
JOURNAL OF COMPLEXITY 1, 3-10 (1985)

Complexity of Approximately Solved Problems*

J. F. TRAUB

Computer Science Department, Columbia University, New York, New York 10027

As the name of this symposium indicates, its scope is delimited in two
ways. We concern ourselves with problems which are approximately solved
and we are interested in the complexity of such problems.

I'll begin by discussing complexity. For the purposes of this symposium,
by complexity we restrict ourselves to computational complexity. That's a
huge and important area but it's not the only notion of complexity. Since this
symposium is multidisciplinary, I'll introduce several fundamental notions of
computational complexity. By the computational complexity of a problem we
mean its intrinsic difficulty as measured by the time, space, or other quantity
required for its solution. For simplicity, I'll confine myself here to time
complexity. Equivalently, the computational complexity of a problem is the
cost of the optimal algorithm for its solution. Thus computational complexity
defines optimal algorithm. For brevity I will usually refer to computational
complexity simply as complexity.

Complexity is an invariant of a problem. It is independent of the algorithm,
but may depend on the model of computation. Since I've explored the notion
of complexity as an invariant at some length in a recent paper (Traub, 198S),
I won't pursue it here.

In general, determining the complexity of a problem is difficult. One
establishes a lower bound by proving that a faster way of performing a task
cannot exist; and an upper bound, which is the cost of a particular algorithm.
The actual complexity is caught from above and below by these bounds. The
deeper question is the lower bound, but good upper bounds are also very
important.

There is sometimes confusion because people use the word complexity
when they refer to the cost of an algorithm. When I say complexity I'll always
mean complexity of the problem.

*Presented at the Symposium on Complexity of Approximately Solved Problems, April 17,
1985.

3
0885-064X/85 $3.00
Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

4 J. F. TRAUB

The second scope delimiter of this symposium is approximately solved
problems. There are two reasons why we solve a problem approximately; we
can't solve it exactly or we choose not to do so.

To illustrate why we can't solve problems exactly I'll use one of my
favorite examples; it's taken from the study of human vision.

How are humans able to see the world? The late David Marr of M.I.T. and
his colleagues have developed a computational model of the human visual
system. I'll give a simplified description of a small portion of this model. I
want to point out, parenthetically, that similar issues arise when we design a
vision system for a robot.

Imagine you're looking at an automobile. You can see what shape it has
because, roughly speaking, your brain has performed a number of processes
at various stages upon images it has received. For example, at one stage it has
outlined the images of the various surfaces of the car by detecting the edges
that separate them, such as the edge that separates the image of the windshield
from the image of the hood. We can detect this edge because there's a sudden
change in the slope of the surface; the window and hood do not join smoothly.

In the next stage, the human visual system identifies the three-dimensional
shapes of the various surfaces. This stage will serve as our example.

How do we infer the shape of the hood? A depth value is the subjective
distance to a point on the object as perceived by the viewer. The model
assumes that by binocularity or other means we obtain a finite number of
depth values. In general, between any pair of depth values the hood could
have any shape. However, the visual system uses the assumption that the
hood is smooth and therefore cannot change too much between depth values.
(This notion of smoothness can be made mathematically precise.) Knowing
die finite number of depth values and the smoothness of the surface, the visual
system approximately determines the shape of the hood.

Now I will use this example of determining the shape of the hood to
introduce some fundamental concepts.

The first concept is information. I do not mean information in the sense of
Claude Shannon and information theory. For present purposes, information
is what we know about the problem to be solved. In determining the shape
of the hood, the information is the finite number of depth values and the
assumed smoothness of the surface. Because I may want to regard the surface
smoothness as fixed, and study the effect of varying the depth values, I'll
often regard the set of depth values as the information.

The number of depth values is finite. Many different surfaces may have the
same depth values; there are not enough depth values to uniquely determine
the surface. We say the information is limited, or partial.

Furthermore, the subjective distance perceived by the viewer is only an
estimate of the true distance. Thus the information is contaminated by error.

Because the information is partial and contaminated, we can solve the
problem of determining the shape of the hood only approximately. Alterna-

COMPLEXITY OF APPROXIMATELY SOLVED PROBLEMS 5

tively, I can say there must be uncertainty in the answer and this uncertainty
is inherently caused by the available information. It should be clear that
partial or contaminated information always leads to inherent uncertainty.

As a second example, Til use a mathematical problem. It is a simple
problem, the computation of a definite integral. For most integrands we
cannot compute the integral utilizing the fundamental theorem of the calculus
since the antiderivative is not a "simple" function. We have to approximate
the integral numerically. Usually, the integrand is evaluated at a finite number
of points. The information is the values of the integrand at these points. Since
an infinite number of integrands have the same values at these points, the
information is partial. The integral is estimated by combining the integrand
values. In addition, there will be round-off error in evaluating the integrand,
and therefore the information is contaminated. Since with the information
we're using we don't know the integrand, there is intrinsic uncertainty in the
answer.

This example differs from the previous one in that we started with complete
and exact information. The integrand was specified exactly as a function. But
we couldn't use that information to solve our problem. We had to throw away
our complete and exact information and replace it by partial and contaminated
information.

These are just examples, but problems with partial and contaminated infor­
mation arise in many disciplines: in economics, psychology, computer sci­
ence, physics, chemistry, control theory, information theory, signal pro­
cessing, prediction and estimation, scientific and engineering computation,
biology, medicine, geophysics, decision theory, and artificial intelligence.
I'm sure other disciplines will occur to the readers.

There is a third reason why we cannot solve problems exactly. We restrict
what we mean by algorithm; that is, we restrict how the information can be
used to provide an answer. I won't pursue this cause of uncertainty here. (See
Traub and WoSniakowski, 1984, pp. 50-51.)

We've seen that problems can't be solved exactly because the available or
utilized information is partial and contaminated. Now I'll consider problems
where the information is complete and exact. In principle we can always solve
these problems exactly. I want to discuss why we choose not to do so.

We may choose not to solve a problem exactly because the complexity is
too high. We are willing to live with uncertainty in order to reduce complex­
ity. I'll illustrate this with four examples.

The first example is the approximate solution of NP-complete problems.
The standard monograph in this area is Garey and Johnson (1979). An
instance of an NP-complete problem is bin packing and we therefore believe
that its complexity is exponential in the number of bins. Karmarkar and Karp
(1982) have shown that if we're willing to settle for a packing that uses
(1 +) times as many bins as the optimal one, then the cost is much less, and
this holds for arbitrarily small positive e. Thus bin packing is an instance

O J. F. TRAUB

where we can choose to solve approximately in order to lower the complexity.
There are NP-complete problems where you don't have that choice; the
problem remains NP-complete even if we're willing to settle for an approxi­
mate solution.

A second example of choosing not to solve exactly is provided by the use
of heuristics in artificial intelligence and elsewhere. An instance of the use of
heuristics is provided by chess. In chess we don't really have a choice; solving
approximately is forced on us by the complexity of the game.

The problem is to find a winning strategy for white (if it exists) against all
possible strategies of black. The information is complete and exact and the
problem can be solved exactly. Indeed, we have the following gedanken
algorithm. Generate the tree of all possible moves. If there exist one or more
winning strategies against all moves by black, choose one of those strategies.
This is an algorithm which guarantees a win. If no such strategy exists, no
algorithm for winning exists.

Such a "brute-force" approach would be far too expensive and so we use
heuristics.

A third example is provided by probabilistic algorithms. A well-known
instance is primality testing. The use of probabilistic algorithms for primality
testing was pioneered by Rabin (1976) and by Solovay and Strassen (1977).
To decrease complexity we settle for an answer with uncertainty; that is, we
sometimes get the wrong answer. However, the probability of a wrong an­
swer is "small."

My final example of choosing not to solve exactly is provided by the use
of iterative algorithms for problems which could be solved exactly by direct
methods. An instance is provided by the solution of large linear systems of
order n. Neglecting round-off error, direct methods solve the system exactly
at cost proportional ton 3 . (Direct methods based on fast matrix multiplication
are not used in practice.) That's a nice polynomial cost except that the values
of n arising in practice are so large that direct methods take too much time
and space.

Thus iterative algorithms are often used, especially for large sparse sys­
tems. The linear systems problem has complete information since we're given
the matrix and the right-hand side. However, the information used by these
algorithms is some vectors, consisting of the right-hand side and the products
of certain matrix-vector multiplication. Thus we turn a problem with com­
plete information into one with partial information in order to reduce com­
plexity.

To be specific, consider any linear system whose matrix is symmetric
positive definite and has bounded condition number. Results of Nemirovsky
and Yudin (1983) and Traub and Wozniakowski (1984) have shown that the
complexity of this problem is linear in the order although the complexity also
depends on the condition number and on the uncertainty in the solution.

These are four examples of choosing not to solve exactly. I'm sure others
will occur to the readers.

COMPLEXITY OF APPROXIMATELY SOLVED PROBLEMS 7

An area of great current and future interest in computer science, eco­
nomics, and other fields is the study of distributed systems. For simplicity,
I will consider a parallel computer as an instance of a distributed system. I
want to discuss how distributed systems fit into the theme of this conference.

There are two reasons for distributed systems. The first is that although a
centralized system could be used, we select a distributed system for the sake
of, say, efficiency. The second reason is that the problem is inherently
distributed; examples include resource allocation in a decentralized economy,
traffic networks, and reservation systems.

Consider now a large distributed system. One possibility is that the total
system has complete information but the nodes have only local information,
say, about themselves and their neighbors. Thus the information is distributed
over the system. To give the nodes information about the total system would
cost too much in time and/or space. Thus, decisions are made at nodes which
have only partial information and that means a solution with uncertainty. In
a dynamic system, even if complete information is initially available at the
nodes, we cannot afford to update that information over time.

So far, I've assumed the total system has complete information. Of course,
often even the total system has only partial or contaminated information and
what I've said holds in spades.

An implication of this discussion is that even the problems that are now
exactly solved on a uniprocessor will be only approximately solved in the
distributed environments of the future. New models and new analyses will be
required.

I've been discussing the available information. To discuss complexity we
must have a model of computation; that is, we must decide what is permitted
and how much it costs. I am now going to bring together information and
complexity.

To include complexity, we must decide whether to charge for information.
For the traveling salesman problem the information is the intercity distances.
For linear programming the information is the matrix and the linear cost
function. In the formulation of these and many other problems the informa­
tion is assumed to be free. The complexity is then the minimum cost of
operating on the information to obtain a solution.

For other problems, such as the vision and integration examples I discussed
earlier, we assume that information costs. There are many other examples.
For instance, in mineral exploration, a seismologist might set off explosions
whose effect is measured by sensors. That's an expensive process. If you
assume that information costs, then the complexity is the minimum of the sum
of two costs: the cost of the information plus the cost of combining the
information to obtain a solution.

I will use the example of linear programming to illustrate an important
dichotomy. In linear programming the information is assumed to be com­
plete, exact, and free. These assumptions are also made for many other
important problems, for example, for NP-complete problems. Those assump-

8 J. F. TRAUB

tions are typically not stated explicitly but they are important. I will use the
phrase combinatorial complexity to denote the study of complexity when the
information is complete, exact, and free. I will use the phrase information-
based complexity when the information is partial, contaminated, and priced.

Information-based complexity has both an information level and a combi­
natorial level. At the information level we answer questions such as:

 What is the intrinsic uncertainty in the solution due to the available
information?

 How much information is needed to limit the uncertainty to a specified
level? For example, in geophysical exploration, how many measurements
must the seismologist make?

At the combinatorial level we answer questions such as:

 What is the minimal cost of combining the information to obtain an
answer?

The central question of information-based complexity is the following:

 What is the computational complexity of solving a problem for a given
level of uncertainty?

Answering this question requires both the information and combinatorial
levels.

At the information level the adversary arguments are based on the quantity
and quality of the available information. The information level is essentially
independent of the model of computation. Speaking technically for a mo­
ment, there is a model at the information level, which is sometimes called an
oracle model.

At the combinatorial level the results of information-based complexity are
dependent on the model of computation. Since for problems with complete
and exact information there is only the combinatorial level, the model of
computation plays a key role in combinatorial complexity.

Often, but not always, the complexity bounds are much tighter for
information-based complexity than for combinatorial complexity. For exam­
ple, for certain classes of problems we can prove that the combinatorial cost
is small compared to the information cost and we can therefore use the great
power of the information-level arguments to obtain extremely tight bounds,
sometimes good to within the cost of one arithmetic operation.

One the other hand, Papadimitriou and Tsitsiklis (1984) study a problem
of decentralized control where the information is partial. They show that the
amount of information required is polynomial in the reciprocal of the uncer­
tainty. However, the complexity of combining the information is NP-
complete. I think this is an interesting bridge paper between information-
based complexity and combinatorial complexity, and I anticipate it will be the
first of many papers which have the flavor of both these kinds of complexity.

COMPLEXITY OF APPROXIMATELY SOLVED PROBLEMS 9

In both combinatorial complexity and information-based complexity we
judge algorithms by their performance in various settings including worst
case, average case, and probabilistic. Since many of the speakers will refer
to these, I want to remind you what the criteria are in the various settings.

In a worst case setting we want to minimize the cost for the most difficult
problem instance. This is sometimes called a minimax criterion.

In an average case setting we want to minimize the expected cost.
In a probabilistic setting we want to minimize the cost while requiring that

the probability of a large error is small. If a problem has a yes or no answer,
then we require that the probability of a wrong answer is small.

In closing I'd like to summarize what I see as the essential differences and
similarities between combinatorial complexity and the information-based
complexity. I'll start with the differences.

In combinatorial complexity the information is complete, exact, and free.
Only the combinatorial level is of interest. We can solve problems exactly
unless the complexity makes that impossible; then the problem is said to be
intractable.

In information-based complexity the information is partial and con­
taminated, and it costs. Some questions can be answered at the information
level, others at the combinatorial level; still others require both levels. Usu­
ally, problems cannot be solved exactly with finite complexity.

What are the similarities? As I indicated earlier, in both combinatorial
complexity and information-based complexity we study the performance of
algorithms in various settings. The most important commonality is that in
both areas we study the intrinsic difficulty of solving problems and we seek
optimal algorithms for their solution.

I've discussed the complexity of approximately solved problems in great
generality. The rest of the papers presented at this symposium will report
results from the frontiers of complexity by the researchers who established
those frontiers.

REFERENCES
GAREY, M. R., AND JOHNSON, D. S. (1979), "Computers and Intractability," Freeman, San

Francisco.
KARMARKAR, N., AND KARP, R. M. (1982), An efficient approximation scheme for the one-

dimensional bin-packing problem, in "Proceedings, 23rd Annual Symp. Found. Comput.
Sci.,"pp. 312-320.

NEMIROVSKY A. S., AND YUDIN, D. B. (1983), "Problem Complexity and Method Efficiency
in Optimization," Wiley-Interscience, New York. (Translated from "Slozhnost* zadach i
effektivnost' metodov optimizatsii.")

PAPADIMTTRIOU, H., AND TSITSIKLIS, J. (1984), "Intractable Problems in Control Theory,"
Technical Report, Stanford University.

RABIN, M. O. (1976), Probabilistic algorithms, in "Algorithms and Complexity: New Direc­
tions and Recent Results" (J. F. Traub, Ed.), pp. 21-39, Academic Press, New York.

SOLOVAY, R., AND SiRASSEN, V. (1977), A fast Monte-Carlo test for primality, SIAM J.
Comput. 6, 84-85; erratum, 7 (1978), 118.

10 J. F. TRAUB

TRAUB, J. F. (1985), Information, complexity, and the sciences, University Lecture, Columbia
University.

TRAUB, J. F., AND WOZNIAKOWSKI, H. (1984), Information and computation, in "Advances in
Computers, Vol. 23" (M. C. Yovits, Ed.), pp. 35-92, Academic Press, New
York/London, 1984.

TRAUB, J. F., AND WOZNIAKOWSKI, H. (1984), On the optimal solution of large linear systems,
/. Assoc. Comput. Mach. 31, 545-559.

