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The cognitive "revolution" in psychology introduced a new 
concept of explanation and somewhat novel methods of gath­ 
ering and interpreting evidence. These innovations assume that 
it is essential to explain complex phenomena at several levels, 
symbolic as well as physiological; complementary, not compet­ 
itive. As with the other sciences, such complementarity makes 
possible a comprehensive and unified experimental psychology. 
Contemporary cognitive psychology also introduced comple­ 
mentarity of another kind, drawing upon, and drawing to­ 
gether, both the behaviorist and the Gestall traditions.

I would like to begin with two comments on contem­ 
porary cognitive psychology on where we stand. The 
evidence supporting these observations is so overwhelm­ 
ing that I will not bore you by rehearsing it. But we have 
some conventional, customary ways of talking about psy­ 
chology that fly in the face of what I think are the facts, 
and I would like to distance myself from these ways of 
speaking, which I believe are harmful to the continued 
rapid progress of our science.

How often have you heard that "some day we will 
understand the mind," or that "the human brain is a great 
mystery that we must seek to solve"? In fact, psychology 
exists not in the future, but in the present. By any rea­ 
sonable metric, we know more about the human mind 
and brain than geophysicists know about the plate tec­ 
tonics that move the continents over the globe, far more 
than particle physicists know about elementary particles, 
or biologists about the processes that transform a fertil­ 
ized egg into a complex multicellular organism.

We discount our knowledge because some of it is so 
commonplace, so familiar from our everyday acquain­ 
tance with ourselves and other people. We discount it 
also because it often is insufficient to permit predictions 
of behavior in important matters that concern us. The 
former is a great blessing to us, for it allows us to learn 
easily facts of sorts that other sciences have to tease out 
with great effort. The latter is a true limitation that we
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share with meteorologists, evolutionary biologists, and 
all those physical or biological scientists who venture 
outside the laboratory into the complexity of real-world 
phenomena.

Hence, my first comment: In the year 1991, we know 
a great deal about human thinking, and especially about 
the symbolic processes, involving selective heuristic 
search and recognition of familiar cues, that people use to 
solve problems, to design artifacts and strategies, to 
make decisions, to communicate in natural language, and 
to learn. How people solve problems is no great mystery; 
we know enough about it to create computer programs 
that do it, and do it in a way that closely simulates human 
performance, step by step. By the same test, we know 
how people design strategies, and even how they learn 
language and make scientific discoveries.

In all these cases, we have examples of computer pro­ 
grams that perform these tasks in humanoid ways. If you 
want evidence for this claim, I can refer you, for starters, 
to standard sources like Andersen's (1990b) cognitive 
psychology textbook or the recent Foundations of Cog­ 
nitive Science, edited by Posner (1989). Cognitive psy­ 
chology is not some dream of the future; it exists, and it 
allows us to explain a vast range of phenomena. It is not 
a finished science, thank goodness (what science is?), but 
each year adds to its store of knowledge and understand­ 
ing, and its powers of prediction.

My second comment: Histories of psychology are fond 
of talking about "schools of thought," and their rise and 
fall, attributing to the chronology of our field a circular 
course, rather than the helical one (at worst) attributed to 
other sciences. In the histories there is not just psychol­ 
ogy, the science of human behavior; there is introspec- 
tionist psychology, and behaviorist psychology, and 
Gestalt psychology, and information processing psychol­ 
ogy, and connectionist psychology schools without 
end, and without cumulation, each school combating and 
destroying the previous one, to be consumed, in turn, by 
its successor.

This circular view of history is wholly count erf actual. 
The "cognitive revolution" (I even used the phrase in my 
opening summary) did not destroy either behaviorism or
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Gestalt psychology. It drew liberally upon both of them, 
both for experimental data and for concepts. The produc­ 
tions of information processing psychology are natural 
descendants of the familiar stimulus-response links of 
behaviorism (though not identical with them). Means- 
ends analysis, central to information processing theories 
of problem solving, was explored by Duncker (1945), and 
by Selz (1913) before him. The neural nets of current 
connectionist models have their origins in physiological 
probings of the nervous system, via the "cell assem­ 
blies" of Hebb (1949), and in notions, traceable back to 
Aristotle, of the associative structure of memory.

In the course of this paper, I refer to another currently 
fashionable novelty in psychology, so-called situated ac­ 
tion and situated learning, and show that its antecedents 
are also very familiar. Psychology is as progressive and 
cumulative as any of the sciences, and we can today cite 
experiments of Ebbinghaus (1964), or Wundt (1902), or 
Hovland (1951), or Skinner (1938) as major sources of 
empirical support for contemporary theories. 1

In our generation, we have discovered a mode of psy­ 
chological theorizing that has greatly facilitated, and will 
continue to facilitate, the cumulation of knowledge and 
theory in psychology. Today we build computer models 
of both symbolic and connectionist systems. Instead of 
constructing microtheories for each phenomenon we ob­ 
serve (e.g., theories of retrospective inhibition), or 
macrostatements that are too simplistic and general to 
explain much (e.g., "forgetting follows a power law"), 
we construct computer programs that can be given com­ 
plex cognitive tasks, identical to those given to our hu­ 
man subjects, and that will predict the temporal path of 
human behavior on those tasks (Newell & Simon, 1972).

Some cognitive psychologists today aspire to build 
"unified" models of this kind: The SOAR (Newell, 1990), 
ACT* (Anderson, 1983), and PDF (Rumelhart & McClel­ 
land, 1986) systems are familiar examples. Others of us 
aim at models of middle range: a GPS (Newell & Simon, 
1972) to account for problem-solving phenomena; an 
EPAM (Feigenbaum & Simon, 1984) to account for ver­ 
bal learning processes; an ISAAC (Novak, 1977) to ex­ 
plain how people understand problems described in nat­ 
ural language text, construct mental representations of 
those problems, and go on to solve them; and an INTER­ 
NIST (Miller, Pople, & Myers, 1982) or a MYCIN (Short- 
liffe, 1976) to describe the processes of expert medical 
diagnosis.

Whether comprehensive or not, such models enable 
cognitive psychology to organize large bodies of data 
around the mechanisms that produced them; and the

1. For example, see the uses of Ebbinghaus (1964) and Hovland 
(1951) in testing the EPAM theory of verbal learning (Feigenbaum & 
Simon, 1984).

availability and relevance of these large bodies of data 
provide powerful means to test the adequacy of the mod­ 
els. This tying together and relating of disparate bodies of 
experimental data with hypotheses about the causal 
mechanisms greatly facilitates cumulation.

So much for these two debilitating myths: that the 
mind is something we will understand in the future and 
that the path of psychology is circular, each new 
"school" tearing down and replacing the one it succeeds. 
Neither myth bears the slightest resemblance to the true 
state of affairs, and it is time that we put them to rest and 
get on with advancing still further a science that has made 
great strides in this century.

EXPLAINING A CONVERSATION

The scene is a street in Singapore. A woman is talking 
to two other women, talking in Tamil, a Dravidian lan­ 
guage that is spoken in a large region of southern India 
around Madras and in parts of Sri Lanka. We wish to 
explain her behavior.

What is there to explain? For one thing, why Tamil? 
Why not English, or Chinese, or Malayan, the predomi­ 
nant languages in Singapore? An explanation would de­ 
scribe the migrations that brought large numbers of 
Tamils from India to this distant port. This "simple" 
explanation still presupposes some vital theoretical un­ 
derpinnings. It assumes that under some circumstances 
migrants will retain, for a generation or even beyond, the 
language of their ancestors. What are those circum­ 
stances, and what conditions in Singapore satisfied 
them? And when will this woman, probably multilingual, 
use Tamil, and when one of the other languages of Sin­ 
gapore?

The explanation by migration also assumes conditions 
that caused the migrants to leave their homeland, and 
historical "laws" that would explain migration as a re­ 
sponse to such conditions. What were those conditions, 
and what is the nature of such laws?

Some social psychologists undertake to answer ques­ 
tions like these. For the rest, these questions are usually 
left to history, sociology, and the other social sciences. 
But insofar as they involve things stored in the human 
memory, they are also part of cognitive psychology. It is 
proper that they be welcomed back into our science, as is 
being done by those who are now focusing on the psy­ 
chology of everyday life.

The Structure of a Dynamic Explanation

Even answers to all of these questions will only begin 
to explain our Tamil woman's behavior, but before con­ 
tinuing, let us ask what has already been revealed.
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Our explanation has the form of a fugue, with two 
intertwined themes. First, to explain an event, we refer to 
antecedent events initial conditions. To explain a 
Tamil-speaking woman's presence in Singapore, we find 
a migration from Madras. But that poses the new ques­ 
tion of explaining the presence of Tamil-speaking people 
in southern India. So explanation by antecedent events 
takes us back to the explanation of those antecedents. If 
the data were available (they are not), they could take us 
step by step in an almost infinite regress to the cosmo- 
logical Big Bang and beyond.

But the second theme of the fugue explanation by 
antecedent events also requires general laws to explain 
how each situation causes the succeeding one. What 
causes of migration can take people from one land to 
another? What laws determine the language that a person 
will speak in an ethnically foreign land, and when?

The natural sciences commonly employ this fuguelike 
structure of explanation. The differential equations of 
physics describe mechanisms that determine the next 
movements of the stars and planets, given the initial con­ 
ditions: their present positions and velocities. The laws of 
genetics and Darwinian selection explain how a commu­ 
nity of organisms (the initial conditions) evolves over 
years or millennia into a new and different community.

For systems that change through time, explanation 
takes this standard form: Laws acting on the current state 
of the system produce a new state endlessly. Such ex­ 
planations can be formalized as systems of differential 
equations or difference equations.

Explaining by Simulation

We return to our Tamil women, whom we left talking 
on the street. To understand their conversation, we must 
have some knowledge of the lexicon and syntax of their 
language. Tamil is one of about 20 highly inflected Dra- 
vidian languages spoken throughout southern India. To 
characterize its syntax, we build a computer program that 
parses the speaker's sentences. Such a parser is also a set 
of difference equations, playing the same role as the dif­ 
ferential equations in physics.

But we might go even further in explaining Tamil. We 
might build a diachronic story conceptually, another set 
of difference equations to explain how the contempo­ 
rary Dravidian languages evolved from some common 
ancestral base. This means postulating laws of linguistic 
transformation that cause language evolution. Since 
Chomsky's revolution, or even since Grimm's, explana­ 
tion in linguistics has become another exercise in building 
and testing difference equations (Chomsky, 1957).

Another approach to these questions is to write com­ 
puter programs that are capable of using and understand­ 
ing, even learning, language. A computer program is (lit­

erally, not metaphorically) a system of difference 
equations. For each possible state of the computer, com­ 
bined with the input at that instant, the program deter­ 
mines the next state of the computer. The computer's 
memory holds the initial conditions (the current state) 
and the laws of behavior (the program). Its input devices 
convey to it the external stimulus, which may, as in the 
case before us, take the form of sentences in a natural 
language.

Since a computer program is a system of difference 
equations, a properly programmed computer can be used 
to explain the behavior of the dynamic system that it 
simulates. Theories can be stated as computer programs.

Controlled experiments can be performed on com­ 
puter programs, altering specified program components 
to determine how such changes affect the performance of 
tasks. The architecture can thereby be modified to sim­ 
ulate the human performance better.

There is no epistemological difference between using a 
program incorporating Newton's laws to explain the 
movements of Mars and using a program incorporating 
linguistic laws to explain how speech is generated or un­ 
derstood. But perhaps you are not familiar with the com­ 
puter programs that have these linguistic capabilities. 
One example is ISAAC, written by Novak (1977), which 
reads the English language statements of problems in 
physics textbooks, forms internal representations ("men­ 
tal pictures") of the problem situations, and then pro­ 
ceeds to derive the applicable equations and to solve 
them.

Another such program is ZBIE, written by Sikldssy 
(1972), which reads a simple sentence in a natural lan­ 
guage at the same time it inputs a diagrammatic repre­ 
sentation of the scene described by the sentence (e.g., 
"The dog chases the cat."). ZBIE learns the meanings of 
the words in the sentences it reads (i.e., learns what ob­ 
jects or relations in the diagrams the words denote) and 
analyzes their grammatical structure. When it is later 
confronted with a scene it has not seen before, but one 
composed of familiar kinds of objects in familiar rela­ 
tions, it constructs an appropriate and grammatically cor­ 
rect sentence to describe the scene.2

A remarkable feature of programs like ZBIE is that 
they not only explain how natural language is under­ 
stood, they also understand it. The linguistic symbols are 
not translated into an esoteric formal language; hence, we 
do not have to numericize or otherwise encode the sen­ 
tences whose production or understanding we wish to

2. Because the words in the sentences have denotations in the dia­ 
grams, ZBIE has a genuine understanding of the sentences it reads and 
those it constructs. It anticipates fully, and by a decade, the objections 
against machine understanding raised by Searle (1984) in his Chinese 
Room parable and answers these objections decisively.
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explain. The programs use symbol structures that are 
isomorphic to those the human subject uses. All informa­ 
tion processing theories of cognition have this property: 
They actually perform the tasks whose performance they 
explain.

Programs that simulate cognitive processes describe 
the processes in symbolic languages isomorphic to those 
being modeled, and hence, actually execute the pro­ 
cesses. Consequently, they provide a rigorous test of the 
sufficiency of the hypothesized processes to perform the 
tasks of interest.

NEUROPHYSIOLOGICAL EXPLANATION

Simulating language behavior with a computer teaches 
us the properties an architecture must possess if it is to 
speak and listen, and what processes are employed by its 
program. It allows us to test, at the level of symbolic 
behavior, how closely these processes resemble those of 
human speakers or listeners. It does not tell us how the 
same structural conditions and programs are realized by 
the biological components known as neurons and the as­ 
semblages of components that make up the biological 
brain.

Explanation of cognitive processes at the information 
processing (symbolic) level is largely independent of ex­ 
planation at the physiological (neurological) level that 
shows how the processes are implemented.

There is nothing mysterious abut explaining phenom­ 
ena at different levels of resolution. It happens all the 
time in the physical and biological sciences. A theory of 
genetics need not (fortunately) rely on a knowledge of 
quarks. As a matter of history, the former theory pre­ 
ceded the latter by many years. The theory of genetic 
processes was developed by Mendel, using genes as ab­ 
stract primitive "atoms." Fifty years later, a microscopic 
foundation was provided for the theory by locating the 
genes in visible chromosomes. After another half cen­ 
tury, the structure of chromosomes was elucidated in 
terms of the combinatorics of DNA, strands of four com­ 
plex submolecules, nucleotides. Two levels of reduction 
and still no quarks! And no need of them, although we 
surely believe that nucleotides are made of atoms, which 
are made of neutrons and protons, which are made of 
quarks.

Explanation on different levels does not deny the pos­ 
sibility of reduction. Higher level theories use aggregates 
of the constructs at lower levels to provide parsimonious 
explanations of phenomena without explicit reference to 
the microconstructs. The lower level details do not show 
through to the higher level.

Of course, the higher level mechanisms are reducible 
to those of the lower level (at least in principle, although 
the computations can actually be carried out only in the

simplest situations). But we do not require the reduction 
in order to explain the aggregate events at the higher 
level. We can write the system of difference equations for 
this higher level independently of any lower level expla­ 
nation. Cognitive psychology (fortunately) does not have 
to stand still with breathless expectation until neurophys- 
iology completes its work. As cognitive psychology has 
been doing, it can proceed with its task of explaining 
thought processes at the level of symbol systems.

Partitioning explanation into levels also points to a 
strategy for neurophysiological research. Neuropsychol- 
ogy has two main tasks. It must explain electrochemi- 
cally how neurons and simple organizations of neurons 
store and transmit information. It must also help build the 
bridge theory that shows how the symbol structures and 
symbol-manipulating processes that handle information 
at a more aggregated level can be implemented by such 
neuronal structures and organizations. The bridge need 
not be built solely from one bank of the river; it can be 
constructed by cooperative effort of information process­ 
ing psychologists with neuropsychologists. But if they 
are to cooperate, they must learn to read each other's 
blueprints.

This strategy relieves neuropsychology of the heroic, 
but impossible, task of climbing in a single step from 
neurons and nerve nets up to complex human behavior 
without inserting intermediate strata into the structure. 
Some neuropsychologists and connectionists do not yet 
accept the need for higher level aggregate theories, or the 
meaning of information processing programs as examples 
of such theories. Such misunderstanding forms a serious 
barrier to collaboration.

Nowadays, a discussion of neurophysiology necessar­ 
ily raises the question of whether mental functions are to 
be modeled as parallel or serial systems. At the lowest 
level, the individual neuron demonstrably transmits sig­ 
nals longitudinally, in serial fashion. At the next level up, 
brain tissue forms a network of elements operating in 
parallel, and the same can be said of the eyes and ears. At 
the level of conscious re portable events, the bottleneck 
of attention and short-term memory again gives the mind 
the characteristics of a serial organization. It is worth 
pondering that the low-level anatomy of the conventional 
von Neumann "serial" computer looks every bit as par­ 
allel as a neural network; yet at the more aggregate, sym­ 
bolic, level, it executes its processes sequentially, one or 
a few at a time.

From these observations, we can conclude, first, that 
at the level of the network of neurons, modeling will have 
to be largely parallel. It is not clear, as yet, how far we 
can abstract from the details of neural structure in our 
models, or how many structures the models will have to 
contain to simulate relevant events at this level.

Second, at the symbolic level the level of events tak-
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ing place in hundreds of milliseconds or more modeling 
will continue to be largely serial, for the mind behaves 
like a serial system wherever the bottleneck of attention 
supervenes upon events. While most people can proba­ 
bly chew gum and walk at the same time, very few can 
carry on a technical conversation while maneuvering a 
car through heavy traffic.

Third, at the intermediate level of events milliseconds 
or tens of milliseconds in duration, the comparative ad­ 
vantages of parallel and serial modeling are not yet clear. 
This is the level of the EPAM program (Feigenbaum & 
Simon, 1984), which simulates learning and perception at 
the symbolic level, and the level of most connectionist 
systems. It is also the foundation level of SOAR (Newell, 
1990), a unified control structure for cognition. Teasing 
out the respective roles of parallel and serial processors 
and their interface at or near this level is a major con­ 
temporary task for cognitive research.

STATIC THEORIES

Concern with architecture reminds us that not all theo­ 
ries take the form of difference equations. In fact, theo­ 
ries in psychology have traditionally had a quite different 
form. Typically, they make assertions such as "If the 
independent variable, x, increases, the dependent vari­ 
able, y, will also increase." Laws of this form are very 
weak. They are also merely descriptive, not explanatory.

Much stronger claims are made by laws of the form "y 
= 80* + 300," where the parameters, 80 and 300, were 
known or estimated prior to the current experiment. If, in 
addition, these parameters describe structural character­ 
istics of the system (e.g., the speed at which it can store 
or access information), then the law begins to explain as 
well as to describe. Let us call laws of this kind, with the 
numerical parameters taken seriously, models.

For example, Baddeley (1981) showed that the con­ 
tents of short-term memory can be retained for only 
about 2 s without overt or covert rehearsal. This finding 
implies that the maximum capacity of short-term memory 
is whatever content can be rehearsed in this time. Other 
experiments have shown that it takes about 300 ms to 
recover a familiar "chunk" (e.g., a familiar word or 
phrase) from long-term memory, and about 80 ms per 
syllable to pronounce it. From these facts, there follows 
the law: 2,000 = 300C + 805, where C and S are the 
numbers of chunks and syllables, respectively, in the 
longest strings that can be retained in short-term mem­ 
ory. The law can be tested using the standard immediate 
recall paradigm (Zhang & Simon, 1985).

Some of the properties of systems can be captured in 
static laws, preferably models, which specify the rela­ 
tions among variables, qualitatively or numerically.

EXPLAINING THINKING

Our Tamil women are still talking on the street in Sin­ 
gapore. So far, we do not know what they are saying. 
When we eavesdrop, we find that the speaker is explain­ 
ing to her companions how to solve the Tower of Hanoi 
puzzle!3

By now, we know exactly how to theorize about this 
kind of behavior. We construct a set of difference equa­ 
tions (a computer program in a symbol-processing lan­ 
guage) that simulates human behavior in solving the 
Tower of Hanoi problem. In fact, programs of this kind 
have existed for some years (Simon, 1975). Notice that I 
refer to "programs" in the plural, for different people 
may solve the problem in different ways, using different 
strategies.

Heuristic Search

Heuristic search is too familiar to require lengthy de­ 
scription. Common to virtually all of the problem-solving 
strategies that people have been observed to use is a 
problem space and a search through this space until a 
solution is reached (Newell & Simon, 1972). The moves 
that change one situation into another in the Tower of 
Hanoi may be legal moves, as defined by the problem 
instructions, or they may be "wished-for" moves that 
change the current situation into a distant one in one step.

In some strategies, most of the problem solving takes 
place in the head, making use of symbolized goals and 
mental models, symbol structures describing the situa­ 
tion at each stage of the search. In other strategies, the 
subjects work directly from the physical Tower of Hanoi 
puzzle in front of them, using visual perception of the 
current arrangement of the disks to calculate a next 
move, and recording it by actually moving the disk. In 
currently fashionable terminology, the subjects who use 
the latter strategies are engaging in situated action.

There is a good deal of debate at present (under the 
rubric of situated action) as to whether problem solving 
requires the subject to create a mental problem space and 
to search in that space, or whether the search can be 
almost wholly external, with no significant problem rep­ 
resentation in the head (Suchman, 1987; Winograd & 
Flores, 1986). Sometimes the debate is enlarged by chal­ 
lenging whether problem solving can be modeled at all by 
symbolic systems.

The best way to resolve the debate is to construct 
programs and observe what they can and cannot do. A

3. It is widely believed on the Carnegie-MeHon campus that I cannot 
give a talk without mentioning the Tower of Hanoi within the first 15 
min. I contribute this new evidence to support that belief.
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running program is the moment of truth. This particular 
debate has been largely resolved by programs already 
written and tested. Some strategies that have been writ­ 
ten for the Tower of Hanoi depend on search through an 
internal representation of the problem, or even initial 
search through an abstracted representation to find a plan 
for the more detailed search. Other strategies that have 
been written search externally, representing internally 
only the "affordances" provided by the external objects 
and their relations (Simon, 1975). Hence, it has been 
demonstrated constructively that both situated action 
and strategies requiring planning and internal represen­ 
tations are realizable by symbol-processing systems.

What has not been settled, and cannot be settled with­ 
out extensive empirical study, is the extent to which, and 
the circumstances under which, human beings will use 
one or another kind of strategy. Our Tamil woman is not 
carrying a physical Tower of Hanoi puzzle with her. She 
has no alternative, if she is to explain the solution to her 
friends, but to form a mental representation of some 
sort a problem space and to describe the moves in that 
space. Her friends have no alternative for understanding 
the explanation but to translate the description into their 
own mental representations. If a physical Tower of Hanoi 
puzzle were present, matters might be quite different. 
But life does offer us a great deal of variety. So much for 
situated action.

Different people, or the same people in different situ­ 
ations, can employ different strategies for performing a 
given task. A theory of their performance would include 
a computer program describing the strategy they are us­ 
ing in a given instance together with a specification of the 
circumstance under which this particular strategy will be 
used. The specification can include a variety of elements, 
including the subjects' previous experience and learning.

Expert Behavior

Actually, I was joking about the Tower of Hanoi. That 
is not what the Tamil women are talking about at all. In 
fact, the speaker is telling about a new recipe she has 
learned; her friends regard her as an expert in preparing 
gourmet meals.

The conversation is not a monologue. The expert does 
most of the talking, but her friends ask frequent ques­ 
tions, and she usually replies promptly. One of them asks 
how long the dish should remain in the oven. The expert 
answers, then says, "Of course, I don't have any sys­ 
tematic rules for determining such things. I just use my 
intuition. It's all a matter of experience."

The expert has just stated, very succinctly, the theory 
of expert performance that has emerged in recent years 
from psychological research and modeling. In everyday 
speech, we use the word intuition to describe a problem-

solving or question-answering performance that is 
speedy and for which the expert is unable to describe in 
detail the reasoning or other process that produced the 
answer. The situation has provided a cue; this cue has 
given the expert access to information stored in memory, 
and the information provides the answer. Intuition is 
nothing more and nothing less than recognition.

We do not have conscious access to the processes that 
allow us to recognize a familiar object or person. We 
recognize our friend, but we do not know what traits and 
features, what cues, enable that recognition to occur. 
Nor can we describe these traits and features to other 
people accurately enough to enable them to recognize the 
same person. We are aware of the fact of recognition, 
which gives us access to our knowledge about our friend; 
we are not aware of the processes that accomplish the 
recognition.

The process of recognition (i.e., intuition) is readily 
realized in computer programs by means of so-called pro­ 
ductions. A production is an (if  »then), or (condition  » 
action), statement that, at least superficially, resembles a 
(stimulus -» response) linkage. For our present purposes, 
we need note only that, while the stimuli of classical 
behaviorism are in the environment, not in the head, the 
conditions that have to be satisfied to trigger the action of 
a production may be (but need not be) symbol structures 
held in memory. Productions can implement either situ­ 
ated action or internally planned action, or a mixture of 
these.

Quite general programming languages (e.g., the lan­ 
guage OPS5; Brownston, Farrell, & Martin, 1985) can be 
constructed entirely of productions. The execution of a 
production can be made to depend on a context by in­ 
cluding among the conditions for execution one or more 
goal symbols. The production will then be activated only 
in contexts where the appropriate goal is present. Con­ 
ditions can also reflect other elements of contexts besides 
goals.

Consider a (simplified) expert modeled as a production 
system. Cues in the environment that the expert encoun­ 
ters trigger information in memory, hence, initiate ac­ 
tions appropriate to the situations marked by these cues. 
In its simplest form, the model produces situated action.

When the doctor notices some symptoms, a diagnosis 
is triggered, or, alternatively, information that is ac­ 
cessed indicates certain additional tests should be per­ 
formed to reach a definitive diagnosis (a departure from 
pure situated action). When the doctor has reached a 
diagnosis, another production accesses information in 
memory about the prognosis and about appropriate 
courses of treatment.

Information organized in a production system of this 
kind a sort of indexed encyclopedia can produce ex­ 
pert behavior. Expert systems may, in addition, have
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some capabilities for means-ends analysis or other forms 
of reasoning and heuristic search, but at their core is a 
production system capable of recognizing appropriate 
cues, hence, capable of acting intuitively.

There is no incompatibility between intuition and anal­ 
ysis. A chess master in a tournament does a good deal of 
analysis, of look-ahead to possible continuations of the 
game. The same chess master, playing simultaneously a 
number of weaker players, moves quickly, hardly ana­ 
lyzing ahead at all but selecting moves almost wholly on 
intuition in the form of recognition of weaknesses created 
by the opponents. This rapid play is weaker than the 
more analytic play of the tournament, but only a little 
weaker.

A large part of the chess master's expertise lies in his 
or her intuitive (recognition) capabilities, based, in turn, 
on large amounts of stored and indexed knowledge de­ 
rived from training and experience. Under the conditions 
of rapid play, the chess master's behavior is a form of 
situated action; under tournament conditions, it is more 
planful.

Similarly, our expert Tamil gourmet, after a quick in­ 
ventory of her refrigerator and kitchen cabinet, can rustle 
up a presentable and tasty meal in a hurry, relying on 
intuition experience encapsulated in memory and 
evoked by the sight of familiar items of food. Of course, 
given some time to plan and prepare, she can usually 
produce an even more delicious meal.

The core of an expert system, in human or computer, 
is a system of productions that operates like an indexed 
encyclopedia. Cues in the situation (external or imagined) 
are recognized by the conditions of productions, trigger­ 
ing the actions associated with these conditions. The case 
in which the cues are predominantly external is some­ 
times called situated action.

The production system of an expert is generally asso­ 
ciated also with reasoning (search) capabilities that sup­ 
port an adaptive system of analytic and intuitive re­ 
sponses.

ADAPTIVITY OF BEHAVIOR

The human mind is an adaptive system. It chooses 
behaviors in the light of its goals, and as appropriate to 
the particular context in which it is working. Moreover, it 
can store new knowledge and skills that will help it attain 
its goals more effectively tomorrow than yesterday: It 
can learn.

As a consequence of the mind's capacities for adapta­ 
tion and learning, human behavior is highly flexible and 
variable, altered by both circumstances and experience.

Scientific laws, whether descriptive or explanatory, 
are supposed to capture the invariants of the phenomena,

those underlying regularities that do not change from mo­ 
ment to moment. How does one find laws to describe or 
explain the behavior of an adaptive system?

The shape of a gelatin dessert cannot be predicted 
from the properties of gelatin, but only from the shape of 
the mold into which it was poured. If people were per­ 
fectly adaptable, psychology would need only to study 
the environments in which behavior takes place. Some of 
this viewpoint is reflected in the affordances of Gibson's 
(1979) theories of perception, and in the rational adapta­ 
tion models of my colleague Anderson (1990a, 1991).

In its extreme form, this position eliminates the need 
to run laboratory experiments or to observe people. 
Merely examine the shape of the mold: Analyze the en­ 
vironment in which the behavior is to take place and the 
goals of the actor, and from these deduce logically and 
mathematically what the optimal behavior (and hence the 
actual behavior) must be.

Nowhere has this method of explaining human behav­ 
ior been carried further than in modern neoclassical eco­ 
nomics. The neoclassical theories also show the severe 
limits of the approach. First, the scheme works only if the 
actor's goals and the alternative behaviors available for 
choice are known in advance. Change either the goals or 
the alternatives and the optimal decision may change (Si­ 
mon, 1991). Do we think that we can predict what the 
menu will be in the Singapore apartment tonight without 
knowing what is in the refrigerator, or what some of our 
gourmet's favorite recipes are? Can we predict it from a 
book on nutritionally optimal diets?

In most real choice situations, there is a multiplicity of 
goals, often partly conflicting and even incommensura­ 
ble. A simple example is the trade-off between speed and 
accuracy: Unless we know their relative importance, we 
cannot select an optimal behavior.

Nor are the alternatives from which the actor might 
choose usually known in advance (even to the experi­ 
menter). Human beings spend much of their time invent­ 
ing or discovering actions that fit the circumstances. The 
whole vast collection of human activities known as de­ 
sign whether in architecture or engineering, or painting, 
or management is aimed at synthesizing appropriate ac­ 
tions. In explaining or predicting behavior, whether op­ 
timal or not, we must know not only the design product 
(the alternative finally chosen) but the design process as 
well (Simon, 1981, chaps. 5 and 6).

The process of design is highly dependent on history 
and experience. Before Newton, designers did not use 
the calculus, and undoubtedly reached different solutions 
than in later ages when the calculus was available. So 
choice is always relativized to the current state of knowl­ 
edge, and inventing new alternatives or even new pro­ 
cesses for generating alternatives is very different from 
choosing among available and known alternatives.
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Design does not aim at optimization. Almost always, 
the process must be halted and a solution selected long 
before all alternatives have been generated and com­ 
pared. Even the idea of generating "all" alternatives is 
usually chimerical. Limits on human (and computer) cal­ 
culation and incomplete information foreclose finding the 
best: Most often, a stop rule halts the search when a 
satisfactory alternative is found one that meets a vari­ 
ety of criteria but maximizes none. So we should not 
expect the recipes of our expert gourmet cook to be op­ 
timal; but if she invites us to dinner at her Singapore 
home, the meal will be delicious; it will "satisfice."

The nonoptimality of behavior is obvious even in the 
simple Tower of Hanoi task discussed earlier. Many dif­ 
ferent strategies can be used to solve the problem; and 
even in identical circumstances, different subjects use 
different strategies, not all of which can be optimal. 
There is substantial empirical evidence that subjects also 
adopt a wide range of strategies, most of them subopti- 
mal, in solving cryptarithmetic problems (Newell & Si­ 
mon, 1972).

In complex adaptive behavior, the link between goals 
and environment is mediated by strategies and knowl­ 
edge discovered or learned by the actor. Behavior cannot 
be predicted from optimality criteria alone without infor­ 
mation about the strategies and knowledge agents pos­ 
sess and their capabilities for augmenting strategies and 
knowledge by discovery or instruction.

What constitutes an available alternative depends on 
the capabilities of the actor: such things as visual acuity, 
strength, short-term memory, reaction times, and speed 
and limits of computation and reasoning to say nothing 
of expertise based on stored knowledge and skill. Before 
the exercise of optimizing can be carried out, all of these 
side conditions must be nailed down: goals, knowledge of 
immediately available alternatives, means for generating 
new alternatives, knowledge for predicting the outcomes 
these alternatives will produce, and limits on the ability 
of the actor to hold information in memory and to calcu­ 
late.

The predictions of an optimizing theory depend as 
much on the postulated side conditions as on the optimi­ 
zation assumption. In fact, in most cases, if the correct 
side conditions are foreseen and predicted, the behavior 
can usually be predicted without any strict assumption of 
optimality; the postulate that people satisfice, look for 
"good enough" answers, is usually adequate to antici­ 
pate behaviors.

There is no way to determine a priori, without empir­ 
ical study of behavior, what side conditions govern be­ 
havior in different circumstances. Hence, the study of the 
behavior of an adaptive system like the human mind is 
not a logical study of optimization but an empirical study 
of the side conditions that place limits on the approach to

the optimum. Here is where we must look for the invari­ 
ants of an adaptive system like the mind.

But does the point need to be belabored? Optimization 
is an ideal that can be realized only in (a) extremely sim­ 
ple worlds (if offered the choice, take a $10 bill in pref­ 
erence to a $1 bill) and (b) worlds having strong and 
simple mathematical structures that admit the computa­ 
tions required for optimization (e.g., worlds that can be 
described in terms of a linear objective function and lin­ 
ear constraints, so that solutions can be found by linear 
programming algorithms). These are not the worlds in 
which most human life is lived.

We would not think of trying to predict where the 
moon will be at midnight tomorrow night without know­ 
ing where it is tonight. In the same way, we should not 
presume to predict how a human being will solve a prob­ 
lem or learn a new skill without knowing what that human 
being already has stored in memory by way of relevant 
information and skills. Changing the information and 
skills will change the behavior. This principle is the basis 
for all of the differences observed between experts and 
novices.

To some extent, we can finesse this requirement for 
our research by restricting our study to the ubiquitous 
college sophomore, assuming that all college sophomores 
know roughly the same things, at least those that are 
relevant to the mainly contentless tasks we confront them 
with. When we want to go further to study individual 
differences in task performance or to study the effects of 
previous knowledge and skill on performance, we must 
face up to the boundary conditions outlined above.

COGNITIVE AND SOCIAL PSYCHOLOGY

Since adaptive behavior is a function of strategies and 
knowledge, both largely acquired from the social envi­ 
ronment, there can be no sharp boundary between cog­ 
nitive psychology and social psychology. The context in 
which knowledge is acquired and used, an exogenous 
variable in cognitive psychology, provides the endoge­ 
nous variables for social psychology and sociology.

Studying expert behavior immediately begins to dis­ 
solve the boundary between cognitive psychology, on the 
one side, and social psychology (to say nothing of social 
and intellectual history), on the other. It is not an acci­ 
dent that histories of science provide an important part of 
the data used to test cognitive theories of scientific dis­ 
covery (Langley, Simon, Bradshaw, & Zytkow, 1987). 
The histories do not draw a boundary around individual 
investigators, but encompass the sources of an investiga­ 
tor's knowledge and, more broadly, the social processes 
that direct the production of scientific knowledge and its 
communication.

But we have already seen this point illustrated in the
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simple interaction among the Tamil women their choice 
of language, their very presence in Singapore, the influ­ 
ence of their experience (itself a product of social envi­ 
ronment) on what they can do and like to do.

As another example of this intermingling of the social 
with the cognitive, communication between different 
communities of experts involves translation, that is, un­ 
derstanding by members of one group of the language and 
concepts of the other. As Voss and his associates have 
shown, we can study one aspect of this phenomenon by 
observing how experts from different communities attack 
the same problem in quite different ways (Voss, Tyler, & 
Vengo, 1983). Another aspect, not yet much studied, 
would tell us how experts learn to translate from foreign 
dialects.

The flow between cognitive and social runs in both 
directions. Social psychologists have long been inter­ 
ested in how people form beliefs, or models, about other 
persons. Theories of person perception need to be inte­ 
grated with cognitive theories about knowledge acquisi­ 
tion and formation of representations. There is no a priori 
reason to suppose that different processes are involved in 
the two cases.

DIVIDE AND CONQUER

In trying to understand the behavior of three women 
on a street in Singapore, we have already set a dizzying 
array of tasks for psychology: to explain the migrations of 
peoples; the origins and changes in their languages; their 
development as individuals in society; their gradual ac­ 
quisition of values, skills (including skills of social inter­ 
action), knowledge, and attitudes; the adaptation of their 
behavior to their goals; and the physiological underpin­ 
nings of all of these processes. It appears that we are 
going to have to build computer programs, systems of 
difference equations, of immense complexity to explain 
such behavior.

Forms of Subdivision

Fortunately, we do not have to explain everything at 
once, or within the boundaries of a single program. We 
have already seen that complex phenomena can usually 
be segmented into levels from macroscopic to micro­ 
scopic, separated by both the spatial and the temporal 
scales of the events they describe. Provided that the phe­ 
nomena are roughly hierarchical in structure, as most 
natural phenomena are, we can build explanatory theo­ 
ries at each level, and then bridging theories that link the 
aggregated physiological behavior to the units of expla­ 
nation at the symbolic level just above.

Above the symbolic level, we can study more compre­ 
hensive social phenomena on a different time scale, with­

out serious interaction between our theories of social his­ 
tory, say, and our theories of problem solving. Only 
aggregative properties of the symbolic processes will en­ 
ter into the explanation of the larger scale social phenom­ 
ena (Simon & Ando, 1961).

We can divide up the task of explanation in other 
ways. Difference equations explain actions and their con­ 
sequences as functions of the initial conditions; they ex­ 
plain the moment after in terms of the moment before. 
For many purposes, we can take the system's initial con­ 
ditions, the contents and organization of memory when 
our observations begin, as given, and leave to another 
day and another theory the explanation of how those 
initial conditions came about.

Thus, we can study the behavior of an accomplished 
expert and compare it with the behavior of a novice, 
while putting aside the explanation of how the expert 
became so. We can study how different strategies plans 
versus situated action, say lead to different behaviors, 
but study separately how strategies are acquired.

Similarly, we can factor, if only incompletely, the syn­ 
tax of language from its semantics, and thereby study 
how speech strings are processed more or less indepen­ 
dently of our study of how large structures of knowledge 
are organized when they are stored in the human brain.

Unified Theories

In pointing to the virtues and even necessities of the 
divide-and-conquer strategy, I am not denigrating the ef­ 
forts of others to build unified theories of cognition: 
Andersen's (1983) ACT*, Newell's (1990) SOAR, or 
Rumelhart and McClelland's (1986) connectionist sys­ 
tems just to mention the efforts of some colleagues. But 
we must understand the goal of those efforts. The goal is 
not to erect a single system representing the "whole 
man." Rather, it is to show how a single control structure 
can handle all of the cognitive processes of which the 
human mind is capable.

Perhaps the activity would be better understood if it 
were labeled ''unified theories of the control of cogni­ 
tion." In any event, the effort to build such comprehen­ 
sive control structures does not in any way make otiose 
or superfluous efforts to build explanatory theories of 
components of cognitive performances, and to build 
them at various levels of aggregation.

For a realistic conception of what unified might mean, 
we need to look over our shoulders at that most unified 
and parsimonious of sciences, physics, with its hundreds 
of pages of theory of specific phenomena at various levels 
of detail and resolution, all bound together rather shakily 
into the broader structures of quantum mechanics, rela­ 
tivity theory, and the still somewhat visionary unified 
field theories.
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And if a look at physics does not persuade us that 
unified theories tell only a small part of the story, we can 
inspect chemistry, and biology, and geology, and genet­ 
ics, where the point is even more glaringly obvious.

METHODS FOR THE STUDY OF BEHAVIOR

Our methods for gathering data to test our theories 
must fit the formal shapes of the theories. I limit my 
remarks to theories of symbolic cognitive processes. 
What are appropriate methods for testing the fit of com­ 
puter programs (difference equations) to human behav­ 
ior? The programs predict the next action a system will 
take as a function of its present state and current input; 
that is to say, they predict what production will fire at 
each successive moment. The fineness of resolution of 
symbolic programs is of the order of tens or hundreds of 
milliseconds: The programs predict what the subject will 
do each few hundreds of milliseconds.

Contemporary technology largely limits us to observ­ 
ing subjects' visible and audible behaviors, and the rich­ 
est streams of such behaviors are verbalizations and eye 
movements. Under most circumstances, we do not yet 
know how to interpret in detail the information we get 
from electrical measurements on the scalp.

We can obtain data for analyzing the behavior of the 
Tamil women because one of them, not wanting to miss 
any of the details of the recipes, is tape-recording their 
conversation. Unfortunately, the available technology 
does not permit us to record eye movements on a street 
in Singapore.

Data on eye movements and verbalizations are still too 
coarse to capture all the behavior at the symbolic level. 
In eye movements, we may detect a new saccade every 
V6 or V2 s. In verbalization, subjects may utter a clause or 
phrase equivalent to a proposition every 2 or 3 s, at best. 
Much of our inference from behavior to the underlying 
program has to be indirect.

But that is no cause for dismay. In this regard, cogni­ 
tive psychology is not different from the other sciences, 
which are always inferring underlying theoretical pro­ 
cesses from gross observed events. At that future time 
when we shall obtain direct evidence, say, electrochem­ 
ical evidence, identifying precisely the sequence of pro­ 
cesses being executed, the game will be over and we will 
need to look for new domains of research. But we need 
not hold our breaths while waiting for that to happen.

We now know the difference between verbal proto­ 
cols, interpreted as behavior, and introspection (Ericsson 
& Simon, 1984). Over the past quarter century, we have 
gathered vast experience in encoding verbal protocols 
and eye movement records at a level of detail that permits 
us to test what productions are being executed. We 
should strive to improve these methodologies, and they

will continue to improve, but we do not need to be un­ 
happy with our current ability to test our theories of cog­ 
nition.

Along one dimension at least, considerable unhappi- 
ness is still expressed. How can we test the significance 
of the discrepancies we find between our models and the 
observed human behavior? Computer programs are com­ 
plex, having many degrees of freedom. By taking advan­ 
tage of this freedom, cannot we simply adjust the pro­ 
gram ad hoc to fit any data?

A sound caution underlies this objection. Our confi­ 
dence in a theory grows, and should grow, with increase 
in the ratio of the number of data points explained to the 
number of degrees of freedom in the theory. A theory 
expressed as a computer program has many degrees of 
freedom. But a human thinking-aloud protocol, or a set of 
such protocols, contains a great many data points. It is 
the ratio that counts, and that ratio can be very large.

Standard procedures for evaluating the fit of computer 
programs to data are lacking today. The familiar tests of 
statistical significance are inappropriate. The percentage 
of variance explained is more useful, but does not take 
into account the number of degrees of freedom. I have no 
precise solution to offer to the problem, but the direction 
in which we should look for one is obvious.

Search for alternative ways of testing our theories 
brings us back to more conventional psychological ex­ 
periments. Conventionally, we observe a few behaviors 
(latencies, accuracies) over some minutes, then average 
the data over tasks and subjects, then compare the aver­ 
aged numbers between control and experimental condi­ 
tions. While this standard procedure is often useful and 
valuable, it also suffers from severe limitations. Its tem­ 
poral resolution is very low; it can seldom be used to 
study individual events of a few seconds' duration.

More serious, conventional experimental methods do 
not deal with the serial dependency of events on this 
temporal scale. Since the execution of each production of 
the cognitive system can change memory contents, 
hence, change the conditions that determine what pro­ 
duction will fire next, it is hard to test an explanation of 
the behavior unless this temporal dependency can be cap­ 
tured in the data. In particular, averaging over subjects is 
bound to destroy sequential contingencies. Verbal proto­ 
cols and eye movement records are almost the only forms 
of data that give us any means for capturing these con­ 
tingencies.

A principal means for testing theories of cognition at 
the level of elementary symbolic processes is to compare 
the successive behaviors the theories predict with the 
successive behaviors of subjects revealed by thinking- 
aloud protocols and eye movement records. The proce­ 
dures for testing goodness of fit are not yet standardized, 
but the underlying principle is to demand a high ratio of
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data points to numbers of productions in the simulation 
programs.

CONCLUSION

We have left our Tamil women standing on the street 
in Singapore, but I am sure that they will finish their 
conversation and return home before the heavy after­ 
noon shower drenches them and refreshes the city. They 
have given us some hope that their behavior, as an ex­ 
ample of the general run of human behavior, is explain­ 
able, and that today we already possess many important 
pieces of that explanation at the level of symbolic pro­ 
cesses.

By way of summary, I recall here the main generali­ 
zations we reached along the way:

Computer Programs as Theories

For systems that change through time, explanation 
takes the form of laws acting on the current state of the 
system to produce a new state endlessly. Such expla­ 
nations can be formalized with differential or difference 
equations.

A properly programmed computer can be used to ex­ 
plain the behavior of the dynamic system that it simu­ 
lates. Theories can be stated as computer programs.

Controlled experiments can be performed on com­ 
puter programs to determine how such changes affect the 
performance of tasks. The programs can then be modified 
to simulate the human performance better.

Programs that simulate cognitive processes describe 
these processes in symbolic languages and actually exe­ 
cute the processes. Consequently, they test the suffi­ 
ciency of the theory to perform the tasks.

Symbolic and Physiological Explanation

Explanation of cognitive processes at the information 
processing (symbolic) level is largely independent of ex­ 
planation at the physiological (neurological) level.

Explanation on different levels does not deny the pos­ 
sibility of reduction. Higher level theories use aggregates 
of the constructs at lower levels. The lower level details 
do not show through to the higher level.

Some of the properties of systems can be captured in 
static laws that specify the relations among variables, 
qualitatively or numerically.

Dependence of Behavior on Knowledge

Different people, or the same people in different situ­ 
ations, can employ different strategies for performing a

given task. A theory of their performance would describe 
their strategies and specify the circumstance under which 
each strategy will be used.

The core of an expert or expert system is a system of 
productions that operates like an indexed encyclopedia. 
External or imagined cues are recognized by the condi­ 
tions of productions, triggering the associated actions. 
The case in which the cues are predominantly external is 
sometimes called situated action.

The production system of an expert is associated also 
with reasoning (search) capabilities that support an inte­ 
grated system of analytic and intuitive responses.

Adaptive Systems

The human mind is an adaptive system that chooses 
behaviors in the light of its goals, and as appropriate to 
context. Moreover, it can store new knowledge and 
skills: It can learn.

The link between goals and environment is mediated 
by learned strategies and knowledge. Behavior cannot be 
predicted from optimality criteria without information 
about the strategies and knowledge agents possess or ac­ 
quire.

The study of the behavior of an adaptive system is not 
a logical study of optimization but an empirical study of 
the side conditions that place limits on the approach to 
the optimum.

Cognitive and Social Psychology

Since strategies and knowledge are both largely ac­ 
quired from the social environment, there can be no 
sharp boundary between cognitive psychology and social 
psychology. The context in which knowledge is acquired 
and used, an exogenous variable in cognitive psychology, 
provides the endogenous variables for social psychology 
and sociology.

Verbal Protocols as Data

Theories of cognition can be tested by comparing the 
behaviors they predict with the successive behaviors of 
subjects revealed by thinking-aloud protocols and eye 
movement records. Strictness demands a high ratio of 
data points to numbers of productions in the programs.

In summarizing at this high level of abstraction, I have 
left out all of the rich detail of the behavior we can ex­ 
plain: chess playing, medical diagnosis, problem solving 
in physics and mathematics, the use of diagrams in think­ 
ing, scientific discovery yes, and even the Tower of 
Hanoi, and a conversation about cookery on a street in 
Singapore.
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