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Abstract

Artificial intelligence methods may be used to model human intelligence or to build intelligent (expert) computer systems. AI has already reached the stage of human simulation where it can model such "ineffable" phenomena as intuition, insight and inspiration. This paper reviews the empirical evidence for these capabilities, and some of their implications for the mind- body problem and related questions in philosophy.

Computer Programs as Theories

During the 1930s and '40s, and into the early '50s, I carried my Diogenes' 
lantern through many fields of mathematics seeking the right tools for studying 
human thought, but neither analysis nor finite math seemed to fill the bill. To use 
these mathematical tools, one had to force the phenomena into the Procrustean bed 
of real numbers or algebraic and topological abstractions that seemed to leave much 
of the content behind. Computer languages, with their ability to handle symbols of 
every kind, changed all that by permitting one to implement a very literal

*This is a modified version of a paper of the same title, published in the 14th IJCAI Proceedings , Vol. 1, 1995, 939-948, expanded to include a discussion of the mind-body problem.



representation of human symbol processing in the machine's memories and 
processes.

Computer programs written in whatever languages are, at the most abstract 
level, simply systems of difference equations, with all of the power of such equations 
to describe the states and temporal paths of complex symbol systems. To be sure, 
these equation systems can almost never be solved in closed form; but the computer 
itself, in providing the powerful tool of simulation, offers a solution to that problem 
too. 2

As you are well aware, the requirements of simulating the behavior of 
physical symbol systems called for symbol-manipulating languages quite different 
from the algebraic languages used in numerical computing, and led to the invention 
of list processing languages like the IPL's and then LISP, and still later to production- 
system languages like OPS-5 and logic-programming languages like PROLOG. With 
these languages the computer simulation can produce symbolic outputs that can be 
compared directly, and with very little translation, with human outputs, especially 
verbal protocols.

Artificial Intelligence and Cognitive Psychology

My interest in AI has been, from the beginning, primarily an interest in its 
application to psychology. Equally exciting opportunities emerged at the same time 
for designing computer programs that, without necessarily imitating human 
methods, could perform difficult tasks at expert professional levels. As the 
construction of expert systems has played second fiddle to human simulation in my 
own research program, I shall have little to say about it here. My focus will not be 
on computer achievement of humanoid skills, but on computer imitation of the 
processes people use to manifest such skills.

In this research, the computer program is not a "metaphor" but a precise 
language of theory for cognitive psychology in the same sense that differential 
equations are a language of theory for physics. Theories written in AI list 
processing languages are tested in exactly the same way as theories written in

2 Simulation is increasingly employed within traditional mathematics as well, for the increasingly complex systems under study there also defy closed solution.



differential equations. We use the theories to make predictions, which are then 
tested against behavior captured in the laboratory or observed in the field. 3

Psychology is an empirical science. It is the study of how human beings 
behave and of the processes occurring in their minds (that is, their brains) that 
bring this behavior about. The science of psychology proceeds by observing the 
phenomena of thinking, by building theories to describe and explain the 
phenomena, and by laying phenomena and theory side by side to see how closely 
they match. The preceding three sentences would be no more and no less true if for 
"psychology" we substituted "physics" or "geology" or "biology," with corresponding 
changes in the names of the phenomena studied. We will later describe the 
comparison process in more detail.

The fact that psychology is studied by scientists who themselves are human 
beings is of no more account than the fact that physics is studied by scientists who 
consist of atoms or that biology is studied by scientists who eat, breathe and 
procreate. What we are interested in, in all of these cases, are not the scientists but 
the phenomena and the theories that describe and explain the phenomena. At the 
general level, good methodology in physics or chemistry is good methodology in 
psychology. At more specific levels, each field has to invent methods and 
instruments for observing and theorizing that are appropriate to the phenomena of 
interest. The methods are to be judged by the same standards in every case.

I feel obliged to repeat these rather obvious sentiments here because books, 
written in armchair comfort, continue to be published from time to time that try to 
evaluate by philosophical means psychological theories written in computer 
languages. L et me explain why I regard such books as misguided. In fact, instead 
of trying to use philosophical analysis to settle psychological questions, which are 
empirical matters, I propose to reverse directions and to suggest that, with recent 
advances in psychology, we are now in a position to use psychological theories, and

3 The theories of physics consist not only of the differential equations, but also 
certain properties of these equations that can be deduced from them (e.g., the 
principle of conservation of energy in mechanics). Theories defined by difference equations (programs) may also possess deducible properties, which then become part of the theory. For example, from the short-term memory structure embodied in 
recent versions of EPAM, the short-term memory capacity can be deduced from the structure and parameters of the program.



the empirical evidence on which they are founded, to settle some issues that have 
been important, historically, in philosophy.

Cognitive Psychology's Empirical Base

As psychology is an empirical science, we can only judge whether and to what 
extent particular theoretical proposals are valid by comparing them with data. In 
the face of such comparisons, philosophical speculation is superfluous; in the 
absence of such comparisons, it is helpless. Therefore, if we wish to evaluate the 
claims of theories of thinking (whether these theories take the form of computer 
programs or some other form), we would do well to spend most of our time studying 
the empirical evidence and making the explicit comparisons with the computer 
traces.

By now, such evidence is voluminous. This is not the place to review it, but I'll 
cite just one very specialized example. In the book, Protocol Analysis (1993), that 
Anders Ericsson and I have written, treating the methodology for testing cognitive 
theories by comparing human think-aloud protocols with computer traces, there are 
42 pages of references. It is not unreasonable to ask anyone who proposes to 
evaluate the validity of verbal reports as data either to become acquainted with a 
substantial portion of this literature or to announce clearly his or her amateur 
status. Similarly, it is not unreasonable to ask anyone proposing to pronounce on 
memory capacity or the acquisition and response speeds of human memory to become 
acquainted with that large literature.

There are, of course, comparably large literatures on problem solving, 
reasoning, perceiving, and many other topics. Any serious assessment of our 
knowledge of human thought processes or of the veridicality of theories that purport 
to describe or explain these processes must rest on the data reported in this 
literature.

What theories are available for testing, and what kinds of phenomena do they 
address? Again, I can only cite a few examples, some from my own work and some 
from the work of others. An early example is the General Problem Solver (GPS), 
whose central mechanism, means-ends analysis, has been shown empirically, in 
numerous studies, to be a much-used heuristic in human problem solving. (A small 
fraction of these empirical tests are discussed in Newell & Simon, 1972; you will find 
others in the two volumes of my Models of Thought, 1979, 1989.). Contemporary with



GPS is EPAM, a model of human perceptual and memory processes due originally to 
Feigenbaum, which has been tested successfully against empirical data from 
experiments on verbal learning, expert memory performances in several domains of 
expertise (including expertise in mnemonics), and concept attainment. (For some of 
the empirical tests see Feigenbaum & Simon, 1984; and Richman, Staszewski and 
Simon, 1995.)

A somewhat later system is John Anderson's ACT* (1983), which focuses 
especially on semantic memory and the explanation of contextual effects through 
spreading activation. A very different and still newer theory, or set of theories, are 
"neural" networks of the connectionist variety that have shown capacities to learn 
in a variety of tasks (McClelland & Rumelhart, 1986). Quite recently, Alien Newell, in 
collaboration with John Laird, Paul Rosenbloom and others, has produced Soar, a 
vigorous push from GPS into a far more general and unified architecture, which 
demonstrates the relevance of multiple problem spaces and learning by chunking 
(Newell, 1990). Still closer to the topics I shall address in the remainder of this talk is 
the BACON system (see Langley, et al., 1987) and its close relatives, GLAUBER, STAHL, 
KEKADA (Kulkarni & Simon, 1988), LIVE (Shen, 1994) and others that simulate many 
of the discovery processes that are discernible in the activities of scientists. Some of 
the models I have mentioned are complementary, some are competitive, as theories 
are in any science.

To understand these systems, not just as interesting examples of artificial 
intelligence but as theories of human thinking, and to adjudicate among them when 
they conflict, we must devote just as much attention to the experimental and other 
empirical evidence about the phenomena they model as to the structures and 
behaviors of the programs themselves. Errors in the evaluation of these programs as 
psychological theories are caused less often by lack of knowledge or inaccurate 
knowledge about the programs than by lack of knowledge or inaccurate knowledge 
about how human subjects behave when they are confronted with the same tasks as 
the programs were tested on.

For one example, the brittleness of computer programs when they wander 
outside the task domain for which they are programmed is often mentioned as a 
defect of these programs, viewed as psychological theories, without noticing the 
extraordinary brittleness of human behavior when it wanders outside the arena of 
the actor's experiences. (Inexperienced urbanites lost in a wilderness frequently



freeze or starve to death in circumstances where experienced savages survive. 
Novices playing their first bridge hand bid and discard almost randomly.) Theories 
cannot be compared with facts unless the theories are specified precisely and the 
facts known thoroughly.

Limits of Explanation?

In the remainder of this paper I shall put the information processing 
explanation of thinking to what is usually regarded as a severe test. The idea that the 
processes humans use in everyday, relatively routine and well-structured tasks can 
be modeled accurately by computers has gained, over the years, a considerable 
amount of acceptance   more among experimental psychologists than among people 
who are more distant from the data. The idea that these models can be extended to ill- 
structured tasks of the kinds that require ingenuity, perhaps even creativity, when 
performed by humans is less widely accepted. This is no more a philosophical 
question than the questions that I have discussed previously. It is a question about 
certain kinds of human behavior and whether these kinds of behavior can be 
modeled by computers. It is to be settled by comparing the records of human 
behavior with the output of computer models, just as we settle questions in physics by 
comparing the laboratory behavior of physical systems with the differential 
equations of physical theory.

I shall focus on three terms that appear frequently in the literature and in 
popularized psychology (not always with the same meanings) and which have been 
used to label behaviors that are often claimed to be beyond explanation by 
programmable mechanisms. The three terms are "intuition," "insight" and 
"inspiration." In addressing the cognitive phenomena associated with each of these 
terms, I shall first define the term so that we can determine when the corresponding 
phenomena are being exhibited. Without clear tests that enable us to identify the 
occasions of "intuition," "insight" and "inspiration," there are no phenomena to 
explain.

I cannot claim that the definitions I shall propose represent the only ways in 
which these terms are, or can be, used. I will claim that they correspond to the usual 
meanings, and that the operational tests on which they are based are the operational 
tests that are commonly used to determine when people are being "intuitive,"



"insightful," or "inspired." These are the properties the definitions should possess if 
they are to be used in theories of intuition, insight and inspiration.

Having established operational tests for the phenomena, we shall look at the 
evidence as to whether people and computers exhibit the processes in question, and 
if so, under what circumstances. What I shall show is, first, that the presence or 
absence of phenomena like these, sometimes claimed to be ineffable, can be 
determined objectively, and second, that certain computer programs are 
mechanisms that exhibit these phenomena and thereby provide explanations for 
them.

Intuition

Let me start with the process of human thinking that is usually called 
"intuition." Before we can do research on intuition, we have to know what it is; in 
particular, we must have some operational definition that tells us when intuition is 
being exhibited by a human being and when it is not. It is not too difficult to 
construct such a definition.

The marks that are usually used to attribute an intelligent act (say, a problem 
solution) to intuition are that: (1) the solution was reached rather rapidly after the 
problem was posed, and (2) the problem solver could not give a veridical account of 
the steps that were taken in order to reach it. Typically, the problem solver will 
assert that the solution came "suddenly" or "instantly." In the few instances where 
these events have been timed, "suddenly" and "instantly" turn out to mean "in a 
second or two," or even "in a minute or two."

That's essentially the way my dictionary defines intuition, too: "the power or 
facility of knowing things without conscious reasoning." Let us take the criteria of 
rapid solution and inability to report a sequence of steps leading up to the solution as 
the indications that people are using intuition. These are the criteria we actually use 
to judge when intuition is being exhibited. Applying these criteria, we now have 
some clearly designated phenomena to be explained; we can try to construct some 
difference equations (computer programs) that behave intuitively.

Intuitive thinking is frequently contrasted with "logical" thinking. Logical 
thinking is recognized by being planful and proceeding by steps, each of which 
(even if it fails to reach its goal) has its reasons. Intuitive thinking, as we have seen,



proceeds by a jump to its conclusions, with no conscious deliberateness in the 
process. But intuitive and logical thinking can be intermingled. The expert, faced 
with a difficult problem, may have to search planfully and deliberately, but is aided, 
at each stage of the search, by intermediate leaps of intuition of which the novice is 
incapable. Using what appear to be (in systems programming terms) "macros," 
frequent intuitive jumps, the expert takes long strides in search, the novice 
numerous tiny steps.

A Theory (Computer Model) of Intuition

Having specified how we will recognize intuition when it occurs, the next task 
in building a theory of it is to design a computer program (or find one already built) 
that will solve some problems intuitively   as determined by exactly the same criteria 
as we employ to determine when people are using intuition. The program will solve 
these problems, if they are easy, in a (simulated) second or two and will be unable to 
provide a (simulated) verbal report of the solution process. Fortunately, at least one 
such program already exists: the EPAM program (Richman, Staszewski & Simon, 
1995), which first became operative about 1960. It was not designed with intuition in 
mind, but rather to simulate human rote verbal learning, for which there already 
existed at that time a large body of empirical data from experiments run over the 
previous 70 years. EPAM accounted for the main phenomena found in these data.

The core of EPAM is a tree-like discrimination net that grows in response to 
the stimuli presented to it and among which it learns to discriminate, and a short- 
term memory that will hold a few familiar symbols (7±2?), but will retain them more 
than 2 seconds only if it has time to rehearse them. EPAM's discrimination net is 
somewhat similar to the Rete nets that are used to index production systems. EPAM 
learns the correct discriminations by experience, with only feedback of "right" or 
"wrong" to its responses. EPAM nets have been taught to discriminate among more 
than 3x10^ different stimuli, and there is nothing final about that number.

These learned patterns, once acquired, can now be recognized when presented 
to EPAM because it sorts them through its net, the recognition time being 
logarithmic in the total number of stimuli in the net. If the net has a branching 
factor of 4, then recognition of a net discriminating among a million stimuli could be 
achieved by performing about ten tests (4 10 = 1,048,576). The EPAM model, its 
parameters calibrated from data in verbal learning experiments, can accomplish



such a recognition in a tenth to a fifth of a second. If we add additional time for 
utterance of a response, the act of recognition takes a second or less.

Now suppose we confront EPAM with a situation that is recognizable from its 
previous experience (a collection of medical symptoms, say). It can now access, in 
less than a second, information about a disease that is presumably responsible for 
these symptoms. As EPAM is able to report symbols that reach its short-term memory 
(where the result of an act of recognition is stored), it can report the name of the 
disease. As it cannot report the results of the individual tests performed on the 
symptoms along the path, it cannot describe how it reached its conclusions. Even if 
it can report the symptoms that were given it (because it stored some of them in 
memory during the presentation), it cannot give a veridical account of which of 
these were actually used to make the diagnosis or how they were considered and 
weighed during the recognition process.^ We might add, "even as you and I," for 
these are also the characteristics of human diagnosis: the physician can report what 
disease he or she has recognized, but cannot give a veridical report of which 
symptoms were taken into account, or what weights were assigned to them.

To simulate the diagnostic process in more complex cases, we need a system 
that contains, in addition to EPAM's discrimination net and the long-term memory it 
indexes and accesses, some capabilities for solving problems by heuristic search   a 
combination of EPAM with a sort of General Problem Solver (GPS) or Soar. Then we 
will observe this combined system not only recognizing familiar symptoms and their 
causes, but also reasoning to infer what additional tests might discriminate among 
alternative diagnoses that have been recognized as possible causes of the initial 
symptoms.

Automatic medical diagnosis systems now exist that perform diagnostic tasks 
far more accurately than EPAM alone could, for they take into account alternative 
diagnoses, do some simple reasoning about relations among symptoms, and are able to 
request additional tests on the patient to achieve greater discriminatory power and 
accuracy. These systems, of course, are using a combination of intuition, as usually 
defined, and "logical" thought (including means-ends analysis in some form). Our

4 This does not mean that EPAM cannot be programmed to trace its steps, but that the 
simulation of its verbal processes will report only symbols that are stored, at the time 
of reporting, in short-term memory. The trace of non-reportable processes must be 
distinguished from the simulation of processes the theory claims to be reportable.



current interest is not in machine competence in medical diagnosis but in models of 
intuition. EPAM, as described, is exhibiting intuition, as defined operationally, and 
modeling at least the first stage of thought (the recognition stage) of an experienced 
physician confronted with a set of symptoms.

Testing the Model of Intuition as Recognition

What grounds do we have for regarding this basic recognition mechanism, 
which lies at the core of EPAM, as a valid theory of the process that causes people to 
have intuitions? Simply that it has the same manifestations as human intuition: it 
occurs on the same time scale accompanied with the same inability to explain the 
process. Nor was it explicitly "cooked up" to exhibit these properties: they are basic 
to a system that was designed with quite other simulation tasks in mind. This is 
exactly the test we apply in validating any theory: we look at the match between the 
theory and the phenomena and at the ratio of amount of data explained to number of 
parameters available for fitting.

We can extend the tests of this theory of intuition further. It is well known 
that human intuitions that turn out to be valid problem solutions rarely occur to 
humans who are not well informed about the problem domain. For example, an 
expert solving a simple problem in physics takes a few computational steps without 
any pre-planning and reports the answer. The recorded verbal protocol shows the 
steps, but no evidence of why they were taken (no mention of the goals, operators, 
the algebraic expressions in which numbers were substituted). A novice solving the 
same problem works backwards from the variable to be evaluated, explicitly stating 
goals, the equations used and the substitutions in the equations. In one experiment, 
the novice's protocol was approximately four times as long as the expert's (Simon & 
Simon, 1978) and exhibited no intuition   only patient search. Novices who replace 
this search by guessing seldom guess correct answers. This is exactly what EPAM 
predicts: that there is no recognition without previous knowledge, and no intuition 
without recognition. Notice that intuition can be as fallible as the recognition cues 
on which it is based.

There are a number of experimental paradigms for carrying out tests on this 
theory that intuition is simply a form of recognition. The expert/novice paradigm 
has already been mentioned: experts should frequently report correct intuitive 
solutions of problems in their domain, while novices should seldom report intuitions,
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and if they report any, a large proportion should be incorrect. Experts who are able 
to report intuitions in their domains should be unable to do so in domains where they 
are not expert. By making cues more or less obvious, it should be possible to increase 
or decrease the frequency of correct intuitions; misleading cues should induce false 
intuitions. Hints of various kinds should draw attention to cues, hence facilitate 
intuition. These are only the most obvious possibilities, all of which have been tested 
with positive outcomes for the theory.

Experiments on intuition are best carried out on tasks where the correctness 
of answers can be verified, at least after the fact. We would want to identify "false 
intuition" to explain the cases (probably very frequent but hard to pinpoint in 
domains where objective criteria of correctness are lacking) where the presence of 
certain features in a situation leads subjects to announce a sudden solution although 
the connection between the cue and the inferences drawn from it is invalid. 
Determining the circumstances that encourage or discourage false intuition would 
involve research on the characteristics of situations that subjects attend to, and the 
beliefs they hold that lead them to the erroneous solutions. Some of the research that 
has been done on the psychology of so-called "naive physics" fits this general 
paradigm, as does some of the research on "garden paths" (spontaneous but 
erroneous interpretations) in syntactic analysis of sentences.

We see that intuition, far from being a mysterious and inexplicable 
phenomenon, is a well known process: the process of recognizing something on the 
basis of previous experience with it, and as a result of that recognition, securing 
access in long-term memory to the things we know about it. What subjects can 
report about the origins of their intuitions, and what they can't report, are exactly 
what we would predict from a theory that explained the phenomena associated with 
recognition. As a matter of fact, we could simplify our vocabulary in psychology if 
we just abandoned the word "intuition," and used the term "recognition" instead.

11



Insight

Another process of thought that has sometimes been declared to be 

inexplicable by mechanical means is insight. My dictionary, this time, associates 

insight closely with intuition. In fact, its second definition of "intuition" is: "quick 

and ready insight." Its explicit definition of "insight" is not much more helpful: "the 

power or act of seeing into a situation: understanding, penetration." Again, we gain 

an impression of suddenness, but in this case accompanied by depth. Perhaps we 

shall want to regard any instance of insight as also an instance of intuition, in which 

case our work is already done, for we have just proposed a theory of intuition. Let's 
see, however if there is an alternative   some other phenomenon that needs 

explanation and to which we can attach the word "insight."

Consider the "aha" phenomenon. Someone is trying to solve a problem, 

without success. At some point, a new idea comes suddenly to mind   a new way of 
viewing the problem. With this new idea comes a conviction that the problem is 
solved, or will be solved almost immediately. Moreover, the conviction is 
accompanied by an understanding of why the solution works. At this point we hear 
the "aha," soon followed by the solution   or occasionally by a disappointed 
realization that the insight was illusory. In some cases, after a problem has been 
worked on for some time without progress, it is put out of mind for a while, and the 
"aha" comes unexpectedly, at a moment when the mind was presumably attending to 
something else.

In both scenarios, with and without the interruption, the phenomenon shares 
the characteristics of intuitive solution: suddenness of solution (or at least of the 
realization that the solution is on its way), and inability to account for its 

appearance. The process differs from intuition in that: (1) the insight is preceded 

by a period of unsuccessful work, often accompanied by frustration, (2) what appears 
suddenly is not necessarily the solution, but the conviction of its imminence, (3) the 

insight involves a new way of looking at the problem (the appearance of a new 
problem representation accompanied by a feeling of seeing how the problem works) 

and (4) sometimes (not always), the insight is preceded by a period of "incubation," 
during which the problem is not attended to consciously, and occurs at a moment 
when the mind has been otherwise occupied. The third of these features is the 
source of the feeling of "understanding" and "depth" that accompanies the

12



experience of insight. Again, these are the phenomena we use to identify instances 
of insight in human beings (ourselves or others). We can take the presence of these 
four features as our operational definition of insight, and using it, we now have some 
definite phenomena that we can study and seek to explain.

A Theory (Computer Program) of Insight

Let me now describe a computer program that can experience insight, defined 
in the manner just indicated. I shall present this theory a little more tentatively 
than the theory of intuition proposed earlier because, while it demonstrates that a 
computer program can have insights, the evidence is a little less solid than for 
intuition that it matches all aspects of the human experience of insight.

Again, a program that combines the capabilities of EPAM and the General 
Problem Solver constitutes the core of the theory. (1) We suppose that a GPS-like or 
Soar-like problem solver is conducting, unsuccessfully so far, a heuristic (selective) 
search for a problem solution. (2) It holds in long-term memory some body of 
information about the problem and knowledge of methods for attacking it. (3) 
Unfortunately, it is following a path that will not lead to a solution (although of 
course it is unaware of this). (4) We assume that the search is serial, its direction 
controlled by attentional mechanisms that are represented by the flow of control in 
the program. (5) Much of this control information, especially information about the 
local situation, is held in short-term memory, and is continually changing. (6) At the 
same time, some of the more permanent features of the problem situation are being 
noticed, learned, and stored in long-term memory, so that the information available 
for problem solution is changing, and usually improving. (7) The control structure 
includes an interrupt mechanism which will pause in search after some period 
without success or evidence of progress, and shift activity to another problem space 
where the search is not for the problem solution but for a different problem 
representation and/or a different search control structure. (8) When search is 
interrupted, the control information held in short-term memory will be lost, so that 
if search is later resumed, the direction of attention will be governed by the new 
representation and control structure, hence may lead the search in new directions. 
(9) As the non-local information that has been acquired in long-term memory 
through the previous search will participate in determine the search direction, the 
new direction is likely to be more productive than the previous one.

13



Empirical Tests of the Theory of Insight

Now we have introduced nine assumptions to explain the insight that may 
occur when the search is resumed, which hardly looks like a parsimonious theory. 
But these assumptions were not introduced into the composite EPAM-GPS to solve this 
particular problem. All are integral properties of these systems, whose presence is 
revealed by many different kinds of evidence obtained in other tasks.

One body of evidence supporting this model of insight comes from an 
experimental investigation of the Mutilated Checkerboard problem that Craig Kaplan 
and I conducted a few years ago (Kaplan & Simon, 1990). We begin with a chessboard 
(64 squares) and 32 dominos, each of which can cover exactly two squares. Obviously, 
we can cover the chessboard with the dominos, with neither squares nor dominos left 
over. Now, we mutilate the chessboard by removing the upper-left and lower-right 
corner squares, leaving a board of 62 squares. We ask subjects to cover it with 31 
dominos or to prove it can't be done.

This is a difficult problem. Most people fail to solve it even after several hours' 
effort. Their usual approach is to attempt various coverings as systematically as 
possible. As there are tens of thousands of ways to try to cover the board, after some 
number of failures they become frustrated, their efforts flag and they begin to 
wonder whether a covering exists. Increasingly they feel a need to look at the 
problem in a new way, but people seem not to have systematic methods for 
generating new problem representations. Some subjects simplify by replacing the 
8¥8 board with a 4¥4 board, but this does not help.

Hints do help. Although few subjects solve the problem without a hint, many 
do with a hint, usually in a few minutes after the hint is provided. For example, the 
experimenter may call attention to the fact that the two squares left uncovered after 
an unsuccessful attempt are always the same color, opposite to the color of the excised 
corner squares. Attending to this fact, subjects begin to consider the number of 
squares of each color as relevant, and soon note that each domino covers a square of 
each color. This leads quickly to the inference that a set of dominos must always 
cover the same number of squares of each color, but that the mutilated board has 
more squares of the one color than of the other: Therefore, a covering is impossible.

Subjects who discover this solution, with or without a hint, exhibit behaviors 
that satisfy our definition of insight. The solution is preceded by unsuccessful work
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and frustration; it appears suddenly; it involves a new representation of the problem 

that makes the problem structure evident. The subjects come to the solution quite 

quickly once they attend to the critical property (equality of the numbers of squares 

of each color that are covered). This is also true of the few subjects who solve the 

problem without being given a hint. These subjects have their "aha!" when they 

attend to the fact that the uncovered squares are always the same color, and that the 

mutilated board has more squares of that color than of the other. Aided by cues or 

not, successful subjects often (literally) say "aha!" at the moment of recognizing the 

relevance of the parity of squares of the two colors.

Moreover, the mechanisms that bring about the solution are those postulated 

in our computer theory of insight, as can be seen by examining the list given above. 

Steps 6 through 9 are the critical ones. In the case of hints, attention is directed to 

the crucial information by the hint, this information is stored in memory, and the 

search resumes from a new point and with a new direction of attention that makes 

the previous attempts to cover the board irrelevant. In the case of subjects who solve 

without a hint, the direction of attention to the invariant color of the uncovered 
squares may derive from a heuristic to attend to invariant properties of a situation   

the properties that do not change, no matter what paths are searched in solution 

attempts.

There are probably several such heuristics (surprise is another one) that shift 

peoples' attention to particular aspects of a problem situation, thereby enabling the 

learning of key structural features and redirecting search. The evidence for such 

heuristics is not limited to laboratory situations; the role of the surprise heuristic in 

scientific discovery has been frequently noted. I shall return to it later.

The role of attention in insight receives further verification from a variant 

on the experiment. Different groups of subjects are provided with different 

chessboards: (1) a standard board, (2) a ruled 8¥8 matrix without colors, and (3) an 
uncolored matrix with the words "bread" and "butter" ("pepper" and "salt" will do as 

well) printed on alternate squares. More subjects find the solution in condition 3 

than in condition 1; and more in condition 1 than in condition 2. The reason for the 

latter difference is obvious: presence of the alternating colors provides a cue to 
which a subject's attention may be directed. What is the reason for the superiority of 
"bread" and "butter" over red and black? Subjects are familiar with standard 

chessboards and have no reason to think that the color has any relevance for this
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problem, hence don't attend to it. In the case of "bread" and "butter," the subjects' 
attention is attracted to this unusual feature of the situation; they wonder why "those 
crazy psychologists put those labels on the squares." Here we obtain direct support 
for the hypothesis that direction of attention to the key features of the situation 
provides the basis for solution. Noticeability of a feature is essential, whether it is 
provided by an explicit clue or some other means.

Incubation

The checkerboard experiments do not say anything about incubation, or 
whether interruption of the solution process for a shorter or longer period may 
contribute to solution. Here I can point to another set of experiments carried out by 
Kaplan (1989). He defines incubation as "any positive effect of an interruption on 
problem solving performance," and lists seven explanations that have been offered 
for it: "unconscious work, conscious work that is later forgotten, recovery from 
fatigue, forgetting, priming, maturation and statistical regression (p. 1)." Kaplan 
then carries out experiments to show, or to confirm, that (1) interruption of certain 
kinds of tasks (so-called divergent-thinking tasks) improves subsequent 
performance (i.e., incubation can be demonstrated experimentally), (2) answers 
supplied after an interruption differ more from the just-previous answers than do 
successive answers supplied without interruption (i.e., incubation can break "set"), 
(3) interruptions combined with a hint increase the effects of incubation (the hint 
shifts attention from continuing search to changing the representation), (4) hints 
may work without subjects' conscious awareness of their connection with the 
unsolved problem, and (5) subjects underestimate the time they spend thinking about 
the problem during an interruption. Details can be found in the original study.

Kaplan then proposes a model, which he calls a Generic Memory Model, to 
account for these phenomena. The model is compatible with the one we have already 
proposed, with the addition of so-called priming mechanisms of the kind that Quillian 
(1966) and Anderson (1983) incorporate in their models of semantic memory.^ The 
priming mechanisms increase the probability that subjects will attend to items that 
have been cued, at the same time rapidly decreasing attention to items in STM and 
slowly decreasing attention to items in LTM. The model accounts for the fact, as the

5 In order to explain some quite different phenomena, priming mechanisms have also 
been added to the most recent version of the EPAM theory.

16



previous model does not, that the length of the interruption is important. Neither 
model needs to postulate unconscious work on the problem during interruption to 
account for incubation.^ Forgetting in short-term memory of information that 
holds attention to an unproductive line of search, and redirection of attention from 
search in the original problem space to search for a new problem representation are 
the key mechanisms in both models that account for the bulk of the empirical 
findings.

On the basis of the evidence I have described and the models that have been 
offered to explain this evidence, I think it fair to claim that there exists a wholly 
reasonable and empirically supported, theory of incubation, as it is observed in 
human discovery, that calls only on mechanisms that are already widely postulated as 
components of standard theories of cognition. The process of incubating ideas is as 
readily understandable as the process of incubating eggs.

Inspiration (alias Creativity)

The term "inspiration" is surrounded by an aura of the miraculous. 
Interpreted literally, it refers to an idea that is not generated by the problem solver, 
but is breathed in from some external, perhaps heavenly, source. To inspire, says my 
faithful dictionary, is to "influence, move, or guide by divine or supernatural 
inspiration." A bit circular, but quite explicit about the exogenous, non-material 
source. A Greek phrase for it was more vivid: to be inspired (e.g., at Delphi) was to be 
"seized by the god."

The notion that creativity requires inspiration derives from puzzlement about 
how a mechanism (even a biological mechanism like the brain), if it proceeds in its 
lawful, mechanistic way, can ever produce novelty. The problem is at the center of 
Plato's central question in the Me no: how can an untutored slave boy be led through 
a geometric argument until he understands the proof? The answer Plato provides, 
which hardly satisfies our modern ears, is that the boy knew it all the time; his new 
understanding was simply a recollection of a prior understanding buried deep in his 
memory (a recognition or intuition?). What bothers us about the answer is that Plato 
does not explain where the buried knowledge came from.

"No one has offered an explanation of why unconscious work during interruption 
should be more effective for solution than the continuation of conscious work. The 
simplest hypothesis consistent with the data is that it isn't more effective.
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Combinatorially Generated Novelty

Let's leave the Meno (I have offered a solution for the puzzle elsewhere7 , and 
in any event, we are talking science here, not philosophizing), and go directly to the 
question of how a mechanism creates novelty, for novelty is at the core of creativity. 
In fact, we shall define creativity operationally, in full accordance with general 
usage, as novelty that is regarded as having interest or value (economic, esthetic, 
moral, scientific or other value).

I shall start with an example. There are about 92 stable elements in nature, 
composed of protons and neutrons (and these, in turn, of component particles) 
There are innumerable molecules, chemical species, almost none of which existed 
just after the Big Bang or just after the 92 elements first appeared in the universe.

Here is novelty on a mind-boggling scale; how did it come about? The answer 
is "combinatorics." Novelty can be created, and is created, by combinations and 
recombinations of existing primitive components. The 26 letters of the alphabet (or, 
if you prefer the 70-odd phonemes of English) provide the primitives out of which a 
denumerable infinity of words can be created. New numbers, new words, new 
molecules, new species, new theorems, new ideas all can be generated without limit 
by recursion from small finite sets of primitives.

The traditional name in AI for this basic novelty-producing mechanism is 
generate and test. One uses a combinatorial process to generate new elements, then 
tests to see if they meet desired criteria. A good example of a generate-and-test 
system that can create novelty valuable for science is the BACON program (Langley, 
Simon, Bradshaw and Zytkow, 1987). BACON takes as inputs uninterpreted numerical 
data and, when successful, produces as outputs scientific laws (also uninterpreted) 
that fit the data . 8

7 Simon (1976). I'll offer just a hint here. Having a test for recognizing the solution 
to a problem if it is attained (which the slave boy has) does not provide a path (a 
proof) that leads step by step from the given information to the solution. Theorem 
and proof path are wholly independent objects.

8 1 hasten to add that BACON has discovered no new scientific laws (although other 
programs built on the same generate-and-test principle have); but it has 
rediscovered, starting with only the same data that the original discoverer had, a 
number of the most important laws of 18th and 19th Century physics and chemistry.
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Selective Search as Inspiration

The law-generating process that BACON uses to find laws that describe data is 
not a random search process. The space of "possible functions" is not finite, and even 
if we limited search to some finite portion of it, any useful domain would be too large 
to yield often to random search. Basically, BACON's law generator embodies three 
heuristics for searching selectively: First, it starts with simple functions, then goes 
on (by combinatorial means) to more complex ones. We don't have to pause long to 
define "simple" or "complex." The simple functions are just those primitive functions 
that BACON starts with (in fact, the linear function); the compound functions are 
formed by multiplying or dividing pairs of functions by each other. A function is 
"simple" if it is generated early in the sequence, "complex" if generated later.

Second, BACON is guided by the data in choosing the next function to try. In 
particular, it notices if one variable increases or decreases monotonically with 
respect to another, testing whether ratios of the variables are invariant in the first 
case, products in the second, and shaping the next function it generates accordingly. 
This simple operation generates a wide class of algebraic functions, and by enlarging 
a bit the set of primitive functions (e.g., adding the exponential, logarithmic and sine 
functions), the class of generatable functions could be greatly broadened. The main 
point is that BACON's choice of the next function to test depends on what kind of fit 
with the data the previously tried functions exhibited.

Third, in problems involving data about more than two variables, BACON 
follows the venerable experimental procedure of changing one independent 
variable at a time. Having found conditional dependencies among small sets of 
variables, it explores the effects of altering other variables.

That is essentially all there is to it. With these simple means, and provided 
with the actual data that the original discoverers used, BACON rediscovers Kepler's 
Third Law (It finds P = D^/2 on fae third or fourth try), Ohm's Law of current and 
resistance, Black's Law of temperature equilibrium for mixtures of liquids and a great 
many others. There are many other laws it doesn't discover, which is an essential 
fact if it is to be regarded as a valid theory of human performance. Humans also don't 
discover laws more often than they discover them.

To validate BACON as a theory of human discovery, we would like to have as 
detailed historical data as possible on how the human discoveries were actually made,
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but sometimes the data are quite scanty. About all we know about Kepler's discovery 
of his Third Law is that he initially made a mistake, declaring that the period of 
revolution of the planets varied as the square of their distance from the Sun. Some 
years later, he decided the fit of law to data was poor and went on to find the correct 
law. Interestingly enough, BACON first arrives at Kepler's erroneous square law, 
rejects it as not fitting the data well enough, and goes on to the correct law almost 
immediately. With a looser parameter to test whether a law fits the data, BACON would 
make Kepler's mistake.

Sometimes the processes of BACON can be tested directly against human 
processes. Yulin Qin and I (1990) gave students the data (from the World Almanac) on 
the periods and distances of the planets   labeling the variables simply x and y, 
without interpretation. In less than an hour, 4 of 14 students found and fitted the 
3/2-power law to the data. The students who succeeded used a function generator that 
responded to the nature of the misfits of the incorrect functions. The students who 
failed either were unable to generate more than linear functions or generated 
functions whose form was independent of previous fits and misfits.

I spell out this example to show that theories of inspiration are constructed 
and tested in exactly the same manner as other scientific theories. Once the 
phenomena have been defined, we can look for other phenomena that accompany 
them and for mechanisms that exhibit the same behavior in the same situations. In 
historical cases more favorable than Kepler's, we may have voluminous data on the 
steps toward discovery. In the case of both Faraday and Krebs, for example, 
laboratory notebooks are available, as well as the published articles and 
autobiographical accounts. In these cases, we have many data points for matching 
the scientist's behavior with the model's predictions.

Discovery of New Concepts

I have now cited a few pieces of evidence   many more exist   that scientists do 
not have to be "seized by the god" to discover new laws; such laws, even laws of first 
magnitude, can be arrived at by quite understandable and simulatable psychological 
processes. But what about new concepts? Where do they come from?

BACON is provided with one heuristic that I have not yet mentioned. When it
discovers that there is an invariant relation in the interaction between two or more
elements in a situation, it assigns a new property to the elements, measuring its
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magnitude by the relative strength of each element's action (one of the elements is 
assigned a unit value, becoming the standard). For example, BACON notices that when 
pairs of bodies collide, the ratio of accelerations of any given pair is always the same. 
BACON defines a new property (let's call it "obstinance"), and assigns an obstinance 
of 1 to body A, and an obstinance to each other body inversely proportional to the 
magnitude of its acceleration in collisions with A. Of course, we know that 
"obstinance 11 is what we usually call "inertial mass," and that BACON has reinvented 
that latter concept on the basis of this simple experiment.

This procedure turns out to be a quite general heuristic for discovering new 
concepts. BACON has used it to reinvent the concepts of specific heat, of refractive 
index, of voltage, of molecular weight and atomic weight (and to distinguish them) 
and others. Here again, inspiration turns out to be a by-product of ordinary 
heuristic search.

All of these results are available in the psychological and cognitive science 
literature (Langley, Simon, Bradshaw and Zytkow, 1987). They will not be improved 
by philosophical debate, but rather, by careful empirical study to determine the 
range of their validity and the goodness with which they approximate the observed 
phenomena. Debate, philosophical or otherwise, is pointless without familiarity with 
the evidence.

Other Dimensions of Discovery

Scientists do many things besides discovering laws and concepts. They plan 
and carry out experiments and interpret the findings, invent new instruments, find 
new problems, invent new problem representations. There are other dimensions to 
discovery, but these are perhaps the most important. I shall say no more about 
experiments (see Kulkarni and Simon, 1988) or instruments or problem-finding 
here. Some processes for finding new representations have already been examined 
in our discussion of insight. There is still plenty of work to be done, but so far, no 
evidence of which I am aware that the explanation of the phenomena of intuition, 
insight and inspiration will require the introduction of mechanisms or processes 
unlike those that have been widely employed in simulating human thinking. That, 
of course, is an empirical claim   actually, not so much a claim as an invitation to 
join in the exciting task of explaining how machines like people and computers can 
think, and sometimes think creatively.
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Neurophysiological Foundations

It will not have passed without notice that I have said almost nothing today 
about the brain as a physiological organ. My silence should not be interpreted as 
doubt that the mind is in the brain, or a suggestion that processes beyond the 
physiological are required for its operation. The reason for my omission of the 
physiology of the brain is quite different. As I have pointed out in other contexts, 
sciences generally progress most effectively if they focus upon phenomena at 
particular levels in the scheme of things. Hunters of the quark do not, fortunately, 
need to have theories about molecules, or vice versa. The phenomena of nature 
arrange themselves in levels (Simon, 1981) and scientists specialize in explaining 
phenomena at each level (high energy physics, nuclear physics, analytic chemistry, 
biochemistry, molecular biology .... neurophysiology, symbolic information 
processing, and so on), and then, in showing (at least in principle) how the 
phenomena at each level can be explained (reduced) to the terms and mechanisms of 
the theory at the next level below.

At the present moment in cognitive science, our understanding of thinking at 
the information processing level has progressed far beyond our knowledge of the 
physiological mechanisms that implement the symbolic processes of thought. 
(Fortunately, on the computer side, we know full well how the symbolic processes are 
implemented by electronic processes in silicon.) Our ignorance of neurology is 
regrettable but not alarming for progress at the information-processing level, for 
this same sky-hook picture of science is visible in every scientific field during some 
period   usually a long period   in the course of its development. Nineteenth 
Century chemistry had little or no base in physics, and biology had only a little more 
in chemistry.

There is no reason why research in cognition should not continue to develop 
vigorously at both physiological and information processing levels (as it is now 
doing) watching carefully for the indications, of which there already are a few, that 
we can begin to build the links between them   starting perhaps with explanations 
of the nature of the physiological mechanisms (the "chips" and "integrated circuits") 
that constitute the basic repositories of symbolic memory in the brain. While we
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await this happy event, there is plenty of work for all of us, and no lack of knowledge 
of cognitive mechanisms at the symbolic level I have been considering in this paper.

Some Philosophical Implications

Several questions of major interest to philosophy that are closely connected 
with, cognition are empirical questions whose which cannot be solved by fact-free 
speculation, no matter how sophisticated it may be. A major difficulty with these 
questions is that finding empirical data to answer them appears to require us to look 
inside the human head, which is not easy to do, especially if introspection is ruled out 
as an incorrigibly solipsistic process. This presents a difficulty, but not an 
insuperable difficulty. The view that we cannot build testable theories of the 
processes within the head, including the processes of thought, is no more tenable 
than the view that biochemical theory cannot capture the laws of life. With the 
coming of computers and the demonstration that they can model not only the 
products but also the processes of thought, this mental vitalism is no longer 
defensible.

Testability of Theories of Mental Phenomena

To say that there are many variables within the head that are not directly 
observable is simply to say that a theory of mental phenomena will contain 
theoretical terms, not a novelty for any of the sciences. In such situations we need to 
insure that there is a sufficiently high ratio of observables to unknowns in our 
theories so that the values of the theoretical terms are overdetermined, hence 
ascertainable by convergent methods and testable. (Simon, 1970, 1983, 1985; Shen 
and Simon, 1993). When we construct a theory of mental phenomena in the form of a 
computer simulation, we test it by observing human subjects and a computer 
program performing exactly the same tasks, with identical inputs of stimuli. Then 
we compare the trace of the computer, at an appropriate level of detail, with 
observations of the human behavior (including verbal behavior) over the same 
interval of time. The examples provided in this paper have illustrated how this 
strategy has been employed to validate computer models of intuition, insight and 
creativity.

Specifically, to answer the question of whether an appropriately programmed 
computer can think, we establish a task and a set of criteria to determine whether a
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human being is thinking when performing that task. If the computer, given the 
same task, not only produces the same result but also matches the behavior of the 
human in all observable respects, and in particular, matches the processes the 
human is observably using during performance of the task, then we conclude that 
the computer is also thinking   i.e., that the processes that produce the result for the 
computer can be mapped on the processes that produced the same result for the 

human.

Thus, to determine whether the theoretical term "thinking" applies to the 
computer, we use the same test that we use to determine whether it applies to the 
human subject. Of course, we do not in this way find any magic that solves the 
problem of Hume   we do not prove that our theory of thinking is correct: but 
merely that it is compatible with the available empirical evidence. Again, this does 
not distinguish methods of theory verification in psychology from those in any 
other science. In no science does research prove the correctness of a theory; at best 
it shows that it has not been falsified and provides a reasonable fit to some body of 
facts.

The Mind-Body Problem

Suppose, now, that we have constructed a computer program that passes this 
test of thinking, for some range of tasks. We can now ask what solution, if any, it 
offers to the mind-body problem. It was Carnap, in 1955, who first explicitly 
proposed this use of the computer as a tool in epistemology.9 This is the way he put 
his proposal:

In order to make the method of structure analysis applicable, let 
us now consider the pragmatic investigation of the language of a robot 
rather than that of a human being. In this case we may assume that we 
possess much more detailed knowledge of the internal structure. . . . 
Just as the linguist [e.g., Quine's linguist in Word and Object], . . . begins 
with pointing to objects, but later, after having determined the 
interpretation of some words, asks questions formulated by these words, 
the investigator of [the robot's] language . . . begins with presenting 
objects . . . but later, on the basis of tentative results concerning the

9 Carnap (1955) reprinted in Carnap (1956).
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intensions of some signs . . . proceeds to present predicate expressions . . 

. which use only those interpreted signs. . . .

Instead of using this behavioristic method, the investigator may 

here use the method of structure analysis. On the basis of the given 

blueprint of [the robot], he may be able to calculate the responses 

which [it] would make to various possible inputs. In particular, he may 

be able to derive from the given blueprint . . . fairly precise boundaries 

for the intensions of certain concepts. . . .

It is clear that the method of structure analysis, if applicable, is 

more powerful than the behavioristic method, because it can supply a 

general answer and, under favorable circumstances, even a complete 

answer to the question of the intension of a given predicate. . . .

The intension of a predicate can be determined for a robot just as 

well as for a human speaker, and even more completely if the internal 

structure of the robot is sufficiently known to predict how it will 

function under various conditions.

With the advance of computers and programming languages in the years since 
Carnap made his proposal, we can now describe, in detail, computer programs that, 
by using a physical symbol system to carry out thought, embody a clear answer to the 
mind-body problem. Just as a brain uses neurons and associated tissues to store 
information (in ways that we do not understand in detail), so a computer uses 
physical devices (of quite diverse mechanical, electrical, and electronic varieties) to 
store information (in ways that we do understand in detail). What is required in both 
cases is a system built of components that can be maintained, with some stability, in 

one or another of two or more states, and that can input and output information by 
signaling the current states of these components. The specific substances of which 

these memories are built, and the physical or biological processes they use to 

maintain and alter memory contents are relevant only in fixing the capacity, 

stability, and speed of the system, and do not limit its basic qualitative capabilities.

Now we put human subjects and a computer program (the latter named GPS 
(Newell & Simon, 1972), or Soar (Newell, 1990), or Act (Anderson, 1983)) to work
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solving the Tower of Hanoi puzzle, 10 comparing the think-aloud protocols of the
humans with the trace of the program. We find that both ultimately solve the puzzle,
making certain characteristic errors along the way.

For example, if the puzzle has an odd number of disks, both computer and 
humans will often initially make the wrong first move; much less often if there are 
an even number of disks. The reason for this is that the correct (but 
counterintuitive) move, in the former case but not the latter, is to place the small 
disk on the target peg which will later need to be clear so that the largest disk can be 
moved to it. The mistake will be made by some versions of the computer program but 
not by others (and by some people and not others) depending on the way in which 
goals (intentions) are formed by the computer, and the degree of foresight (look- 
ahead) that is exercised in forming them. Examination of the human protocols 
reveals that the same phenomena of goal formation determine who does or doesn't 
make the error. (Anzai & Simon, 1979). Further exploration of the data shows that 
means-ends analysis ("find differences between current and goal states, find 
operators that usually remove such differences, apply operators," etc.) characterizes 
much of the behavior of both humans and the computer programs.

By means of these and other observations, we develop variants of the computer 
programs that match the differences in behavior among subjects, thereby obtaining 
an explanation not only of how "people" solve (or fail to solve) the Tower of Hanoi 
problem, but also what differences in strategy lead different people to follow 
different solution paths (Simon, 1975). The computer programs can also include 
learning mechanisms (e.g., adaptive production systems) that match, and explain, 
the changes in the strategy of individual human problem solvers as they acquire 
skill in solving the problem.

In what sense do these findings constitute a solution of the mind-body 
problem? They show that a demonstrably mechanistic system (a "body" in the form 
of a physical symbol system) is capable of thinking (using "mind" processes), where 
the operational definition of "thinking" is identical with the definition used to 
determine when people are thinking. It cannot be emphasized too strongly that the

10 The Tower of Hanoi puzzle consists of a set of discs of different sizes impaled in 
pyramidal fashion on one of three pegs. The task is to move the disks to form a 
pyramid on another one of the pegs, moving only one disk at a time, and never 
placing a larger disk atop a smaller one.
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operational test of thinking involves comparison of both product and process. With
this definition and these empirical findings, the research in cognitive science has
shown that a mind is simply a brain at work.

If we wish to preserve the two terms, "mind" and "brain," in our language, 
then we can use the former for the processes of thought, and the latter for the 
structure that supports the processes. There is no more mystery in the relation 
between these two components than in the relation of the cardboard of which an old 
IBM punchcard is fabricated, and the punching of a pattern of holes in it. The 
former is the memory, a part of the brain; the latter is the process of storing 
knowledge in the brain. To describe any dynamic system   the planets revolving 
about the Sun, or an electric generator   we must describe both the physical parts as 
organized, and the processes they undergo: organized substance and process. The 
brain and mind are a dynamic system; hence their description takes this same form. 
There is nothing epiphenomenal about mind, for without process, the brain does not 
think. As one component of the system is substance, the other process, they are not 
identical.

The Chinese Room

Searle has rejected this solution of the mind-body problem on the grounds that 
the wrong definition of thinking has been applied. Thinking, he argues, requires 
understanding the object of thought; and computers, he claims, cannot understand. 
He provides as example the parable of a room in which translation from English to 
Chinese (or vice versa) is going forward, but simply by means of a lexicon that finds 
the proper Chinese translation for each English word (or phrase, or sentence) 
without reference to the word's intension. Hence, the translation can be done 
without understanding of either language.

The answer to Searle is that he has described the wrong room. If the room had 
windows, so that the translators could see in the real world instantiations of the 
situations described by the text, then they (assumed to know English) could acquire 
Chinese meanings, building up their lexicon in the form of a huge discrimination 
net that sorts both situations and linguistic expressions according to their sensed 
properties (the intensions), and associates expressions with the situations they 
denote. Now the Chinese text is associated with its intensions, and these are used to 
associate to English text corresponding to these intensions. A computer system, ZBIE,
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which carries out these processes was constructed and described a quarter century 
ago by Siklossy (1972). It could also be used to construct a Chinese-English lexicon 
(or vice versa), using the associations of both languages with their intensions to link 
the former.

Siklossy's demonstration that a computer can learn the intensions of words, 
phrases and sentences shows empirically that computers are capable of thinking 
even if the "thinking" is so defined as to require knowledge of the intensions of the 
symbols the mind is manipulating in the process of thought. Hence, our solution of 
the mind-body problem remains valid even if we use this stricter definition of 
thinking and mind.

Conclusion

Artificial intelligence is an empirical science with two major branches. One 
branch is concerned with building computer programs (and sometimes robots) to 
perform tasks that are regarded as requiring intelligence when they are performed 
by human beings. The other is concerned with building computer programs that 
simulate, and thereby serve as theories of, the thought processes of human beings 
engaged in these same tasks. I have directed my remarks to the outer edge of AI 
research belonging to the latter branch, where it is concerned with phenomena that 
are often regarded as ineffable, and not explainable by machine models. I have 
shown that, on the contrary, we have already had substantial success in designing 
and implementing empirically tested information-processing theories that account 
for the phenomena of intuition, insight and inspiration. I have no immediate urge to 
predict how much further we shall go in the future or how fast. The continual 
progress on the journey over the past forty years has been speedy enough for me.

I have had some harsh things to say about philosophers and philosophy 
(perhaps no harsher than philosophers have had to say about AI). Of course I am not 
really attacking philosophers but rather those people who think they can reach an 
understanding of the mind and of the philosophical questions surrounding it by 
methods other than those of empirical psychological science. Traditional philosophy 
has much more to learn today from AI than AI has to learn from philosophy, for it is
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the human mind we must understand   and understand as a physical symbol system   
in order to advance our understanding of the classical questions that philosophers 
have labeled "epistemology" and "ontology" and the "mind-body problem" (Simon, 
1992).

My argument stands on a solid body of fact. I have mentioned a considerable 
number of these facts, drawn from papers in refereed journals or similarly credible 
sources. I may perhaps be pardoned for drawing a large portion of the facts I have 
cited from work in which I have been involved. I could have made an even stronger 
case if I had broadened the base, but I would have been familiar with fewer of the 
details. If you want to calibrate my base of evidence, you can multiply it by several 
orders of magnitude to take account of the work of all the other members of the AI 
and cognitive science communities who have been engaged in simulation of human 
thinking. In my account, I have tried not to talk about "future hopes of 
understanding or modeling human thinking," but to confine myself to documented, 
easily replicable, present realities about our present capabilities for modeling and 
thereby explaining human thinking, even thinking of those kinds that require the 
processes we admiringly label "intuitive," "insightful," and "inspired."

I have used the mind-body problem to illustrate how cognitive science, using 
computer simulation as a tool of theory, can bring light to bear on important 
epistemological problems. The conclusion reached from a large and consistent body 
of empirical evidence is that brain and mind are simply the essential substance and 
process that define any system, computer or human, capable of thinking.

If I have challenged some dimensions of human uniqueness, I hope I will not 
be thought scornful of human beings, or of our capacity to think. To explain a 
phenomenon is not to demean it. An astrophysical theory of the Big Bang or a three- 
dimensional chemical model of DNA do not lessen the fascination of the heavens at 
night or the beauty of the unfolding of a flower. Knowing how we think will not 
make us less admiring of good thinking. It may even make us better able to teach it.
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