
Epigrams on Programming

Alan J. Perlis (1922-1990)

Carnegie Mellon is extremely grateful to Alan 
for his fundamental contribution to the Univer­ 
sity — starting the Computer Science Depart­ 
ment in 1965. He was one of the three 
founders, together with Herb Simon and Alien 
Newell. Although computer science at Car­ 
negie Mellon actually came out of the business 
school, it was Alan Perils' doing to create an 
independent department and give it a place 
close to mathematics and the sciences.

Alan is vividly remembered by the senior 
faculty, and remembered very fondly for his 
unique contribution not only as the first depart­ 
ment head and organizer, but even more for the 
team spirit he managed to establish. He was 
the one who lived by the reasonable person 
principle — creating a supportive and construc­ 
tive environment lacking much of the frustrat­ 
ing bureaucracy and aggravating competitive­ 
ness that one finds in many other places. Alan 
was the one who started the policy of sharing 
research funding in such a way that incoming 
Ph.D. students could choose an advisor or a 
research topic mainly depending on their inter­ 
ests and not primarily on the temporary fund­ 
ing situation of individual faculty.

Alan will also be remembered as an inspired 
teacher and as an innovative educator...

— A. Nico Habermann, Alan J. Perlis Professor of 
Computer Science

Definition 1: epigram — a concise poem 
dealing pointedly and often satirically 
with a single thought or event and often 
ending with an ingenious turn of thought; 
— a terse, sage, or witty and often para­ 
doxical saying.

Epigrams on Programming
The phenomena surrounding computers are di­ 
verse and yield a surprisingly rich base for launch­ 
ing metaphors at individual and group activities. 
Conversely, classical human endeavors provide an 
inexhaustible source of metaphor for those of us 
who are in labor within computation. Such 
relationships between society and device are not 
new, but the incredible growth of the computer's 
influence (both real and implied) lends this sym­ 
biotic dependency a vitality like a gangly youth 
growing out of his clothes within an endless 
puberty.
The epigrams that follow attempt to capture some 
of the dimensions of this traffic in imagery that 
sharpens, focuses, clarifies, enlarges and beclouds 
our view of this most remarkable of all mans' ar­ 
tifacts, the computer.

— Alan J. Perlis, while at Yale University



1. One man's constant is another man's 
variable.

2. Functions delay binding: data struc­ 
tures induce binding. 
Moral: Structure data late in the 
programming process.

3. Syntactic sugar causes cancer of the 
semi-colons.

4. Every program is a part of some other 
program and rarely fits.

5. If a program manipulates a large 
amount of data, it does so in a small 
number of ways.

6. Symmetry is a complexity reducing 
concept (co-routines include sub­ 
routines); seek it everywhere.

7. It is easier to write an incorrect 
program than understand a correct 
one.

8. A programming language is low level 
when its programs require attention to 
the irrelevant.

9. It is better to have 100 functions 
operate on one data structure than 10 
functions on 10 data structures.

10. Get into a rut early: Do the same 
processes the same way. Accumulate 
idioms. Standardize. The only 
difference(i) between Shakespeare and 
you was the size of his idiom list — not 
the size of his vocabulary.

11. If you have a procedure with 10 
parameters, you probably missed 
some.

12. Recursion is the root of computation 
since it trades description for time.

13. If two people write exactly the same 
program, each should be put in 
microcode and then they certainly 
won't be the same.

14. In the long run every program be­ 
comes rococo — then rubble.

15. Everything should be built top-down, 
except the first time.

16. Every program has (at least) two pur­ 
poses: the one for which it was written 
and another for which it wasn't.

17. If a listener nods his head when you're 
explaining your program, wake him 
up.

18. A program without a loop and a struc­ 
tured variable isn't worth writing.

19. A language that doesn't affect the way 
you think about programming is not 
worth knowing.

20. Wherever there is modularity there is 
the potential for misunderstanding: 
Hiding information implies a need to 
check communication.

21. Optimization hinders evolution.

22. A good system can't have a weak com­ 
mand language.

23. To understand a program you must 
become both the machine and the 
program.

24. Perhaps if we wrote programs from 
childhood on, as adults we'd be able to 
read them.

25. One can only display complex infor­ 
mation in the mind. Like seeing, 
movement of flow or alteration of view 
is more important than the static pic­ 
ture, no matter how lovely.



26. There will always be tilings we wish to 
say in our programs that in all known 
languages can only be said poorly.

27. Once you understand how to write a 
program get someone else to write it.

28. Around computers it is difficult to find 
the correct unit of time to measure 
progress. Some cathedrals took a cen­ 
tury to complete. Can you imagine the 
grandeur and scope of a program that 
would take as long?

29. For systems, the analogue of a face-lift 
is to add to the control graph an edge 
that creates a cycle, not just an ad­ 
ditional node.

30. In programming, everything we do is a 
special case of something more general 
— and often we know it too quickly.

31. Simplicity does not precede com­ 
plexity, but follows it.

32. Programmers are not to be measured 
by their ingenuity and their logic but 
by the completeness of their case 
analysis.

33. The 11 th commandment was "Thou 
Shalt Compute" or "Thou Shalt Not 
Compute" — I forget which.

34. The string is a stark data structure and 
everywhere it is passed there is much 
duplication of process. It is a perfect 
vehicle for hiding information.

35. Everyone can be taught to sculpt: 
Michelangelo would have had to be 
taught how not to. So it is with the 
great programmers.

36. The use of a program to prove the 4- 
color theorem will not change math­ 
ematics — it merely demonstrates that 
the theorem, a challenge for a century, 
is probably not important to math­ 
ematics.

37. The most important computer is the 
one that rages in our skulls and ever 
seeks that satisfactory external 
emulator. The standardization of real 
computers would be a disaster — and 
so it probably won't happen.

38. Structured Programming supports the 
law of the excluded muddle.

39. Re: graphics: A picture is worth 10K 
words — but only those to describe the 
picture. Hardly any sets of 10K words 
can be adequately described with pic­ 
tures.

40. There are two ways to write error-free 
programs; only the third one works.

41. Some programming languages manage 
to absorb change, but withstand 
progress.

42. You can measure a programmer's 
perspective by noting his attitude on 
the continuing vitality of FORTRAN.

43. In software systems it is often the early 
bird that makes the worm.

44. Sometimes I think the only universal in 
the computing field is the fetch- 
execute cycle.

45. The goal of computation is the emula­ 
tion of our synthetic abilities, not the 
understanding of our analytic ones.

46. Like punning, programming is a play 
on words.



47. As Will Rogers would have said, 
"There is no such thing as a free vari­ 
able."

48. The best book on programming for the 
layman is "Alice in Wonderland"; but 
that's because it's the best book on 
anything for the layman.

49. Giving up on assembly language was 
the apple in our Garden of Eden: Lan­ 
guages whose use squanders machine 
cycles are sinful. The LISP machine 
now permits LISP programmers to 
abandon bra and fig-leaf.

50. When we understand knowledge- 
based systems, it will be as before — 
except our finger-tips will have been 
singed.

51. Bringing computers into the home 
won't change either one, but may revi­ 
talize the corner saloon.

52. Systems have sub-systems and sub­ 
systems have sub-systems and so on 
ad finitum — which is why we're al­ 
ways starting over.

53. So many good ideas are never heard 
from again once they embark in a 
voyage on the semantic gulf.

. Beware of the Turing tar-pit in which 
everything is possible but nothing of 
interest is easy.

55. A LISP programmer knows the value of 
everything, but the cost of nothing.

56. Software is under a constant tension. 
Being symbolic it is arbitrarily perfec­ 
tible; but also it is arbitrarily change­ 
able.

57. It is easier to change the specification 
to fit the program than vice versa.

58. Fools ignore complexity. Pragmatists 
suffer it. Some can avoid it. Geniuses 
remove it.

59. In English every word can be verbed. 
Would that it were so in our program­ 
ming languages.

60. Dana Scott is the Church of the Lattice- 
Way Saints.

61. In programming, as in everything else, 
to be in error is to be reborn.

62. In computing, invariants are 
ephemeral.

63. When we write programs that "learn", 
it turns out we do and they don't.

64. Often it is means that justify ends: 
Goals advance technique and tech­ 
nique survives even when goal struc­ 
tures crumble.

65. Make no mistake about it: Computers 
process numbers — not symbols. We 
measure our understanding (and con­ 
trol) by the extent to which we can 
arithmetize an activity.

66. Making something variable is easy. 
Controlling duration of constancy is 
the trick.

67. Think of all the psychic energy ex­ 
pended in seeking a fundamental dis­ 
tinction between "algorithm" and 
"program."

68. If we believe in data structures, we 
must believe in independent (hence 
simultaneous) processing. For why 
else would we collect items within a 
structure? Why do we tolerate lan­ 
guages that give us the one without 
the other?



69. In a 5 year period we get one superb 
programming language. Only we 
can't control when the 5 year period 
will begin.

70. Over the centuries the Indians 
developed sign language for com­ 
municating phenomena of interest. 
Programmers from different tribes 
(FORTRAN, LISP, ALGOL, SNOBOL, etc.) 
could use one that doesn't require 
them to carry a blackboard on their 
ponies.

71. Documentation is like term insurance: 
It satisfies because almost no one who 
subscribes to it depends on its benefits.

72. An adequate bootstrap is a contradic­ 
tion in terms.

73. It is not a language's weaknesses but 
its strengths that control the gradient 
of its change: Alas, a language never 
escapes its embryonic sac.

74. Is it possible that software is not like 
anything else, that it is meant to be dis­ 
carded: that the whole point is to al­ 
ways see it as a soap bubble?

75. Because of its vitality, the computing 
field is always in desperate need of 
new cliches: Banality soothes our 
nerves.

76. It is the user who should parametrize 
procedures, not their creators.

77. The cybernetic exchange between man, 
computer and algorithm is like a game 
of musical chairs: The frantic search for 
balance always leaves one of the three 
standing ill at ease.

78. If your computer speaks English it was 
probably made in Japan.

79. A year spent in artificial intelligence is 
enough to make one believe in God.

80. Prolonged contact with the computer 
turns mathematicians into clerks and 
vice versa.

81. In computing, turning the obvious into 
the useful is a living definition of the 
word "frustration."

82. We are on the verge: Today our
program proved Fermat's next-to-last 
theorem!

83. What is the difference between a 
Turing machine and the modern com­ 
puter? It's the same as that between 
Hillary's ascent of Everest and the es­ 
tablishment of a Hilton hotel on its 
peak.

t 84. Motto for a research laboratory: What 
we work on today, others will first 
think of tomorrow.

85. Though the Chinese should adore APL, 
it's FORTRAN they put their money on.

86. We kid ourselves if we think that the 
ratio of procedure to data in an active 
data-base system can be made ar­ 
bitrarily small or even kept small.

87. We have the mini and the micro com­ 
puter. In what semantic niche would 
the pico computer fall?

88. It is not the computer's fault that 
Maxwell's equations are not adequate 
to design the electric motor.

89. One does not learn computing by 
using a hand calculator, but one can 
forget arithmetic.

90. Computation has made the tree flower.



91. The computer reminds one of Lon 
Chancy — it is the machine of a 
thousand faces.

92. The computer is the ultimate polluter: 
Its feces are indistinguishable from the 
food it produces.

93. When someone says "I want a pro­ 
gramming language in which I need 
only say what I wish done," give him a 
lollipop.

94. Interfaces keep things tidy, but don't 
accelerate growth: Functions do.

95. Don't have good ideas if you aren't 
willing to be responsible for them.

96. Computers don't introduce order 
anywhere as much as they expose op­ 
portunities.

97. When a professor insists computer 
science is X but not Y, have compas­ 
sion for his graduate students.

98. In computing, the mean time to failure 
keeps getting shorter.

99. In man-machine symbiosis, it is man 
who must adjust: The machine can't.

100. We will never run out of things to 
program as long as there is a single 
program around.

101. Dealing with failure is easy: Work
hard to improve. Success is also easy to 
handle: You've solved the wrong 
problem. Work hard to improve.

102. One can't proceed from the informal to 
the formal by formal means.

103. Purely applicative languages are 
poorly applicable.

104. The proof of a system's value is its 
existence.

105. You can't communicate complexity, 
only an awareness of it.

106. It's difficult to extract sense from 
strings, but they're the only com­ 
munication coin we can count on.

107. The debate rages on: Is PL/I Bactrian 
or Dromedary?

108. Whenever two programmers meet to 
criticize their programs, both are silent.

109. Think of it! With VLSI we can pack 
100 ENIACs in 1 sq. cm.

110. Editing is a rewording activity.
111. Why did the Roman Empire collapse? 

What is the Latin for office automa­ 
tion?

112. Computer Science is embarrassed by 
the computer.

113. The only constructive theory connect­ 
ing neuroscience and psychology will 
arise from the study of software.

114. Within a computer natural language is 
unnatural.

115. Most people find the concept of pro­ 
gramming obvious, but the doing im­ 
possible.

116. You think you know when you learn, 
are more sure when you can write, 
even more when you can teach, but 
certain when you can program.



117. It goes against the grain of modern education to teach children to program. What run is there in making plans, acquiring discipline in organiz­ ing thoughts, devoting attention to detail and learning to be self-critical?
118. If you can imagine a society in which the computer-robot is the only menial, you can imagine anything.
119. Programming is an unnatural act.
120. Adapting old programs to n't new machines usually means adapting new machines to behave like old ones.
121. In seeking the unattainable, simplicity only gets in the way. If there are epigrams, there must be meta- epigrams.
122. Epigrams are interfaces across which appreciation and insight flow.
123. Epigrams parametrize auras.
124. Epigrams are macros, since they are executed at read time.
125. Epigrams crystallize incongruities.
126. Epigrams retrieve deep semantics from a data base that is all procedure.
127. Epigrams scorn detail and make a point: They are a superb high-level documentation.
128. Epigrams are more like vitamins than protein.
129. Epigrams have extremely low entropy.
130. The last epigram? Neither eat nor drink them, snuff epigrams.

Who Was Alan J. Perlis?
Reknowned as an educator and as a program­ ming system and language developer, Alan Perlis was the first Editor-in-Chief of the Com­ munications of ACM (1958-1962), President of ACM from 1962 to 1964, and the first recipient, in 1966, of ACM's Turing Award.

He was born in Pittsburgh, PA on April 1, 1922. He received a B.S. in Chemistry in 1942 from Carnegie Institute of Technology (now Carnegie Mellon University). After serving in USAAF from 1942 to 1945 (1'st Lt.-ETO), he did post-graduate work at the California Institute of Technology in 1946-1947, receiving an M.S. in Mathematics. He received his Ph.D. in Math­ ematics from the Massachusetts Institute of Technology in 1950 and spent 1951 as a Research Mathematician in the Multi-Machine Computing Laboratory of the Ballistic Research Laboratories at Aberdeen Proving Grounds. He then returned to the Massachusetts Institute of Technology to work at Project Whirlwind, developing programs throughout 1952.
From September 1952 through 1956 he was Assistant Professor of Mathematics at Purdue University and director of a computer center consisting of an I.B.M. CPC (installed October 1952) that was replaced by a Datatron 205 in the spring of 1954. In 1955 he headed a group at Purdue that defined a language IT (for "Internal Translator") and developed a compiler for it. This work was continued on the IBM 650 when he took the position of Associate Professor of Mathematics and Director of the Computation Center at Carnegie Tech in 1956. A version of IT was running at the center in November 1956, and within a year it was in wide use on 650's at a number of university computing centers. (The one for Purdue's Datatron was also running in 1957; the succession of algebraic language com­ pilers and assemblers were designed and built for the 650 by Perlis, Joseph Smith, Harold Van Zoeren, and Arthur Evans).



8

"Research in programming languages domin­ 
ated my life from then on" said Perlis at the 
ACM SIGPLAN History of Programming Lan­ 
guages Conference in Los Angeles, California, 
June 1-3,19781 .

In 1957, ACM President John W. Carr, III, ap­ 
pointed Perlis chairman of a programming lan­ 
guage committee and head of a subcommittee 
to meet with a similar subcommittee of GAMM 
(Gesellschaft fur angewandte Mathematik und 
Mechanik) in Europe to design a "universal al­ 
gebraic language". The group of eight met in 
Zurich and specified what was finally called 
ALGOL-58. The report on Algol-58 by Perlis 
and Samelson was the basis of a formal 
specification of Algol-60 by thirteen inter­ 
national scientists (including Perlis, of course).

Meanwhile, at Carnegie Tech a course on pro­ 
gramming, distinct from numerical analysis 
and available to all undergraduate students, 
was introduced. Perlis was Professor and 
Chairman of the Mathematics Department at 
Carnegie Tech while continuing as Director of 
the Computation Center from 1960 to 1964, and 
in 1962 he became Co-Chairman of an interdis­ 
ciplinary doctoral program in Systems and 
Communications Sciences. This led to the es­ 
tablishment of an ARPA supported program in 
computer science, which, in turn, led in 1965 to 
a graduate department of Computer Science. 
He was its first chairman, remaining so until 
1971. More than a dozen of its graduates 
received their degrees from him; these include 
well-known leaders in teaching and research 
from coast to coast and a few abroad.

During the 1960's he developed such exten­ 
sions to Algol as Formula Algol, an Algol 
manipulator of formal mathematical expres­ 
sions, and LCC, a form of Algol adapted to in­ 
teractive incremental programming.

After a tour as visiting scientist at the Math- 
ematische Centrum in Amsterdam, Nether­ 
lands (1965-1966), he held the title of University 
Professor of Computer Science and Math­ 
ematics at Carnegie Tech.

In 1971 he joined the new Computer Science 
Department at Yale University as Eugene Hig- 
gins Professor of Computer Science, and played 
a leading role in developing that department. 
He was its chairman for the 1976-1977 year and 
from 1978-1980, serving again as acting chair­ 
man in 1987. During these years he developed 
new computer courses at both the graduate and 
undergraduate levels. From 1977-1978 he was 
Gordon and Betty Moore Professor of Com­ 
puter Science at the California Institute of Tech­ 
nology. More than a dozen graduate students 
at Yale received their doctorates under his su­ 
pervision.

He received honorary degrees from Davis 
and Elkins College, Purdue University, Water­ 
loo University, and Sacred Heart University. 
Beside dozens of papers, written alone and 
with co-workers, on programming languages, 
systems and developments, he was the author 
of Introduction to Computer Science, Harper and 
Row (1972,1975); and, with B.A. Caller, of A 
View of Programming Languages, Addison- 
Wesley, 1970.

Throughout his career he continued to serve 
on committees and boards, national and inter­ 
national, for medical research, natural language 
processing and translation, and, for the last 
twenty years, on software engineering.

Perlis will be remembered as much for his 
personal warmth and pervasive joy as for 
specific technical achievements. He believed 
that computing should be fun; this contagious 
enthusiasm set the tone of both his research 
and his teaching.

— Courtesy Communications of the ACM, 1990

1See History of Programming Languages, ed. R.L. Wexelblatt, Academic Press, 1981, p. 171.


