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BEATING MONTE CARLO
Simulation methods using low-discrepancy point sets beat Monte Carlo 
hands down when valuing complex financial derivatives, report
Anargyros Papageorgiou and Joseph Traub

M onte Carlo simulation is widely used to 
price complex financial instruments, and 

much time and money have been invested in 
the hope of improving its performance. How­ 
ever, recent theoretical results and extensive 
computer testing indicate that deterministic 
methods, such as simulations using Sobol or 
Faure points, may be superior in both speed 
and accuracy.

Tn this paper, we refer to a deterministic 
method by the name of the sequence of points 
it uses, eg, the Sobol method. We tested the gen­ 
eralised Faure sequence due to Tezuka (1995) 
and a modified Sobol method which includes 
additional improvements to those document­ 
ed in Paskov & Traub (1995). We compared 
these two low-discrepancy deterministic meth­

ods with basic Monte Carlo in the valuation of 
a collateraliscd mortgage obligation (CMO).

We found that deterministic methods beat 
Monte Carlo:
D by a wide margin. In particular: 
(i) Both the generalised Faure and modified 
Sobol methods converge significantly faster 
than Monte Carlo.
(ii) The generalised Faure method always con­ 
verges at least as fast as the modified Sobol 
method and often faster, 
(iii) The Monte Carlo method is sensitive to the 
initial seed.
D for a small number of sample points: 
(i) Deterministic methods achieve a low error 
level with a small number of points, 
(ii) For the most difficult CMO tranche, gener-
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alised Faure achieves accuracy of 10~2 with 170 
points, while modified Sobol uses 600 points. 
The Monte Carlo method, on the other hand, re­ 
quires 2,700 points for the same accuracy, 
(iii) Monte Carlo tends to waste points due to 
clustering, which severely compromises its per­ 
formance when the sample size is small. 
D as the sample size and the accuracy de­ 
mands grow. In particular: 
(i) Deterministic methods are 20 to 50 times 
faster than Monte Carlo (the speed-up factor) 
even with moderate sample sizes (2,000 de­ 
terministic points or more), 
(ii) When high accuracy is desired, determin­ 
istic methods can be as much as 1,000 times 
faster than Monte Carlo.

There are two ways of valuing financial de­ 
rivatives: via paths or as a high-dimensional 
integral. For simplicity, we will restrict our­ 
selves to a discussion of the integral formula­ 
tion and, without loss of generality (Paskov, 
1996), the integral over the unit cube in d di­ 
mensions. For most finance problems, this in­ 
tegral cannot be analytically computed; we 
have to settle for a numerical approximation.

The basic Monte Carlo method obtains this 
approximation by computing the arithmetic 
mean of the integrand evaluated at randomly 
chosen points. More precisely/ only pseudo­ 
random points can be generated on a digital 
computer and these are used in lieu of random 
points. There are sophisticated variations of 
this method but we refer only to the basic ver­ 
sion in this paper.

If pseudo-random points from a flat dis­ 
tribution are plotted on the unit square in two 
dimensions (see figure 1), there are some re­ 
gions where no sample points occur and oth­ 
ers where the points are more concentrated. 
This is clearly undesirable. Random point sam­ 
ples are wasted due to clustering. Indeed, 
Monte Carlo simulations with very small sam­ 
ple sizes cannot be trusted. It would be better 
to place our sample points as uniformly as pos­ 
sible, which is the idea behind low-discrepan­ 
cy sequences. Discrepancy is a measure of de­ 
viation from uniformity; hence low-discrep­ 
ancy points are desirable. Figure 2 shows a plot 
of certain low-discrepancy points on the unit 
square in two dimensions.

A low-discrepancy method approximates 
the integral by computing the arithmetic mean 
of the integrand evaluated at low-discrepan­ 
cy points. Low-discrepancy sequences have
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been extensively studied. 1 In contrast to the 
Monte Carlo method, these use deterministic 
points. They are sometimes said to be quasi- 
random.

In 1992, the conventional wisdom was that 
although theory suggested that low-discrep­ 
ancy methods were sometimes superior to 
Monte Carlo, this theoretical advantage was 
not seen for high-dimensional problems. 
Joseph Traub and a PhD student, Spassimir 
Paskov, decided to compare the efficacy of low- 
discrepancy and Monte Carlo methods in valu­ 
ing financial derivatives.

They used a CMO (Fannie Mae REMIC 
Trust 1989-2023) provided by Goldman Sachs, 
with 10 tranches requiring the evaluation of 10 
integrals, each over 360 dimensions, and a par­ 
ticular low-discrepancy sequence due to Sobol. 
The values of the tranches depended on the in­ 
terest rate and prepayment models used. 
Paskov & Traub made major improvements in 
the Sobol points, which led to a more uniform 
distribution. The improved Sobol method con­ 
sistently outperformed Monte Carlo (Paskov 
& Traub, 1995, and Paskov, 1996).

Software construction and testing of low-dis­ 
crepancy deterministic methods for pricing fi­ 
nancial derivatives began at Columbia Univer­ 
sity in autumn 1992. Preliminary results were 
shared with a number of New York City finan­ 
cial houses in autumn 1993 and spring 1994. The 
first published announcement was Traub and 
Wozniakowski's January 1994 article in Scien­ 
tific American. A more detailed history is given 
in Paskov & Traub (1995).

In September 1995, IBM announced a prod­ 
uct called the Deterministic Simulation Blaster, 
which uses a low-discrepancy deterministic 
method (Risk Technology Supplement, August 
1995, pages 23-24; K/sfr November 1995, page 
47). The company claimed a very large im­ 
provement over Monte Carlo. However, IBM 
has not revealed the method for choosing the 
sample points and the methodology for calcu­ 
lating the speed-up. IBM acknowledges that Col­ 
umbia University pioneered the use of low-dis­ 
crepancy methods to price financial derivatives.

Results
We have built a software system called Find­ 
er - for computing high-dimensional integrals 
which has modules for generating generalised 
Faure points and modified Sobol points. It in­ 
cludes major improvements. Indeed, a num­ 
ber of financial institutions have informed us 
that they could not replicate our results using, 
for example, the Sobol point generator found 
in Press et al (1992).

We used Finder to price the CMO and to 
compare low-discrepancy methods with Monte 
Carlo simulation. As both types of method 
compute the arithmetic mean of the integrand 
evaluated at a number of points, the difference 
in performance depends on the number of 
points that each method uses to achieve the. 
same accuracy. We observe the least number

1 See Paskov (1996) for the formal definition of 
discrepancy and an extensive bibliography

2 Finder may be obtained from Columbia University

of points a method needs to achieve and main­ 
tain a relative error below a specified level, say, 
10~2 . This is gauged by the speed-up of one 
method relative to another, which we define 
as the ratio of the least number of points re­ 
quired by one method, divided by the least 
number of points required by the other 
method. This ensures that both methods main­ 
tain the same level of accuracy.

This definition of speed-up is new: we study 
the convergence and the error of a method 
throughout a simulation. We believe that this 
has advantages over speed-up calculations 
which are based only on the error values at the 
end of a simulation. Note that our definition 
of speed-up is a more rigorous requirement 
than only computing the confidence level of 
Monte Carlo.

Our extensive testing has shown that fixed 
accuracy requires different tranches to be treat­ 
ed with different numbers of points. Again, we 
emphasise that deterministic methods beat 
Monte Carlo for every tranche. Our results are 
reported using the residual tranche of the 
CMO, which depends on all 360 monthly in­ 
terest rates, as the reference point, since it is 
the most difficult to price. If this tranche can 
be priced with a given accuracy using a cer­ 
tain number of samples, the same number of 
samples will yield at least the same accuracy 
for the rest of the tranches.

Since pricing models for complicated de­ 
rivatives are subject to uncertainty, financial 
houses are often content with relative errors of 
one part in a hundred. Furthermore, if they
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wish to price a book of instruments, it is criti­ 
cal to use a small number of samples. Deter­ 
ministic methods achieve a relative error of one 
part in a hundred using a small number of 
points. In figures 3 and 4 we see that some 170 
generalised Faure points or 600 Sobol points 
are sufficient for a relative error equal to 10~2, 
whereas Monte Carlo requires 2,700 points for 
the same level of accuracy. A very small num­ 
ber of generalised Faure points thus yields an 
accurate price 16 times faster than Monte Carlo.

A further reduction of the error by a factor 
of 20 (equal to 10~3 /2) requires about 16,000 
generalised Faure points while Monte Carlo 
may require up to 800,000 random points, 
which yields a speed-up factor of up to 50. In 
general, samples using as few as 2,000 gener­ 
alised Faure points can price the CMO 20 to 50 
times faster than Monte Carlo. As far as con­ 
vergence rates are concerned, for n < 104 gen­ 
eralised Faure points, the error is proportion­ 
al to n~°-82 . This error estimate is conservative, 
since a much higher convergence rate is fre­ 
quently attained but, in any case, it is veiy much 
superior to the n °-5 expected Monte Carlo error.

Monte Carlo also exhibits a great sensitiv­ 
ity to the seed of the pseudo-random number 
generator. So, unless we are dealing with the 
result of a fairly long simulation, we cannot 
have much confidence. The long simulations 
needed yield a deterministic method speed-up 
of about 1,000.

Conclusion
The best of the deterministic methods we have 
tested is the one based on generalised Faure 
points. These usually achieve the same accu­ 
racy as the Sobol points 2.5 to 6.5 times faster. 
They can also be produced efficiently, at a cost 
similar to that for random points, and a only 
a small number of points is needed to price the 
CMO. In contrast to some other deterministic 
sequences, generalised Faure points can be eas­ 
ily produced in very high dimensions. It is 
much more complicated to obtain the im­ 
proved Sobol points that we have been using 
in very high dimensions.

Finder contains features that further improve 
the quality of the approximation obtained by 
the generalised Faure method without any ad­ 
ditional computational costs. Finally, prelimi­ 
nary but very encouraging results indicate that 
gt-ncralised Faure points can efficiently price fi­ 
nancial derivatives modelled in more than 1,500
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dimensions. Future work will include: further 
improvements in Finder; a comparison of the 
performance of low-discrepancy and Monte 
Carlo methods on other financial derivatives; 
studying the possibilities that low-discrepancy 
methods offer for risk management; and de­ 
signing new low-discrepancy methods tailored 
for financial computations.  
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