that the compiled routine has the same 
state description or functional description as the given routine. Figure 1 presents 
the flow diagram of a compiler using means-end analysis to accomplish this 
compilation.

Let us translate this flow diagram into the language of means-end analysis.
1. Test whether the routine has an IPL-V definition. This test determines 

whether the present object has the characteristics of the desired object. If so, 
the compilation is complete.

2. Find .the closest definition. This process corresponds to finding a difference 
between the present and desired objects. However, we generalize this notion to 
mean: look for a characteristic of the present object that will suggest a relevant 
operator. If the object possesses a functional description, then an attempt could 
be made to compile the IPL-V definition from the functional description; if it 
possesses a state description, an attempt could be made to compile the IPL-V 
definition from the state description. The attributes the routine could possess are 
listed in an order reflecting the relative ease of compiling an IPL-V definition
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Test if Rl has 
IPL-V definition

Find closest 
definition

Exit, 
compiled

Find and apply 
relevant process

Exit, 
failed «- Test progress

FIG. 1. Flow diagram for Compile Routine Rl

from them. The process then finds the first attribute on this list possessed by the 
routine to be compiled. In the present form of the compiler, it is assumed that 
it is easier to compile from a functional description than from a state description; 
hence the attributes are listed in this order. If the routine possesses no attribute 
that could be used as a basis for compilation, the compiler reports a failure.

3. Find and apply the relevant process. The input to this process is the "closest 
definition" just found. A table of connections is searched to find a process relevant 
to compiling the IPL-V definition from the closest definition. If one is found, it 
is applied (in a manner to be described later).

4. Test progress. If the operator has been applied successfully, the routine will 
now possess at least one attribute (an IPL-V definition or another) not previously 
possessed. If the progress test detects that it now has a definition closer to the 
IPL-V definition than any it had previously, it initiates a new compilation cycle; 
if not, it reports a failure and quits.

The present list of "closest definitions" is very short, consisting only of the 
functional description and state description. The present table of connections is 
also brief:

1. If the routine possesses a functional description, apply the operator, COM­ 
PILE IPL-V DEFINITION FROM FUNCTIONAL DESCRIPTION.

2. If the routine possesses only a state description, apply the operator, COM­ 
PILE IPL-V DEFINITION FROM STATE DESCRIPTION.

Relation of the Heuristic Compiler to the General Problem Solver

Since each of the major components of the Heuristic Compiler is a system of 
means-end analysis, each of these components can be viewed as a rudimentary 
General Problem Solver. It should therefore be feasible, by modifying the top 
level programs, to bring the Heuristic Compiler into a form which would allow 
its problem-solving processes to be governed by GPS. The programs for detecting
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differences, the tables of connections, and the operators would provide definitions 
of task environments for GPS. To accomplish this, GPS would have to be ar­ 
ranged so that a subproblem could involve applying GPS to a new task environ­ 
ment. That is, GPS would first be applied to the task environment of the General 
Compiler; applying an operator in this environment would consist in applying 
GPS to the task environment of the functional descriptions or the state descrip- 
tions, as the case may be.

Flow Diagrams

Up to this point we have considered only very simple programs requiring no 
branches or loops. Each program is a list of instructions; each instruction, an 
IPL word represented as a description list with these attributes: type, name, 
sign, P, Q, symbol, and link.

To represent a program with branches and loops, we divide the program into 
segments. Each entry point to a loop (an instruction with a local name) begins a 
new segment; each branch instruction (branches are indicated by P = 7) ends a 
segment. Each segment has the same attributes as an IPL word   specifically: 
name, P, symbol, link, and an additional attribute, IPL-V definition, whose 
value is the list of IPL instructions for the segment. The name of the first instruc­ 
tion of the segment is assigned as the name of the segment; if the segment ends 
in a branch instruction, it is assigned P = 7, and its symbol and link are set equal 
to the symbol and link of the branch instruction. If the segment does not end in 
a branch, it is assigned P = 0 and SYMB = 0, and its LINK is set equal to the 
link of its last instruction. Under these conventions, the list of segments is a flow 
diagram of the routine with the detail of the routine segments appended.

To illustrate the format of a flow diagram, we show below the code for the IPL 
routine named J77 followed by its flow diagram. The functional description of J77
is: TEST WHETHER THERE IS A SYMBOL EQUAL TO OACCUMULATOR ON LIST 1 ACCUMU­ 

LATOR.

IPL-V CODE FOR J77

Name P Q Symb Link 

J77 J50 90 Segment I : Put OACCUM in OWORKING

90 J60 Segment II: Find next location on list 1 ACCUM ; 
7 0 91 92 if end of list, go to 91

92 1 2 HO Segment III: Test if symbol at location is
1 1 WO equal to OACCUM. If equal, go to 91; if not,

J2 go to 90
7 0 90 91

91 3 0 HO Segment IV: Clean up and exit 
J30 0
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FLOW DIAGRAM FOR J77

Name P Symb Link

J77 0 90
90 7 91 92
92 7 90 91
91 0 0

From the description of the flow diagram, it is easy to provide a program that 
will construct a flow diagram from an IPL routine, and a program that will com­ 
pile an IPL routine from the flow diagram and appended code segments. In this 
way the task of compiling an IPL routine is reduced to the problem of compiling 
its flow diagram and compiling the code for each of the segments of the flow dia­ 
gram.

The program for compiling such a routine from its functional description has 
has not yet been written, but examination of the structure of the routine itself 
shows what is involved. The test involves a quantifier whether there exists on a 
particular list of symbols a symbol having a certain property. In IPL-V, such 
existence tests are performed by means of a loop or a generator; the members of 
the set hi question are produced one by one and tested for their possession of the

"^ property. If a test result is positive, the process stops and the symbol PLUS is
stored in the signal cell. If the set is exhausted, the symbol MINUS is stored in the 
signal cell. Thus a standard flow diagram can be used for all routines of this kind:

A Perform required setup 
B Locate another member of set

. (If none, exit, via D) 
1 C Perform test on member

(If it succeeds, exit via E; 
if it fails, return to B) 

D Exit with signal minus 
E Exit with signal plus

Except for the provision of two distinct exits, this is identical with the flow 
diagram previously shown for J77 (Set A = J77, B = 90, C = 92, D = E = 91). 
Now, we can compile for each segment of the flow diagram a routine that cor­ 
responds to the functional description of that segment. For example, FIND 
ANOTHER MEMBER OF lAccuMULATOR becomes LOCATE NEXT, J60, (after appro­ 
priate recognition of the changed location of ^ACCUMULATOR) ; PERFORM TEST ON 
MEMBER becomes:

12HO
:'. 11WO

J2 Test OACCUM and IACCUM for 
equality

The only complications lie hi moving the inputs for the various processes (J60, 
LOCATE NEXT, and J2, TEST IF EQUAL) in appropriate ways. The compiler can do
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this in a straightforward, if inefficient, way by using the working storages. Thus, 
an unedited compiled version of J77 might look like this:

Test if OA is on 1A J77 J51 90 Put inputs in working storage
Locate next on 1A 90 11W1 Bring in 1W (list location)

J60 Locate next
20W1 Store location again

If none, exit 7091 92 
Compare next symbol

with OA 92 12W1 Bring in located symbol [(1W)]
11WO Bring in comparison symbol, OW

J2 Test for equality
Branch on test 7090 93

91 J31 0 Clean up working storage and termi-
93 J30 0. nate

The same flow diagram would be used in the compilation of LOCATE ON IAC- 
LATOR AN x SUCH THAT (x) = OAccuMULATOR. In fact, this routine is iden­ 
tical with the one just discussed, except that it requires 11W1 (LOAD 1 WORKING 
INTO OACCUMULATOR) before the exit. It should be observed that the indefinite 
article, "an," plays the same role in the functional description of this routine as 
the quantifier, "there is a," in the previous one. The compiler, therefore, would 
be provided with the knowledge that the above flow diagram, using J60 (LOCATE 
NEXT SYMBOL) in the second segment, is the appropriate means for translating 
this quantifier.

Declarative and interrogative sentences in a functional description correspond 
to tests in the compiled routine. Thus, the phrase "such that SYMB! = (ACCUMU­ 
LATOR)" leads to the question, "Does SYMB! equal (ACCUMULATOR)?" and thence 
to the test J2[sYMBl, (ACCUMULATOR)].

Summary

The experiments described in this paper demonstrate that compiling tasks at 
least simple compiling tasks can fruitfully be viewed as problem-solving tasks, 
and can be performed by a program having the general organization and capa­ 
bilities of the General Problem Solver.8

The explorations have followed two main lines. The state description compiler 
illustrates how the state of a computer before and after the execution of a process 
can be described, and how this description can be used to define and solve a com­ 
piling problem. The compiler would require substantial further development 
before it could be used as a practical compiling device, but, besides providing 
guideposts for such development, it casts light on two important topics: (1) the 
nature of the problem-solving processes involved in programming particularly

* Some further discussion of language and representations in the Heuristic Compiler, 
together with a listing of the program as of June 1961, will be found in [2], The discussion 
of language and representations has been omitted here because another report will be made 
on these topics, on the basis of more recent investigations.
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machine-language programming; (2) the use of description lists in IPL-V as an 
expository language having expressive capabilities not readily available in more 
usual computer command languages. In the state description compiler the declara­ 
tive mode, rather than the imperative mode, bears the main burden of informa­ 
tion storage and communication.

The functional description compiler follows more traditional lines. Apart from 
its heuristic organization, it resembles closely compilers like FORTRAN, ALGOL, 
and LISP. Its language is primarily a language of imperatives, of processes. The 
functional description compiler illustrates how means-end analysis, like that 
employed in the General Problem Solver, can be used to translate requests for 
general, functionally-defined processes into programs. Like the state descrip­ 
tion compiler, it gives us a great deal of information about the problem-solving 
processes required for programming. Further experiments, to be reported subse­ 
quently, suggest that it can be a tool in exploring the relation between problem 
statements in natural language and in formalized computer languages.

The investigation described here stimulated a certain amount of introspection 
about my own programming processes and inquiries about the processes of my 
fellow programmers. From these informal inquiries I am persuaded that pro­ 
grammers employ, in their problem-solving processes, both a language like that 
of the state description compiler and a language like that of the functional descrip­ 
tion compiler. The former becomes essential in designating machine representa­ 
tions and in writing programs depending on the detail of machine representation  
processes of packing and unpacking words that are intimately dependent on word 
structure. On the other hand, at the higher levels often represented by flow dia­ 
grams, a language of functions appears generally the more natural and powerful. 
In general, the mappings from functional descriptions to process language are 
simpler and more direct than the mappings from state descriptions a possible 
explanation of why most existing compilers use a functional source language. 
The Heuristic Compiler is an exploratory tool that is beginning to reveal to us 
something of the role played by these and other representations in the program­ 
ming piocess.
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