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M
onte Carlo simulation is widely used to 

value complex financial instruments. 

Vast sums are spent annually on these 

methods.
Monte Carlo methods use random (or, more 

precisely, pseudo-random) points. If we plot a moder­ 

ate number of pseudo-random points in two dimen­ 

sions, we observe regions where there are no points 

(see, e.g., Traub and Wozmakowski [1994, p. 102]). 

Rather than use pseudo-random points, it seems attrac­ 

tive to choose points that are as uniformly distributed as 

possible. There is a notion in number theory called dis­ 

crepancy, which measures the deviation of a set of 

points in d dimensions from uniformity. Although the 

question of which point sets in d dimensions have the 

lowest discrepancy is open, various low-discrepancy point 

sets are known.
Our study compares the efficacy of low-discrep­ 

ancy methods with Monte Carlo methods on the valu­ 

ation of financial derivatives. We use a collateralized 

mortgage obligation (CMO), provided to us by 

Goldman Sachs, with ten bond classes (tranches) for­ 

mulated as the computation of ten integrals of dimen­ 

sion up to 360. We choose this CMO because it has 

fairly high dimension, and because each integrand eval­ 

uation is very expensive it is crucial to sample the inte­ 

grand as few times as possible. We believe that our con­ 

clusions regarding this CMO will hold for many other 

financial derivatives.
The low-discrepancy sample points chosen for
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our tests are Sobol and Halton points. We compare 

methods based on these points with the classical Monte 

Carlo method and also with the classical Monte Carlo 

method combined with antithetic variables.

An explanation of terminology is required. Low- 

discrepancy points are sometimes referred to as quasi-random 

points. Although this latter term is in widespread use, we 

believe the expression is misleading as there is nothing 

random about these deterministic points. We prefer to 

use the terminology low-discrepancy or deterministic.

We assume the finance problem has been for­ 

mulated as an integral over the unit cube in d dimen­ 

sions. We have built a software system called FINDER 

for computing high-dimensional integrals. It runs on a 

heterogeneous network of workstations under PVM 

3.2 (parallel virtual machine). Because workstations are 

ubiquitous, this is a cost-effective way to perform large 

numbers of computations quickly. Of course, FINDER 

can also be used to compute high-dimensional integrals 

on a single workstation.
A routine for generating Sobol points is given by 

Press et al. [1992], FINDER, however, incorporates 

major improvements, and the results reported here were 

obtained using it. One improvement is developing the 

table of primitive polynomials and initial direction 

numbers for dimensions up to 360.

This article is based on two years of software 

construction and testing. Preliminary results were pre­ 

sented to a number of New York City financial institu­ 

tions in the fall of 1993 and the spring of 1994. A 

January 1994 article by Traub and Wozmakowski [1994, 

p. 102] discusses the theoretical issues and reports that 

"preliminary results obtained by testing certain finance 

problems suggest the superiority of the deterministic 

methods in practice." Further results were reported at a 

number of conferences in the summer and fall of 1994. 

A June 1994 article in BusinessWeek indicates the possi­ 

ble superiority of low-discrepancy sequences.

Details on the CMO, the numerical methods, 

and the test results are presented by Paskov [1994]. 

Here we limit ourselves to stating our main findings 

and indicating typical results. For the sake of brevity, we 

shall refer to the method that uses Sobol points as the 

Sobol method.
Our main conclusions regarding the evaluation 

of this CMO fall into three groups.

Deterministic and Monte Carlo Methods

The Sobol method consistently outperforms the Monte

Carlo method. Tlie Sobol method consistently outperforms the 

Halton method. In particular:

  The Sobol method converges significantly faster 

than, the Monte Carlo method.

  The convergence of the Sobol method is smoother 

than the convergence of the Monte Carlo method. 

This makes automatic termination easier for the 

Sobol method.
  Using our standard termination criterion, the Sobol 

method terminates two to five times faster than the 

Monte Carlo method, often with less error.

  The Monte Carlo method is sensitive to the ini­ 

tial seed.

Sobol, Monte Carlo, and 
Antithetic Variables Methods

The Sobol method consistently outperforms the anti­ 

thetic variables method, which in turn consistently outperforms 

the Monte Carlo method. In particular:

  These conclusions also hold when a rather small 

number of sample points are used, an important case 

in practice. For example, for 4,000 sample points, 

the Sobol method running on a single Sun-4 work­ 

station achieves accuracies within range from one 

part in a thousand to one part in a million, depend­ 

ing on the tranche, within a couple of minutes.

  Statistical analysis on the small sample case further 

strengthens the case for the Sobol method over the 

antithetic variables method. For example, to 

achieve similar performances at a confidence level 

of 95%, the antithetic variables method needs from 

seven to seventy-nine times more sample points 

than the Sobol method, depending on the tranche.

  The antithetic variables method is sensitive to the 

initial seed, but convergence of the antithetic vari­ 

ables method is less jagged than convergence of the 

Monte Carlo method.

Network of Workstations

All the methods benefit by being run on a network of 

workstations. In particular:

  For N workstations, the measured speedup is at 

least 0.9N, where N < 25.

  A substantial computation that took seven hours on 

a Sun-4 workstation took twenty minutes on the 

network of twenty-five workstations.
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We do not claim that the Sobol method is always 

superior to the Monte Carlo method. We do not even 

claim that it is always superior for financial derivatives. 

After all, the test results reported here are only for one 

particular CMO. We do believe, however, that it will be 

advantageous to use the Sobol method for many other 

types of financial derivatives.

NUMERICAL METHODS

The idea underlying the Monte Carlo method is 

to replace the integral off (x), which is a continuous 

average, by a discrete average over randomly chosen 

points. More precisely, let D denote the d-dimensional 

unit cube. We approximate

JD f(x)dx

by

n 1=1

It is well-known that, if one chooses n points 

from a flat distribution, the expected error is

En (0 =

where G2 (f) denotes the variance off.

The Monte Carlo method has the advantage that 

the expected error is independent of dimension, but it 

suffers from the disadvantage that the rate of conver­ 

gence is only proportional to rf1/2 . This motivates the 

search for methods that converge faster. Low-discrep­ 

ancy methods also approximate the integral of f (x) by 

a discrete average, although this time the average is 

taken over low-discrepancy points. A number of low- 

discrepancy point sets are known. Here we confine 

ourselves to Sobol or Halton points. Roughly speaking, 

both have the property that the rate of convergence is 

proportional to (log n) d/n. See Niederreiter [1992] for 

the theory of low-discrepancy points and references to 

the literature.
The n" 1 factor in the convergence formula for 

low-discrepancy points may be contrasted with the 

n~ l/2 convergence of Monte Carlo, suggesting that low-

discrepancy methods are sometimes superior to Monte 

Carlo methods. A number of researchers report that 

this advantage decreases with increasing dimension. 

Furthermore, they report that the theoretical advantage 

of low-discrepancy methods disappears for rather mod­ 

est values of the dimension, say, d < 30.

These conclusions are based on mathematical 

problems specifically constructed for testing purposes 

or for certain problems arising in physics. As we shall 

see, tests on 360 dimensional integrals arising from a 

CMO lead to very different conclusions.

THE FINANCE PROBLEM

We test a collateralized mortgage obligation 

(CMO) provided to us by Goldman Sachs. This CMO 

consists often tranches that derive their cash flows from 

an underlying pool of mortgages. Cash flows (interest 

and principal) received from the pool of mortgages are 

divided and distributed to each of the tranches accord­ 

ing to a set of prespecified rules. The technique of dis­ 

tributing the cash flows transfers the prepayment risk 

among different tranches. While the actual amount of 

cash flows obtained will depend upon the future level 

of interest rates, our problem is to estimate the expect­ 

ed value of the sum of present values of future cash 

flows for each of the tranches.

The underlying pool of mortgages has a thirty- 

year maturity, and cash flows are obtained monthly. 

This leads to 360 cash flows and hence to integration 

in 360 dimensions. The precise mathematical formu­ 

lation for this CMO may be found in Section 5 of 

Paskov [1994].

SOFTWARE SYSTEM FOR COMPUTING 

HIGH-DIMENSIONAL INTEGRALS

Theory suggests that the low-discrepancy deter­ 

ministic methods provide an interesting alternative to 

the Monte Carlo method for computing high-dimen­ 

sional integrals. We have developed and tested a dis­ 

tributed software system for computing multivariate 

integrals on a network of workstations. The software 

also runs on a single workstation.

The software uses a sequence of sample points 

as follows:

  Halton points.

  Sobol points.
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EXHIBIT 1
SOBOL AND HALTON RUNS FOR TRANCHE A AND

TWO MONTE CARLO RUNS USING RAN2

I
o

1.468*407

1 4875e+07

1.467*407

1.4865e+07

1.4886407

1.48556*07

1.4856407

aoboi
halton

RAN2 seedi
RAN2 saed2

100000 200000 300000 400000 500000 800000 
Number of integrand values

700000 800000 900000 16406

  Uniformly distributed random points.

The user can choose the sequence of sample 

points from a menu. The software is written in a mod­ 

ular way so other kinds of deterministic and random 

number generators can be easily added. One or several 

multivariate functions defined over the unit cube of up 

to 360 variables can be integrated simultaneously.

A routine for generating Sobol points is given in 

Press et al. [1992]. Our FINDER system makes major 

improvements on this routine, and the results reported 

here were obtained using FINDER One of the 

improvements is development of the table of primitive 

polynomials and initial direction numbers for dimen­ 

sions up to 360.
The software permits the use of various ran­ 

dom number generators. RANI and RAN2 from 

Press et al. [1992] are used because of their wide avail­ 

ability and popularity.

COMPARISON OF DETERMINISTIC 

AND MONTE CARLO METHODS

Selected results of extensive testing of the deter­

ministic and Monte Carlo 
methods for the CMO 
are summarized m a 
number of graphs.

Exhibit 1 shows 
the results for one of the 
ten tranches (tranche A) 
of Sobol, Halton, and 
Monte Carlo runs with 
two randomly chosen ini­ 
tial seeds. Throughout 
this section, we describe 
results on tranche A. 
Results for other tranches 
are similar unless stated 
otherwise. The pseudo­ 
random generator RAN2 
from Press et al. [1992] is 
used to generate random 
sample points for the 
Monte Carlo runs.

It is striking how 
typical Exhibit 1 is of the 
vast amount of data we col­ 
lected. We can conclude:

  The Monte Carlo method is sensitive to the ini­ 

tial seed.
  The deterministic methods, especially the Sobol 

method, converge significantly faster than the 

Monte Carlo method.
  The convergence of the deterministic methods, 

especially of the Sobol method, is smoother than 

the convergence of the Monte Carlo method. 

This makes automatic termination easier for the 

Sobol method.
  The Sobol method outperforms the Halton method.

Exhibit 2 plots the same Sobol and Halton runs 

versus the arithmetic mean of twenty Monte Carlo 

runs. The twenty Monte Carlo runs use twenty differ­ 

ent randomly chosen initial seeds. We stress that the 

number of sample points on the x-axis is correct only 

for the deterministic methods. The actual number of 

sample points for the averaged Monte Carlo graph is 

twenty times the number of sample points on the x- 

axis. The results of the deterministic methods and the 

averaged Monte Carlo results are approximately the 

same. After roughly the first 50,000 integrand evalua-
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tions, the behavior of the 
deterministic methods and 
average Monte Carlo is 
roughly the same, even 
though we are using twenty 
times more random than 
deterministic points.

In Exhibit 3, an 
automatic termination cri­ 
terion is applied to Sobol, 
Halton, and three Monte 
Carlo runs. We choose a 
standard automatic termi­ 
nation criterion. Namely, 
when two consecutive dif­ 
ferences between consecu­ 
tive approximations using 
10,000 i, i = 1, 2, ..., 100, 
sample points drop below 
some threshold value for all 
of the tranches of the 
CMO, the computational 
process is terminated.

With the threshold 
value set at 250, the Sobol 
run terminates at 160,000 
sample points; the Halton 
run terminates at 700,000 
sample points; and the 
three Monte Carlo runs 
terminate at 410,000, 
430,000, and 780,000 sam­ 
ple points. Hence, the 
Sobol run terminates two 
to five times faster than the 
Monte Carlo runs.

Even though the 
Sobol method terminates 
faster, it is often more accu­ 
rate than the Monte Carlo 
method. Details may be 
found in Paskov [1994].

ANTITHETIC 
VARIABLES

An important ad­ 
vantage of Monte Carlo 
and deterministic methods

EXHIBIT 2
SOBOL AND HALTON RUNS FOR TRANCHE A AND AN AVERAGE OF

TWENTY MONTE CARLO RUNS USING RAN2

1.488«407

1 4875e+07

1.487e+07

I  5

1 4865e+07

1.486*407

1.4855*407

1.485e+07

halton 
RAN2 average

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e*06
Number of integrand values

EXHIBIT 3
AUTOMATIC TERMINATION CRITERION APPLIED TO SOBOL, HALTON,

AND THREE MONTE CARLO RUNS USING RAN2 FOR TRANCHE A

1.488e407

1.4875e+07

1.487e+07

I 
75

1.48656+07

.486e+07

1.48556407

1 4856407

$oboi 
hah on

RAN2 seedl 
RAN2seedE 
RAN2 se«d3

100000 200000 300000 400000 500000 
Number of integrand values

600000 700000 800000
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is that they can be utilized very generally. This is 

important in a number of situations:

  If a financial house has a book with a wide variety 

of derivatives, it is advantageous to use methods that 

do not need to be tuned to a particular derivative.

  If a new derivative has to be priced, there is no 

immediate opportunity to tailor a variance reduc­ 

tion technique to a particular integrand.

Variance reduction techniques are commonly 

used in conjunction with Monte Carlo methods. 

Although variance reduction techniques can be very 

powerful, they can require considerable analysis before 

being applied. We therefore limit ourselves here to just 

one variance reduction technique: antithetic variables. 

The advantage of antithetic variables is its ease of use. 

Tests reveal that it is superior to the Monte Carlo 

method for our CMO problem. We emphasize that 

antithetic variables is not a palliative; it can be inferior 

to the Monte Carlo method.
Exhibit 4 is analogous to Exhibit 1. It compares 

the results of Sobol, Halton, and antithetic variables 

runs with two randomly chosen initial seeds. The data

EXHIBIT 4
SOBOL AND HALTON RUNS FOR TRANCHE A AND TWO ANTITHETIC

VARIABLES RUNS USING RAN2

graphed in Exhibit 4 are typical of our results.

From these results we conclude that 

this CMO:

for

  The Sobol method consistently outperforms the 

antithetic variables method.

  Convergence of the antithetic variables method 

is ' jagged than convergence of the Monte 

Car. method.
  The antithetic variables method consistently out­ 

performs the Monte Carlo method.

Further results regarding antithetic variables may be 

found in Paskov [1994].

SMALL NUMBER OF SAMPLE POINTS

1.488e+07

1.48756+07

» 1.487e+07

I
0)

o
  1.48656+07

1.4866+07

1.48556+07

1.4869*07

sobol 
halton

RAN2 sdddt 
RAN2s66d2
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Number of Integrand values

Results for a small number of points are some­ 

times of special importance for people who evaluate 

CMOs and other derivative products. They need meth­ 

ods that can evaluate a derivative in a matter of minutes. 

Rather low accuracy, on the order of 10~2 to 10"4 , is 

often sufficient. The integrands are complicated and 

computationally expensive. Furthermore, many may

have to be evaluated on a 

daily basis with limited 

computational resources, 

such as workstations.
We therefore com­ 

pare the performance of 

the Sobol method with 

Monte Carlo and anti­ 

thetic variables for 4,000 

sample points. This leads 

to reasonable results and 

takes less than a couple of 

minutes of workstation 

CPU time. We believe 

that comparable results 

may hold for other mort­ 

gage-backed securities 

and interest rate deriva­ 

tives. We drop the Halton 

method from considera­ 

tion in this section 

because it is outper­ 

formed by both the 

Monte Carlo and anti­ 

thetic variables methods700000 800000 900000 1e+06
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EXHIBIT 5
Number of "Wins" of the Monce Carlo Method and the 

Sobol Method

Tranche

A
B
C
D
E
G
H
J
R
Z

Monte Carlo

3
0
3
3
2
0
0
0
8
4

Sobol

17
20
17
17
18
20
20
20
12
16

for 4,000 sample points. Sometimes computational 

speed is paramount. It would therefore also be of inter­ 

est to study a smaller number of points.

For each of the ten tranches we compute twen­ 

ty approximate answers using the Monte Carlo method 

with twenty random initial seeds. For each tranche we 

also compute an approximation using Sobol points. We 

compute as well the relative errors of all these approxi­ 

mations. To compute the relative errors we needed esti­ 

mates of the true answers, which we obtained using 

antithetic variables with 20 million points.

The results are summarized in Exhibit 5. We say 

a method wins if it has a smaller relative error. (Recall 

we are fixing the number of samples at 4,000.) Sobol 

points win for every tranche. In total, the Sobol 

method wins 177 times out of 200 cases; that is almost 

90% of the time.
Exhibit 6 shows the result of comparing the 

Sobol method with the antithetic variables method.

EXHIBIT 6
Number of "Wins'* of the Antithetic Variables Method and 

the Sobol Method

Tranche Antithetic Variables Sobol

A
B
C
D
E
G
H
J
R
Z

9
1
6
10
11
2
3
2
8
9

11
19
14
10
9
18
17
18
12
11

The Sobol method wins for eight of the tranches, ties 

for one, and loses for one. In total, Sobol wins almost 

70% of the time.

The Sobol method achieves accuracies ranging 

from one part in a thousand to one part in a million, 

depending on the tranche. It takes about 103 seconds to 

compute the Sobol results and about 113 seconds to 

compute the antithetic variables results for all ten 

tranches running on a Sun-4 workstation.

CLOSING REMARKS

We performed statistical analysis for a small 

number of sample points. Methodology and results are 

reported in Section 9 of Paskov [1994]. Here we con­ 

fine ourselves to noting just one conclusion.

  Statistical analysis on the small sample case fur­ 

ther strengthens the case for the Sobol method 

over the antithetic variables method. For exam­ 

ple, to achieve similar performances at a confi­ 

dence level of 95%, the antithetic variables 

method needs from seven to seventy-nine times 

more sample points than the Sobol method, 

depending on the tranche.

In closing, we suggest some directions for 

future work:

  Compare the performance of low-discrepancy 

and Monte Carlo methods on other financial 

derivatives.

  Test the performance of other known low-discrep­ 

ancy sequences on various derivatives.

  Characterize analytic properties of classes of finan­ 

cial derivatives and design new methods tuned to 

these classes.

  Study error reduction techniques for determinis­ 

tic methods.

  Because results for a small number of samples are 

often of special interest in finance, it would be 

attractive to design new deterministic sequences 

that are very uniformly distributed for a small num­ 

ber of points.

  There are numerous open theoretical problems 

concerning high-dimensional integration and low- 

discrepancy sequences. We believe that their solu­ 

tion will aid in the design of better methods for 

finance problems.
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